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ABSTRACT

This study assessed the impacts of climate change on streamflow in the data-scarce Upper Ruvu River watershed (URRW). The Long Ashton

Research Station Weather Generator (LARS-WG) was employed for generating the future ensemble-mean climate scenario based on six global

circulation models (GCMs), under two representative concentration pathways (RCPs: RCP4.5 and RCP8.5). The future projections were made

in two periods (2041–2060 and 2081–2100), and the baseline period (1951–1978) was used as a reference. The watershed hydrology was

represented by the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) model, which was calibrated and validated

by using 5 and 4 years of streamflow data, respectively. Results indicate that the rainfall and minimum and maximum temperatures will

increase in both periods, under both scenarios. This will potentially affect the streamflow that is projected to increase from March to

August and decrease from September to February. The mean annual streamflow could potentially change from 48 m3/s in the baseline

period to 45.6 and 56.5 m3/s during 2041–2060, and 52.4 and 67.4 m3/s during 2081–2100, under RCP4.5 and RCP8.5, respectively. The mini-

mum and maximum streamflows are also predicted to change in both periods, under both scenarios. Considering these results, the climate

change will have significant impacts on the streamflows of the URRW.
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HIGHLIGHTS

• The climate change impacts on streamflow were assessed in two future periods (2050s and 2080s) under RCP4.5 and RCP8.5.

• The rainfall and temperature are projected to increase in both periods under RCP4.5 and RCP8.5.

• The climate change will have significant impacts on the streamflow of the Upper Ruvu River watershed.
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GRAPHICAL ABSTRACT
INTRODUCTION

Climate change is one of the most delicate subjects in many catchments around the world (Niang et al. 2014). Increased temp-

erature, rising sea levels, altered precipitation patterns, and changes in snow cover are all indicators of climate change
(Ayalew et al. 2022). These changes are largely caused by the emission of greenhouse gases including carbon dioxide
(CO2), methane (CH4), and nitrous oxide (N2O), which are linked to the usage of fossil fuels (IPCC 2014a, 2014b). In

most cases, greenhouse gas emissions increase surface temperatures, which alter evapotranspiration and precipitation
(Bates et al. 2008). According to several studies, hydrological systems are extremely susceptible to climatic changes (IPCC
2007; Bates et al. 2008; Zereini & Hötzl 2008; Toulmin 2009; Niang et al. 2014). Changes in temperature and precipitation

affect catchment ecosystems, which in turn affect water availability and increase the frequency of hydrological extremes such
as drought and floods (Rotich & Mulungu 2017; Shagega et al. 2019; Awotwi et al. 2021; Gurara et al. 2021).

Several studies have reported a decreasing rainfall trend in many parts of the Sub-Saharan region over the past years (Niang
et al. 2014). Also, the near-surface temperature in the region has risen by more than 0.5 °C over the last 50 years (IPCC 2007).

In contrast to the maximum temperature, the minimum temperature has risen more rapidly (Niang et al. 2014). According to
Niang et al. (2014), the mean annual temperature across the majority of the sub-Saharan region is predicted to rise by 2 °C in
the middle of the twenty-first century, and by 4 °C in the late twenty-first century, under the representative concentration path-

way (RCP)8.5. Similarly, Almazroui et al. (2020) predict an increase of the mean temperature by 1.2, 1.5, and 1.8 °C under
weak (SSP1-2.6), moderate (SSP2-4.5), and strong (SSP5-8.5) forcing, respectively. Additionally, persistent droughts and
floods are predicted in areas bordering the western Indian Ocean, including most parts of eastern Africa (IPCC 2007).
://iwa.silverchair.com/jwcc/article-pdf/13/9/3496/1114753/jwc0133496.pdf
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In Tanzania, climate change and its impacts on catchments hydrology have been the subjects of interest in recent years

(Gulacha & Mulungu 2017; Luhunga et al. 2018; Shagega et al. 2018; Ayugi et al. 2021). A study by Gulacha & Mulungu
(2017) in the Wami-Ruvu basin reported a change of precipitation by �68 to 328% and �56 to 199% during the 2050s,
under SRES A2 and B2 scenarios, respectively, with respect to the baseline period of 1961–1990. The study further reports

a change of 0.2–7.5 °C and �0.4 to 1.5 °C from the 2020s to the 2080s for maximum and minimum temperature, respectively.
Similarly, Näschen et al. (2019) in the Kilombero catchment predicted an increase in temperature, and rainfall change of
approximately �8.3 to 22.5% in the 2060s, under RCP4.5 and RCP8.5. Also, a streamflow change of 61.6–67.8% was pre-
dicted. Another study by Shagega et al. (2019) in the Ngerengere River catchment predicted an increase of temperature

between 0.2 and 2.6 °C in the 2050s, and between 2.7 and 4.4 °C in the 2080s, under the SRES A2 scenario, but the rainfall
was predicted to decrease by 3–58%. According to these studies, changes in temperature and precipitation will have a con-
siderable impact on the hydrology of catchments. However, because the majority of studies were carried out at the regional

level, they are less helpful for planning and managing water resource infrastructures at the catchment scale (IPCC 2014b).
This is partially due to the region’s diverse climate, which varies from one catchment to another (Mbungu 2016). Therefore,
climate prediction needs to be made at a finer spatial scale in order to provide reliable results (Toulmin 2009). In addition,

past studies have paid less attention to the high-humidity tropical region where the Upper Ruvu River watershed (URRW) is
located. This region is unique due to high rainfall variability resulting from Intertropical Convergence Zone and El Nino-
Southern Oscillation (Mbungu 2016). As a result, the prediction of future climatic conditions and their effects on streamflows

is critical for water resource planners and watershed stakeholders to enable effective water resource management.
Furthermore, global circulation models (GCMs) have been the widely used tools for the prediction of future meteorological

conditions around the globe (Eisner et al. 2017; Wang et al. 2018; Ahmed et al. 2019; Givati et al. 2019). Most frequently,
hydrologic models rely on the output of the downscaled GCMs to predict future hydrologic conditions (Chen et al. 2012).
For climate projections in eastern Africa, particularly Tanzania, it has been a common practice for researchers to use a
single GCM (Shagega et al. 2018). However, studies indicate that the amount of uncertainty associated with a single
GCM prediction is fairly high (Wang et al. 2018; Ahmed et al. 2019), hence multi-model ensembles are strongly rec-

ommended in order to reduce these uncertainties (Deb et al. 2018). In this context, integrating data from multiple GCM
outputs is particularly desired in order to generate reliable estimates (Rotich & Mulungu 2017; Deb et al. 2018).

Therefore, the main objective of this study is to assess the impacts of climate change on streamflows in the high-humid tro-

pical URRW. The specific objectives are: (1) generating future climate scenarios in the URRW based on multiple GCMs under
RCP4.5 and RCP8.5; (2) developing, calibrating, and validating the Hydrologic Engineering Center’s Hydrologic Modeling
System (HEC-HMS) model to represent the catchment hydrology; and (3) quantifying the potential impacts of climate
change on the streamflows of the URRW.

Study area

This study focuses on the URRW of the Wami-Ruvu basin in Tanzania (Figure 1(a)). The watershed is found on the hinterland

of the east African coast between 6 °400–7 °450S and 37 °150 and 38 °300E, with a total area of about 7,663 km2. The watershed
elevation ranges from 43 to 2,630 msl. It is dominated by slopes ranging from 0 to 4.4%, which occupy about 56.1% of the
catchment area (Figure 1(b)). Approximately 21.7% of the watershed area is occupied by slopes ranging from 4.4 to 22.8%,

and the remaining area has slopes ranging from 22.8 to 187.7% (Figure 1(b)). Higher slopes are found along the Uluguru
mountainous area, which essentially increase the rate of soil erosion and deposition along the Kidunda flood plains. The
watershed has a diverse topography and consequently varying drainage characteristics throughout the area. The important

geographical features in the watershed are the Uluguru Mountains which are part of the Eastern Arc Mountains with
elevations extending to 2,630 msl.

The watershed is mainly characterized by the Rhodic Ferrasols which are found on the extreme west and in the middle part
of the sub-catchment (Figure 2(b)). Other soil types are Umbric Acrisols, Mollic Fluvisols, Ferralic Cambisols, and Happlic

Acrisols. A small part around Kidunda downstream is covered by Haplic Lixisols, Eutric Vertisols, Eutric Planosols, and
Eutric Fluvisols (Figure 2(b)). Most of the watershed area consists of forest reserves and Uluguru mountainous area,
which to a large extent remain undisturbed. However, the land cover (approximately 5.2%) along the Mgeta flood plain

has been slightly changed in recent years due to the growing population (Figure 2(a)).
The mean annual rainfall is about 1,164 mm, whereby the mountainous area receives considerably higher rainfall com-

pared to the remaining area. The main rainfall season is March to May, and the dry period usually occurs from June to
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Figure 2 | The map of the URRW showing (a) land use/land cover and (b) soil types.

Figure 1 | The map of the URRW showing (a) topography and hydro-meteorological stations and (b) slopes.
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October (Figure 3(a)). The mean annual minimum and maximum temperatures are 21.3 and 32.1 °C, respectively. The mean

monthly maximum temperature is usually higher in January, February, March, November, and December, while the lowest
mean monthly maximum temperature usually occurs in July, August, and September. The minimum temperature was found to
follow the same trend as the maximum temperature. The relative humidity ranges from 68 to 82% which is classified as high

according to Ku-Mahamud & Khor (2009). The peak streamflow ranges from 49.8 to 74.8 m3/s, which is usually observed
between April and May, while minimum streamflow ranges from 6.2 to 11.19 m3/s, and is usually observed between Septem-
ber and January (Figure 3(b)). The mean daily streamflow is approximately 46 m3/s.

Data

The digital elevation model (DEM), hydro-meteorological, and land use/cover data were used for developing, calibration, and
validation of the HEC-HMS model for this study. The observed climatic data were used for calibration and validation of
LARS-WG, while the projected temperature and rainfall data for RCP4.5 and RCP8.5 were used for generating the future

streamflows. In this study, the hydro-meteorological data for the baseline period (1951–1978) were obtained from the
Wami-Ruvu Water Basin office, which has daily records for 11 rainfall stations (Table 1), 2 climatic stations, and 10 stream-
flow stations. For the calibration of the hydrologic model, one streamflow station (1H10) was used. The selected streamflow
://iwa.silverchair.com/jwcc/article-pdf/13/9/3496/1114753/jwc0133496.pdf



Table 1 | A summary of meteorological stations used in this study

S/N Station ID Station name Lat Long Alt Rainfall Temperature

1. 09737006 Matombo Mission �7.08 37.77 388 x

2. 09738016 Mikula �7.25 38.25 84 x x

3. 09637045 Mondo �6.95 37.63 1,285 x

4. 09637052 Morogoro Hydromet �6.82 37.65 512 x

5. 09737000 Duthumi Estate �7.38 37.82 91 x

6. 09737024 Kibungo Mission �7.07 37.68 975 x

7. 09737015 Bunduki �7.03 37.62 1,281 x

8. 09737008 Kisaki �7.47 37.60 183 x

9. 09737011 Kikeo Mission �7.22 37.55 610 x

10. 09737016 Mizungu Mgeta �7.07 37.58 1,097 x

11. 09637076 Morogoro Met. �6.82 37.65 512 x

12. 09737013 Chenzema Mission �7.12 37.60 1,676 x

Figure 3 | The plots of (a) mean monthly rainfall and (b) the mean monthly streamflow of the study area.
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gauging station has relatively complete streamflow records and represents a significant area of the watershed. The daily out-

puts of rainfall and maximum and minimum temperatures from six CMIP5 GCMs under RCP4.5 and RCP8.5 (Table 2) were
extracted from World Climate Research Programme (WCRP) website (https://esgf-node.llnl.gov/search/cmip5/). Moreover,
the Space Shuttle Radar Topographical Mission (SRTM) DEM with 30 m spatial resolution was downloaded from USGS

Earth Explorer. The land use/cover data were also downloaded from USGS Earth explorer and processed by using
Table 2 | A summary of selected GCMs for this study

S/N Model Resolution Institution

1. ACCESS1-3 1.25°� 1.25° Commonwealth Scientific and Industrial Research Organization/Bureau of Meteorology,
Australia

2. Bcc-csm1-1 2.8°� 2.8° Beijing Climate Center, China Meteorological Administration, China

3. CanESM2 2.8°� 2.8° Canada Centre for Climate Modelling and Analysis, Canada

4. IPSL-CM5A-
MR

2.5°� 1.25° Institut Pierre Simon Laplace, France

5. HadGEM2-ES 1.875°� 1.25° Met Office Hadley Centre, UK

6. MIROC5 1.4°� 1.4° Atmosphere and ocean research institute (the University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

om http://iwa.silverchair.com/jwcc/article-pdf/13/9/3496/1114753/jwc0133496.pdf

4

https://esgf-node.llnl.gov/search/cmip5/


Journal of Water and Climate Change Vol 13 No 9, 3501

Downloaded from http
by guest
on 19 April 2024
ArcGIS software. The processed land use/cover maps were further verified by using site surveys, existing maps from the Tan-

zania Ministry of Water, and satellite imagery. The soil data for the study area were obtained from the International Soil
Reference & Information Center (ISRIC) database and were verified using locally available maps.

METHODS

The hydrometric and meteorological data were first checked for missing data and consistency which would otherwise cause
biases in the study results (Ayalew et al. 2022). The data consistency was checked by the double mass curve method. In

addition, a number of common techniques for filling in missing data including the inverse distance weighting, normal
ratio, and multiple linear regression methods were considered and analysed in this study. The normal ratio method was
found to provide relatively accurate estimates and therefore was adopted for filling in missing rainfall data. Filling of missing

data was only applied at the Mondo rainfall station which had a significant length of missing values. Also, the change point
analysis was conducted in order to establish the baseline period for this study. The abrupt changes were analysed by using
Pettit’s, Buishand’s, Hubert Segmentation, and Bayesian method of Lee and Heghinian tests (Rougé et al. 2013). These
tests were carried out by using the Khronostat software developed by the French Institute of Research for Development
(IRD).

The climate projections were carried out by using the outputs of six CMIP5 GCMs (Table 2) under RCP4.5 and RCP8.5. The
RCP4.5 scenario was chosen because it represents the on-going global collaborative effort to reduce the consequences of cli-

mate change, whereas the RCP8.5 scenario was chosen because it represents the highest radiative forcing among the four
RCPs (Moss et al. 2008). Both scenarios are widely used by water resources planners for developing mitigation and adap-
tation strategies owing to climate change impacts (Niang et al. 2014). The CMIP5 GCMs were first ranked based on their

spatial resolution, and then we selected the commonly used GCMs in the tropical region that has a finer spatial resolution.
The generation of climate scenarios was carried out by using LARS-WG. The HEC-HMS model was then developed, cali-
brated, and validated by using the observed hydro-meteorological data. The HEC-HMS model performance was evaluated

by using Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2), as described in Table 3. The LARS-
WG generated climate scenarios were combined to generate the ensemble-mean (EM) climate scenario, which was then
incorporated into a calibrated HEC-HMS model for simulating the future streamflow in the watershed.

Calibration and validation of LARS-WG

The GCMs outputs are usually at a coarse spatial scale; hence, downscaling is commonly applied (Ma et al. 2021). The down-
scaling techniques are usually divided into two categories, namely statistical and dynamic, the former was used in this study.
The Long Ashton Research Station Weather Generator (LARS-WG) was employed for downscaling the GCM outputs and

generation of climate scenarios. The LARS is a stochastic weather generator commonly used for downscaling GCMs at a
single site (Chisanga et al. 2017). It is a series-based weather generator that employs semi-empirical distributions for generat-
ing wet and dry series, solar radiation, minimum and maximum temperatures, as well as daily precipitation (Chisanga et al.
2017). LARS-WG employs a site-specific semi-empirical distribution with 23 intervals to estimate the probability distribution

of dry and wet series of daily rainfall as well as minimum and maximum temperatures (Hassan et al. 2013). In LARS-WG, a
Table 3 | A mathematical description and interpretation (according to Moriasi et al. 2007) of statistical criteria used for evaluating HEC-HMS
model performance

NSE R2

Mathematical equation 1 �

Pn
i¼1

(Qs(i) � Qo(i))
2

Pn
i¼1

(Qo(i) �Qoi(l))
2

Pn
i¼1

(Qo(i) � Qo=(i))(Qs(l) � Qsi(l))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Qo(i) � Qoi(l))
2� Pn

i¼1
(Qs(i) � Qsi(l))

2

s
0
BBBB@

1
CCCCA

2

Performance measures

Very good .0.75 . 0.85

Good 0.65,NSE� 0.75 0.75,R2� 0.85

Satisfactory 0.5,NSE� 0.65 0.60,R2� 0.75

Note. Qo and Qs are observed and simulated streamflow values, respectively. ‘–’ on the top of the variable denotes the mean value.
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value of a climatic variable (Zi) corresponding to the probability (Pi) is determined by using Equation (1).

Zi ¼ min {Z: P (Zobs � Z) � Pi}, i ¼ 0, 1, 2, 3, . . . . . . :, n (1)

where P is the probability based on observed data {Zobs}.
For each climatic variable, P0 and Pn are set to 0 and 1, respectively, with corresponding values of Z0¼min {Zobs} and Zn¼

max {Zobs}. The downscaling process begins with the selection of a random value from one of the intervals, followed by the
selection of a random value by using the uniform distribution (Hassan et al. 2013). In order to correctly assess the climatic
variables, Pi is assigned close to 1 for extremely high values and close to 0 for extremely low values. The remaining intervals

are evenly distributed in the probability scale (Chisanga et al. 2017).
In this study, the observed rainfall, and minimum and maximum temperatures data were used for the calibration of the

LARS-WG. The performance of LARS-WG was validated by using Kolmogorov–Smirnov (K–S) test as well as t and F-tests
to compare means, standard deviations, and probability distributions. These tests search for differences between the simu-
lated and observed data. Each test calculates a p-value which is used to determine whether the simulated and observed
data have the same distribution. A very low p-value (below 0.01) indicates that the observed and simulated values are unlikely
to have the same distribution, hence poor model performance (Chisanga et al. 2017). Additionally, the simulated versus

observed values of mean monthly rainfall, daily rainfall maxima, minimum daily minima and maxima, and maximum
daily minima and maxima were also used to assess the goodness of fit. The calibrated LARS-WG was then used to generate
the synthetic data of rainfall and the maximum and minimum temperatures for two periods (2041–2060 (the 2050s) as near

future and 2081–2100 (the 2080s) as far future) under RCP4.5 and RCP8.5.
Calibration and validation of the HEC-HMS model

The HEC-HMS is a conceptual semi-distributed hydrologic model widely used for event-based and continuous modelling
(Halwatura & Najim 2013). The model is widely used in tropical regions and has proven to provide reliable simulations
(Gumindoga et al. 2017). Due to data quality and scarcity, the model was calibrated by using 5-year records (1969–1974)
and validated by using 4-year records (1975–1978), at a 1H10 streamflow gauging station. The HEC-HMS model inputs

data were the daily values of rainfall, the estimates of evapotranspiration, streamflow, and DEM. The estimates of evapotran-
spiration were computed from minimum and maximum temperature values by using the FAO ETo Calculator version 3.2.
During the calibration of the HEC-HMS model, the simplex method was employed for the optimization of model parameters.

The soil moisture accounting (SMA) was used as the loss method, and baseflow contribution was computed by the linear
reservoir (LR) method. In SMA, the volume of the infiltration is computed according to Equation (2), the percolation between
the upper soil and groundwater (GW) layer is computed according to Equation (3) and the GW contribution is calculated

according to Equation (4). The model performance was evaluated by using the statistical indices (NSE and R2; Table 3),
and the comparison of simulated and observed hydrographs.

Psi ¼ MaxSi–
CSs

MaxSs

� �
�MaxSi (2)

where Psi is the potential soil infiltration, MaxSi is the maximum soil infiltration, CSs is the current volume of soil storage,

and MaxSs is the maximum volume of the soil storage.

PSp ¼ MaxSp� CSs
MaxSs

� �
1� CGWs
MaxGWs

� �
(3)

where PSp is the potential soil percolation rate, MaxSp is the maximum percolation rate, CGWs is the calculated layer 1

groundwater storage, MaxGWs is the maximum storage for layer 1 groundwater storage.

GWtþ1 ¼ PSpþ CGWsþ PGWpþ 0:5GWt � ts
RGWsþ 0:5ts

(4)
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where GWt is the groundwater flow at a current time step, GWtþ1 is the groundwater flow at the next time step, PGWp is the

potential ground water percolation, ts is the time step, and RGW is the routing coefficient for groundwater storage.
Sensitivity analysis is an important aspect of hydrological modelling (Song et al. 2015). It is used to rank model parameters

according to their impacts on model output and helps in identifying the optimal parameters during model calibration

(Pechlivanidis et al. 2011). The sensitivity analysis for the HEC-HMS model was performed manually by changing one par-
ameter at a time as described by Ayalew (2019). The value of the model parameter was increased and decreased by 40% at a
5% interval while observing the value of NSE. In this study, a total of 17 HEC-HMS model parameters were subjected to
sensitivity analysis.
RESULTS AND DISCUSSION

Calibration and validation of the LARS-WG

The change point analysis for meteorological data (1951–1978) was done at the annual time scale using a 0.05 significant
level. The results indicated no significant break in the distribution of the annual rainfall series; hence, the baseline period

(1951–1978) was selected based on the available data.
The results of the K–S test, t-test, and F-test indicated that the LARS-WG was able to simulate well the seasonal distribution

of wet and dry periods (Table 4), monthly rainfall (Table 5), as well as minimum and maximum temperatures (Table 5). The

plots of simulated and observed mean monthly rainfall also indicated a good correlation with an R2 of 0.99. The simulated
Table 4 | The results of the K–S test for seasonal wet/dry SERIES distribution

Season Wet/dry N K–S p-Value Performance

DJF Wet 11.5 0.003 1.000 Perfect fit

DJF Dry 11.5 0.075 1.000 Perfect fit

MAM Wet 11.5 0.115 0.996 Very good fit

MAM Dry 11.5 0.061 1.000 Perfect fit

JJA Wet 11.5 0.032 1.000 Perfect fit

JJA Dry 11.5 0.058 1.000 Perfect fit

SON Wet 11.5 0.163 0.892 Very good fit

SON Dry 11.5 0.095 1.000 Perfect fit

Table 5 | The results of the K–S test for daily rainfall and minimum and maximum temperature distributions

Daily rain Daily Tmin Daily Tmax

Month N K–S p-Value K–S p-Value K–S p-Value

Jan 12 0.065 1.000 0.053 1.000 0.053 1.000

Feb 12 0.195 0.726 0.053 1.000 0.053 1.000

Mar 12 0.065 1.000 0.053 1.000 0.106 0.999

Apr 12 0.065 1.000 0.053 1.000 0.033 1.000

May 12 0.067 1.000 0.105 0.999 0.000 1.000

Jun 12 0.137 0.972 0.053 1.000 0.053 1.000

Jul 12 0.124 0.990 0.053 1.000 0.053 1.000

Aug 12 0.1 1.000 0.053 1.000 0.053 1.000

Sep 12 0.08 1.000 0.053 1.000 0.053 1.000

Oct 12 0.065 1.000 0.053 1.000 0.106 0.999

Nov 12 0.112 0.997 0.053 1.000 0.053 1.000

Dec 12 0.064 1.000 0.053 1.000 0.053 1.000
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monthly minimum and maximum temperatures and daily maxima were also compared with observed values and yielded an

R2 of 0.99 (Figure 4). These results indicate that the LARS-WG can be reliably used for projecting the rainfall, as well as maxi-
mum and minimum temperatures in the URRW.

Calibration and validation of the HEC-HMS model

The sensitivity analysis for 18 HEC-HMS model parameters was performed, and the SMA parameters were found to be more
sensitive (Figure 5). Among the SMA parameters, surface imperviousness was found to be the most sensitive, followed by the
GW coefficient. However, soil percolation and storage parameters were found to be less sensitive (Figure 5). The statistical

indices indicate that the HEC-HMS model performed well in both calibration and validation periods. The model yielded the
NSE and R2 of 0.76 and 0.76, respectively, during calibration, and NSE and R2 of 0.68 and 0.76, respectively, during
validation. The model performance is rated very good according to Moriasi et al. (2007). Moreover, the observed and simu-
lated hydrographs shown in Figure 6 indicated that the model simulated well the pattern of observed hydrographs, as well as

low and moderate flows. However, there was a slight difference between observed and simulated peak flows, whereby 22%
underestimation and 4% overestimation were indicated during calibration and validation periods, respectively. This could be
associated with the model structural deficiencies; however, a number of studies in neighbouring watersheds, including Sha-

gega et al. (2019) in the Ngerengere catchment and Wambura et al. (2015) in the Wami sub-basin, have reported similar
challenges for HBV and SWAT models, respectively. As a result, inaccurate peak flow estimation could also be linked to
Figure 4 | The scatter plots of LARS-WG-simulated and observed: (a) mean monthly rainfall; (b) minimum temperature; and (c) maximum
temperature in the URRW.
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Figure 5 | The plot of sensitivity analysis of HEC-HMS model parameters.

Figure 6 | The observed and HEC-HMS-simulated streamflow during (a) calibration and (b) validation.

Journal of Water and Climate Change Vol 13 No 9, 3505

Downloaded from http
by guest
on 19 April 2024
the scarcity of streamflow data, in which the observed peaks are not sufficient enough to be adequately simulated. However,

the statistical evaluation indicates that the HEC-HMS model can be reliably used for simulating the streamflow in the
watershed.

Projected changes in meteorological conditions

An analysis of mean monthly rainfall indicates an increase of 2.9–76.4% under RCP4.5 and 6.7–78% under RCP8.5 in the
2050s, while an increase of 10–80% under RCP4.5, and 8–68% under RCP8.5 is predicted in the 2080s (Figure 7). During
://iwa.silverchair.com/jwcc/article-pdf/13/9/3496/1114753/jwc0133496.pdf



Figure 7 | The projected monthly rainfall changes in (a) the 2050s and (b) the 2080s periods, under RCP4.5 and RCP8.5 scenarios.
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the 2050s, a significant increase in the mean monthly rainfall will potentially occur in May (68%), June (76%), and August
(51%) under RCP4.5, while an increase of 75, 78, and 50% is predicted for May, June, and August, respectively, under

RCP8.5. Similarly, a significant increase in the mean monthly rainfall will potentially occur in May, June, and August
during the 2080s, under both RCP4.5 and RCP8.5. Also, a significant increase in mean monthly rainfall is predicted for
March under RCP8.5. The mean annual rainfall is also expected to increase in most stations for both periods, except Bunduki,

where a small decrease is predicted under both scenarios, as shown in Figure 8.
The minimum temperature is predicted to increase by �0.43 to 0.56 °C under RCP4.5 and 0.07–1.02 °C under RCP8.5 in the

2050s (Figure 9). During the 2080s, the minimum temperature is predicted to increase by 0.16–3.1 °C under both scenarios

(Figure 9). Overall, the minimum temperature shows an average change of �0.05 and 0.45 °C during the 2050s, and 0.53 and
2.7 °C during the 2080s under RCP4.5 and RCP8.5, respectively. On the other hand, the change in maximum temperature is
predicted to range between �0.74 and 0.83 °C, and �0.05 and 1.22 °C under RCP4.5, during the 2050s and 2080s, respect-
ively, whereas the change of �0.26 to 1.28 and 1.79–3.0 °C is predicted during the 2050s and 2080s, respectively, under

RCP8.5. In general, the average change of maximum temperature under RCP4.5 and RCP8.5 is predicted to be �0.007
and 0.41 °C in the 2050s, and 0.47 and 2.4 °C in the 2080s, respectively. From these results, it can be clearly seen that
both maximum and minimum temperatures will change dramatically under RCP8.5. This, in turn, is expected to increase eva-

potranspiration rates, leading to a decrease in streamflow. When relating the change of monthly rainfall, temperature, and
Figure 8 | The baseline and projected annual rainfall at various stations during (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5
scenarios.
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Figure 9 | The projected monthly changes of minimum temperature in (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5 scenarios.
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streamflows (Figures 7, Figures 9–11), it can be clearly seen that the temperature will have significant impacts especially in

months with lower rainfall.
To gain more insight into projected future meteorological conditions in the region, the results of this study were compared

with a number of studies from neighbouring catchments. The study results were found to be consistent with Shagega et al.
(2018) in the Ngerengere catchment which projected an increase in rainfall, and minimum and maximum temperatures in
the 2050s and 2080s under the SRES A2 scenario. Similarity is also found in several studies in the region (Gulacha &
Mulungu 2017; Kishiwa et al. 2018; Näschen et al. 2019). Consistency in projections essentially reduces uncertainties, allow-

ing for more efficient planning and management of water resource infrastructures.
Analysis of future streamflow changes

An increase in streamflow is predicted from March to August in both the 2050s and 2080s, but the decrease will potentially
occur in the remaining months (Figures 11 and 12). In general, the average change of streamflow is projected to be �10.72
and 0.36% in the 2050s, and �2.83 and 16.42% in the 2080s, under RCP4.5 and RCP8.5, respectively. As shown in Figures 11

and 12, the streamflow will decrease in January and February, as well as from September to December, in both periods, under
both scenarios. The projected streamflow from September to February months is against the projected mean monthly rainfall
Figure 10 | The projected changes of monthly maximum temperature in (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5 scenarios.

://iwa.silverchair.com/jwcc/article-pdf/13/9/3496/1114753/jwc0133496.pdf



Figure 11 | The plots of baseline and projected streamflow hydrograph during (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5
scenarios.

Figure 12 | The plots of percentage change of month streamflow in (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5 scenarios.
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(Figure 7), which is expected to rise in these months for both the periods, under RCP4.5 and RCP8.5. As previously stated, this

aligns with positive temperature changes that will potentially increase the evapotranspiration rates. Also, an analysis of mini-
mum streamflow indicates that there will be a positive change from January to August, but a negative change is predicted
from September to December in the 2050s, under RCP4.5 and RCP8.5 (Figure 13). In the 2080s, however, positive

changes in minimum streamflow are projected from January to August and November, and December, while negative
Figure 13 | The plots showing the change of monthly minimum flows in (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5 scenarios.
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changes are only projected from September to October. On the other hand, the maximum streamflow shows a negative

change in all months except for June and July under RCP8.5, in the 2050s (Figure 14). Also, a positive change of maxi-
mum streamflow is projected for June and July under RCP4.5, but no change is indicated in March, April, and May.
However, significant differences are indicated in the 2080 s, whereby maximum flows are projected to be higher from

April to August, and lower in the remaining months under RCP8.5. In addition, the maximum flows are expected to
be lower in all months except in July under RCP4.5.

The flow duration curves are useful when assessing the streamflow indices that are widely used by planners in plan-
ning, designing, and managing water resources infrastructures. In most cases, the low flows (less than Q70), medium

flows (Q20–Q70), and high flows (greater than Q20) are usually used (Saez et al. 2018), hence they have been analysed
in this study (Figure 15). The results indicate that high flows will be significantly higher in the 2050s and 2080s under
both scenarios. For comparison, the value of Q5 is predicted to be 273 and 315 m3/s in the 2050s, and 200 and

276 m3/s under RCP4.5 and RCP8.5, respectively, while the Q5 for the baseline period is 143 m3/s. This is equivalent
to a 90 and 120% increase in the 2050s, and a 40 and 93% increase in the 2080s under RCP4.5 and RCP8.5, respectively.
Also, the medium flows are generally expected to be higher except for Q50–Q70 and Q65–Q70, which are predicted to be

slightly lower in 2050s and 2080s, respectively. For comparison, the projected Q50 in the 2050s are 25 and 26 m3/s, and
31 and 31.5 m3/s in the 2080s, under RCP4.5 and RCP8.5, respectively, whereas the Q50 for the baseline period is
26.6 m3/s. This is equivalent to a decrease of approximately 6 and 2% in the 2050s, and an increase of 17 and 18% in
Figure 14 | The plots showing the change of monthly maximum flows during (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5
scenarios.

Figure 15 | The FDCs for baseline and projected streamflow during (a) the 2050s and (b) the 2080s, under RCP4.5 and RCP8.5 scenarios.
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the 2080s. Moreover, the low flows (Q70–Q90) are projected to be lower in both periods, but very low flows (less than

Q90) are projected to be higher. For comparison, the Q75 for the baseline period is 13.7 m3/s, while the projected Q75
are 10.7 and 10.9 m3/s during the 2050s, and 11.1 and 10.6 m3/s during the 2080s under RCP4.5 and RCP8.5, respect-
ively. On the other hand, the Q95 for the baseline period is 8.6 m3/s, while the projected Q95 in both periods is

10 m3/s, under both scenarios.
Conclusions and recommendations

In this study, the impacts of climate change on streamflow in the URRW were evaluated. First, the meteorological data
were analysed for abrupt changes in order to establish the baseline period. The Khronostat software was used for analys-
ing the abrupt changes in the observed rainfall distributions. The results indicated that there was no break in

meteorological data. As a result, 1951–1978 was selected as the baseline period. The climate projections were made
from six CMIP5 GCMs outputs, which were then downscaled by the calibrated LARS-WG at each station. The EM scen-
ario was then computed and incorporated into the calibrated and validated HEC-HMS model for future streamflow

projections.
The LARS-WG was found to be a reliable tool for generating climate scenarios for the URRW. The rainfall and minimum

and maximum temperatures were well simulated with R2 above 0.726 for all variables. Moreover, the daily streamflow

observed at the 1H10 streamflow station was used for calibration and validation of the HEC-HMS model. The calibration
and validation results indicated that the HEC-HMS model is suitable for the streamflow simulation in the watershed. The
model yielded the NSE and R2 of 0.76 and 0.76 during calibration, and 0.68 and 0.76 during validation, respectively. This
performance is good considering the data scarcity in the watershed.

Furthermore, the EM scenario derived from multiple GCMs was used for projecting the watershed streamflows. This
approach is well described by Ma et al. (2021) and provides reliable estimates since direct averaging of the GCMs outputs
smooths the climatic variability. The findings indicate that future climate changes will have significant meteorological impacts

on the streamflow of the URRW. It was found that the monthly rainfall could potentially increase by 6.7–78% during the
2050s, while an increase of 8–80% is predicted during the 2080s, under RCP4.5 and RCP8.5. The minimum temperature
could potentially change between �0.43 and 1.02 °C during the 2050s, and 0.16 and 3.1 °C during the 2080s, while the maxi-

mum temperature could potentially change between �0.74 and 1.28 °C during the 2050s, and �0.05 and 3.0 °C during the
2080s, under RCP4.5 and RCP8.5.

The meteorological changes will have impacts on streamflow which is anticipated to change by �65.1 to 89.7% during
the 2050s, and �62.9 to 120.9% during the 2080s, under RCP4.5 and RCP8.5. On a monthly scale, a decrease in stream-

flow is projected for January (30%), February (36%), September (49%), October (39%), November (63%), and December
(65%) months, while the increase in streamflow is projected in March (4.2%), April (34%), May (10%), June (33%), July
(69%), and August (3%) months. Additionally, a comparison of baseline and projected minimum and maximum stream-

flow revealed significant changes. The results indicate that a significant minimum streamflow change of approximately
20–41 m3/s during the 2050s, and 22–97 m3/s during the 2080s could potentially occur in April under RCP4.5 and
RCP8.5. Maximum streamflow is also expected to change significantly in April for both periods. Moreover, a comparison

of flow duration curves (FDCs) indicates an overall increase of high flows (larger than Q20), very low flows (smaller than
Q95), and moderate flows (between Q20 and Q70) under both scenarios. However, the low flows (between Q70 and Q90)
will be slightly lower.

The results of this study are based on six GCMs and only two scenarios (RCP4.5 and RCP8.5). As described by Ma et al.
(2021), incorporating more GCMs and emission scenarios for hydrological studies is important for a better understanding of
associated uncertainties. Therefore, it is recommended to incorporate additional GCMs and emission scenarios in order to
generalize the study findings. Moreover, the HEC-HMS model was calibrated and validated by using 5- and 4-year streamflow

data, respectively. Although the model was able to simulate well the watershed streamflow, it is recommended to recalibrate
the model once the new data are available.

Additionally, the impacts of future land use/cover change were not incorporated in this study. Despite the fact that the

majority of the watershed area is currently undisturbed, changes in land use/cover are expected to be significant in the
near future due to the growing population in the watershed. Therefore, streamflow projections in future studies should con-
sider both climate and use/cover changes in order to increase the accuracy of the results.
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Overall, the results of this study are important for providing an insight into the future climate conditions and surface water

availability on URRW. However, they should be used with care by considering the study limitations. Also, this study is a start-
ing point for future studies in URRW and other high-humid tropical catchments.
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