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ABSTRACT

Water is the fundamental part of living systems and it plays a key role in supporting life on earth; however, fluctuations in climatic conditions

lead to limitation of the ground water causing serious concerns. The present research study was aimed at assessing growth and physio-bio-

chemical responses of barley to calcium chloride (CaCl2) solution (10 mM) applied through roots under induced drought stress for 5, 10, and

15 days. CaCl2, being an enhancer of osmolytes and antioxidant enzymes, counteracts the damaging effects caused by abiotic stresses. A pot

experiment was conducted by sowing barley under induced drought stress for 5, 10, and 15 days, respectively. Plants exposed to different

levels of the induced drought stress condition were treated with 10 mM of CaCl2 solution via roots during the seedling stage. Results indi-

cated that water-limited conditions negatively affected plant growth parameters including final emergence percentage, final germination

percentage, and mean emergence time. Moreover, absolute growth rate, relative growth rate, and net assimilation rate were significantly

improved under 5, 10, and 15 days of drought stress supplemented with CaCl2 solution. Under drought conditions, an increase was observed

in hydrogen peroxide (H2O2), glycine betaine (GB), and proline (PRO) content, and in ascorbate peroxidase (APX), catalase (CAT), peroxidase

(POD), superoxide dismutase (SOD), and lipid peroxide (LPO) activities. H2O2 and LPO showed a significant decline with CaCl2 application

under induced drought stress regimes. On the contrary, GB, PRO, APX, CAT, POD, and SOD contents of root and leaf were significantly

improved with CaCl2 application under induced drought stress. In conclusion, CaCl2 solution effectively curbed the damages caused by oxi-

dative stress via accumulating osmolytes and scavenging reactive oxygen species by activating the antioxidant enzymatic defence system of

barley.
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HIGHLIGHTS

• The agriculture sector of Pakistan has been negatively affected by changing climatic regimes.

• The groundwater table of Peshawar has been declining 1–3 feet/year for the last two decades.

• CaCl2 application improved AGR, RGR, and NAR under drought stress conditions.

• H2O2 and LPO contents were reduced with CaCl2 application.

• Osmolytes content and antioxidant enzymes were improved with CaCl2 application under drought stress.
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GRAPHICAL ABSTRACT

ABBREVIATIONS

FEP final emergence percentage
FGP final germination percentage
MET mean emergence time
AGR absolute growth rate
RGR relative growth rate
NAR net assimilation rate
H2O2 hydrogen peroxide
GB glycine betaine
PRO proline
APX ascorbate peroxidase
CAT catalase
POD peroxidase
SOD superoxide dismutase
LPO lipid peroxide
ROS reactive oxygen species
CaCl2 calcium chloride

1. INTRODUCTION

1.1. Physio-biochemical responses of plants to drought stress

Drought can be defined as ‘a prolonged shortage in the water supply, whether ground water, surface water, or atmospheric

water’. Limited water availability is becoming a threatening issue all over the globe, and water stress conditions have intense
negative effects on agriculture and ecosystems (Shao et al. 2008). It is believed that water scarcity is one of the most danger-
ous environmental stresses which drastically reduces plant growth and production up to 45% throughout the world in all the
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cultivated lands (Mirzaee et al. 2013). Drought stress affects plant growth and development by declining the rate of photo-

synthesis. The major factor responsible for slowing the rate of photosynthesis is stomatal closure during abiotic stress
regimes which ultimately leads to reduced stomatal CO2 fixation (Rasouli et al. 2021). Plant growth, total biomass, and
yield are affected by several environmental biotic factors such as microorganisms, anthropogenic activities, and abiotic fac-

tors like salinity, drought, temperature, toxicity of heavy metals, and oxidative stress (Jaleel et al. 2007a, 2007b). Plants
confront water-deficit conditions mainly due to the following two factors: (a) when the rate of transpiration is very high or
(b) it is difficult for the roots to absorb water from the soil. Both these conditions mostly coincide in arid and semiarid cli-
mates of the world (Jaleel et al. 2007a, 2007b). Turgidity of the cell is maintained by the formation of osmolytes, and

osmotic potential being an adaptive mechanism in encountering the loss of turgor pressure under the drought stress is regu-
lated by osmolytes accumulation in the cytoplasm (Manivannan et al. 2007).

Production of osmolytes such as protein, glycine betaine (GB), and proline (PRO) helps to combat the negative impacts of

oxidative stress by providing suitable environmental conditions compatible with the structure and function of macromol-
ecules (Dawood 2016). Owing to their non-toxicity, osmolytes have no effect on metabolic activities of plants due to their
very low molecular weight and high solubility rate, which is why their presence even in a very large amount does not interfere

with the normal cellular physio-biochemical processes (Slama et al. 2015). Previous studies showed that calcium is involved
in the regulatory mechanisms, defence, and signalling that tend to adjust plants to droughts, cold, salt, and heavy metal stress
(Xu et al. 2013). Plants facing abiotic stresses activate strong antioxidant enzymes such as superoxide dismutase (SOD), cat-

alase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), peroxidase (POD), and non-enzymatically through
vitamins and phenolics compounds (Al-Hassan et al. 2015).

Calcium (Caþþ), being a macro-nutrient, plays a key part in plant growth regulation. It has a crucial role in controlling the
structure and function of cell membranes. Calcium (Caþþ) by binding to phospholipids upholds the structure of lipid bilayers

thus providing structural integrity to plasma membranes. Besides, Caþþ has been found to hamper the adverse impacts of
oxidative stress via regulating plant water relations and antioxidant metabolism (Ahmad et al. 2015a, 2015b). Caþþ is
involved in regulating various cellular functions as a secondary messenger (Cousson 2009). As a secondary messenger, it

helps in modulating important physiological functions such as nutrient uptake, and changes in cell status to assist the
plant in counteracting the negative impacts of oxidative stress (Colorado et al. 1994). Adding Caþþ supplements to irrigated
water alleviates the adverse effects of water deficiency and decreases growth inhibition in plants. They also allow potassium

ion transport and Kþ/Naþ selectivity in Naþ-stressed plants. Interaction of calcium and sodium ions on plant growth and ion
relation is well recognized. Furthermore, it is well known that calcium ions increase the levels of osmolytes such as GB and
PRO in abiotic stress conditions (Gobinathan et al. 2011).

Barley is an important cereal crop and is used as feed for animals in Pakistan. It is cultivated in temperate regions through-

out the world at high altitudes as well as in plain areas. It belongs to the family Gramineae and is considered an important
edible crop among communities of marginal areas, the highlands of central Asia, Horn of Africa, Andean countries, and the
Baltic States. Barley is cultivated in environments ranging from the deserts of Middle East to high elevation of Himalayas

(Hayat et al. 2012). It is the most important alternative food source in dry areas of the world (Barriga & Anj 2010; Khan
& Bajwa 2010).

1.2. Future prospects of climate change in Peshawar (Pakistan)

Changing environmental conditions are becoming a hindrance to meeting the increasing demand for food and sustainable
agriculture. Changes in climatic conditions lead to fluctuations in temperature, droughts, floods, earthquakes, and other

environmental calamities, ultimately leading to shrinking crop productivity (Shah et al. 2021). In Pakistan, the duration of
summer is longer than winter, and the temperature ranges between 30 and 45 °C in Peshawar as well as in other cities of
Khyber Pakhtunkhwa. The temperature in Pakistan is expected to raise approximately 3 °C by 2040 and 5–6 °C by the end
of this century (IUCN 2009). Pakistan has been impacted by the effects of environmental changes to a great extent and

this enhanced susceptibility of the country to the danger of changing environment has broadly been recognized (Chaudhary
2017; Ghulam et al. 2017; Saeed & Athar 2018; Ali et al. 2020). Pakistan has witnessed 0.5 and 0.8 °C expansion in normal
mean and extreme temperature, over the period 1961–2010 (Ali et al. 2020). While the future expansion in temperature is

projected to be higher than the worldwide normal, the northern parts situated at a higher altitude are probably going to
encounter significantly raised surface air temperature (5.8 °C) (Ali et al. 2015). Pakistan’s population is quickly expanding
with a growth rate of 2.1%, which is higher than the global growth rate of 1.1%. Considering the current situation of
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environmental fluctuations, it is anticipated that 2.1 million hectares of arable land of Pakistan will be impacted by drought by

2025 (World Bank 2018). In general, during the summer and spring seasons Peshawar experiences drought periods due to a
higher rate of transpiration and an increase in temperature (Farooq et al. 2009).

1.3. Impact of climate change on agriculture and hydrology

The majority of the South Asian countries including Pakistan have been recognized as drought susceptible zones exposed to
the adverse consequences of climate change (Biemans et al. 2013). Exponential population growth rate, lack of water acces-

sibility, soil degradation, and urbanization alongside environmental changes are the global challenges posing a threat to food
security (Lal 2013). For the last decades, the agriculture sector of Pakistan has been adversely affected by changing climatic
conditions, which might lead to food insecurity by 2030, bringing about a spike in food prices (Bandara & Cai 2014). Drought

periods, floods, extreme temperatures and changes in precipitation patterns have a direct adverse impact on crop production.
A research study carried out on wheat production of Swat, Charsadda, and Peshawar districts in Khyber Pakhtunkhwa, Paki-
stan, suggested that short-lived and high yielding varieties should be introduced in mountainous regions due to the prevalent
condition of global warming in these areas (Hussain &Mudasser 2007). Moreover, due to climatic fluctuations a pronounced

decline has been forecasted in the production of rice and wheat, which are the staple foods of Pakistan, mainly grown in the
following districts: Peshawar, Charsadda, Mardan, and Swabi within Khyber Pakhtunkhwa (Ahmad et al. 2015a, 2015b; Sha-
koor et al. 2015).

The Peshawar Valley is a significant topographical zone in the upper Indus basin in Pakistan. The Kabul River gathers
water from the streams and canals of the Peshawar Valley and drains it into the River Indus (Khuram et al. 2021). The
decrease in water table ranged from 1 to 3 feet each year in the area of study, precipitation has diminished and stream

water discharge showed huge disparities in river water volume over the last two decades. Research findings showed three
fundamental indicators for drought, including irregular patterns of precipitation, reduced water table, and low surface
water accessibility in the area of study (Idrees et al. 2022). Groundwater is the exclusive source of water supply in Peshawar

with 1,400 public tube wells having an overall release of 8 million gallons/h. Other than these, hand pumps and dug wells are
additionally providing fresh water to meet the water needs of the inhabitants. During 1981–2017, the population growth
increased the demand for fresh water. In 2014, the extraction of water from ground water source was 105 mm/year, showing
high extraction and low restoration of groundwater from precipitation, leading to shrinking groundwater sources, and ulti-

mately low water table (Khan & Ali 2019). In order to fulfil the food requirements of the steadily expanding population,
sewage water is being utilized for irrigation practices due to the scarcity of irrigation water in Peshawar, which might
cause soil and crops contamination (Perveen et al. 2012).

The present research work was aimed at assessing the physio-biochemical and growth responses of barleyHordeum vulgare L.
to calcium chloride (CaCl2) solution, its efficacy in attenuating the negative impacts of drought-induced stress, and to unveil
the degree of effectiveness of CaCl2 solution in regulating key metabolic activities by enhancing the drought tolerance

capacity of barley cultivar exposed to varying levels of drought-induced stress conditions.

2. MATERIALS AND METHODS

2.1. Physiography and meteorology of the area of study

A pot experiment was conducted at the Department of Botany, University of Peshawar, Pakistan (34 °10 33.3012″N and
71 °330 36.4860″ E) during the spring season 2020. Peshawar is located in the Iranian plateau and has a tropical climatic con-

dition. It is the biggest and capital city of the Khyber Pakhtunkhwa province. To the west, The Federally Administered Tribal
Areas (FATA) is located and at its North Mohmand Agency shares the boundary. Likewise, Kohat district is located at its
southern side. Nowshera and Charsadda districts are connected towards its north-east and north side. Peshawar is spatially
extended out to 1,257 km2 with an elevation of 340 m/1,115.49 feet (Figure 1). The maximum average temperature in summer

goes above 40 °C and the minimum average temperature reaches 25 °C. The wind speed is around 5 knots in December to
24 knots in mid-June. In same manner, the relative humidity varies from 45% in June to 75% in August (Mehmood et al.
2016). Peshawar gets precipitation both in summer and winter. Relatively, average winter precipitation is on the higher

side compared to summer precipitation, the annual mean monthly temperature ranges from 10.2 to 31.3 °C and mean
annual rainfall is 384 mm (Nicol et al. 1999; Salma et al. 2012). Figure 2 depicts land cover of the area of study generated
from Landsat data for the period 1990, 2000, 2010, and 2019, respectively.
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2.2. Experimental design

Seeds of barley were collected from National institute of Agriculture and Research Centre (NARC), Islamabad. Surface-

sterilized seeds were sown in pots of 20 cm height, 18 cm upper and lower diameter and 2 cm thickness containing clay
soil, pure sand, and farmyard manure at 1:1:1. Pots were placed 5 cm apart from each other and arranged in a random-
ized complete block design (RCBD). Twenty seeds were sown per pot and watered normally until complete germination.

Germination indices were observed meticulously and noted on a regular basis up to their vegetative maturity. Unwanted
weeds were removed periodically and thinning of seedlings was maintained throughout the growing period. CaCl2 sol-
ution (10 mM) was prepared by dissolving 1.5 g of solid CaCl2 in 1 l of distilled water. The trial comprised a total of
12 sets and each set had three replicates. After 30 days of germination, the drought period was induced by exposing

three sets of trial to 5, 10, and 15 days, respectively; CaCl2 solution (10 mM) was applied through roots to all the
three sets exposed to varying levels of drought-induced stress conditions. Three sets of trials were taken as the control
group while three sets were kept as controlþ drought of 5, 10, and 15 days, respectively. The remaining three sets

were applied with CaCl2 solution (10 mM) without exposing to drought conditions. At the end of the drought stress
periods, four plants were uprooted from each replicate, washed, and dried for the purpose of determination of growth
and physio-biochemical attributes (Figure 3).

2.3. Soil texture, pH, electrical conductivity, and elemental analysis

Analysis of the soil used for plant growth showed sandy loam texture, which was assessed with the help of the
hydrometer method (Gee & Bauder 1979). Electrical conductivity (EC) of the soil recorded was 2.57 ds/m, pH 6.5

Figure 1 | Spatial map of the study area: (a) map of Pakistan and (b) map of Peshawar. Source: Shafique et al. (2014).
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(McLean 1982). Elemental analysis of the soil showed nitrogen (N) 5.22 g/kg (Keeney & Nelson 1982), organic carbon (C)
26.3 g/kg (Nelson & Sommers 1982), potassium (K) 88.4 mg/kg (Hanway & Heidel 1952), and phosphorus (P) 7.7 mg/kg
(Jackson et al. 1973).

Figure 2 | Depicts land cover generated from Landsat data for the following period: (a) 1990, (b) 2000, (c) 2010, and (d) 2019. Source: Ahmad
et al. (2022).
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2.4. Measurement of growth attributes

Growth attributes, namely absolute growth rate (AGR), net assimilation rate (NAR), and relative growth rate (RGR) were
calculated by following the formulas suggested by Ghule et al. (2013).

AGR ¼ H2 �H1

t2 � t1
(1)

H1 and H2 denoted seedling height (cm) at time t1 and t2.
NAR is the amount of increase in plant dry weight per unit of assimilatory surface per unit time (g/cm /day).

NAR ¼ W2 � W1 � (loge A2 – loge A1) (g=cm =day)
t2 – t1 A2 � A1

(2)

A1 and A2 denoted leaf surface area in cm2 and W1 and W2 represented dry plant matter, estimated in grams at time t1 and t2.

RGR ¼ logeW2 � logeW1

t2 � t1
(3)

W1 and W2 denoted plant dry weight (g) at time t1 and t2, loge is natural logarithm.

FGP was estimated by the suggested formula of Al-Ansai & Ksiksi (2018).

FGP ¼ The total seeds germinated at end of trial
Number of initial seeds sown

� 100 (4)

Figure 3 | Methodological flow chart of the designed experiment.
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Final emergence percentage (FEP) and mean emergence time (MET) were calculated by following the formula of Kader

(2005).

FEP ¼ Final no: of seedlings emerged
Total no: of seeds sown

� 100 (5)

MET ¼ SDn
P

n
(6)

where ‘D’ is the number of days counted from the beginning of emergence and ‘n’ is the number of seeds that had emerged on
the day ‘D’.

3. ASSESSMENT OF PHYSIOLOGICAL PARAMETERS

3.1. Estimation of hydrogen peroxide content

Hydrogen peroxide (H2O2) content was analysed by the methodology of Velikova et al. (2000). Fresh leaf and root material
(0.5 g) were taken and grounded in 5.0 ml (0.1%) of trichloro acetic acid (TCA). The mixture was centrifuged for 10 min and

0.5 ml of supernatant was collected, 0.5 ml of phosphate buffer and 2.0 ml of potassium iodide were added to supernatant.
Optical density (OD) readings were recorded at 390 nm.

3.2. Estimation of lipid peroxidation

3.2.1. Procedure

Lipid peroxidation (LPO) levels were measured by following the methodology of Yang & Miao (2010). Foliar and root
material (0.5 g) were homogenized in 10 ml of trichloroacetic acid (TCA) and the samples were centrifuged for 10 min.
After centrifugation, 1.0 ml of supernatant was collected and 4.0 ml of 0.5% thiobarbituric acid (TBA) in 20% TCA was
mixed with it. The mixture was heated at 90 °C for 1 h. OD was noted at 532 nm.

3.3. Quantification of PRO content

3.3.1. Procedure

PRO content was evaluated by using the method of Tian et al. (2019). Fresh leaf and root content (0.5 g) were chopped in
5.0 ml of 3% sulfosalicylic acid, the mixture was filtered, and 2.0 ml of filtrate was taken. 4.0 ml of glacial acetic acid and

4.0 ml of acid ninhydrin were added to the filtrate. The mixture was heated at 100 °C for 1 h, and after heating 4 ml of toluene
was added. OD readings were noted at 520 nm.

3.4. Quantification of GB content

3.4.1. Procedure

The amount of GB was determined using the methodology of Di-Martino et al. (2003). Plants foliar and root material (0.5 g)

were chopped in 5 ml of distilled water. The mixture was passed through Watt man filter paper by diluting the filtrate with
H2SO4 solution. Samples were centrifuged and cold KI–I2 was added to each sample. 1.0 ml of supernatant was collected and
OD was measured at 365 nm.

Activities of antioxidant enzymes

3.5. Determination of APX activity

3.5.1. Procedure

APX activity was determined by following Salimi et al. (2016). Fresh leaf and root material (0.5 g) were chopped in 5.0 ml of

phosphate buffer and the samples were spun in a centrifuge machine for 10 min. After centrifugation, 0.1 mM H2O2, 0.1 mM
EDTA, 0.6 mM ascorbic acid, and 0.1 ml of enzyme extract were added to each sample. Finally, OD reading was taken at
290 nm.
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3.6. Determination of CAT activity

3.6.1. Procedure

CAT approximation was determined by pursuing the method of Sewelam et al. (2017). Root and fresh foliar material (0.4 g)

were grounded in 5 ml of phosphate buffer and the samples were kept in a centrifuge machine for 10 min at 1,000 rpm. After
centrifugation, 0.1 ml of supernatant was taken and 2.0 ml of H2O2 and 0.1 ml of sodium phosphate were added. OD was
measured at 240 nm.

3.7. Estimation of SOD activity

3.7.1. Procedure

SOD activity was determined by Bhardwaj et al. (2018). Fresh leaf and root samples (0.5 g) were grounded in 5.0 ml of phos-
phate buffer and the samples were spun in a centrifuge machine for 10 min. 0.1 ml of supernatant was taken from each
sample and 0.72 ml of nitro blue tetrazolium (NBT), 0.72 ml of ethylenediamine tetraacetic acid (EDTA), 0.72 ml of ethanol,

and 0.72 ml of riboflavin were added. OD was recorded at 560 nm.

3.8. Quantification of POD activity

3.8.1. Procedure

POD activity was determined using the methodology of Latef (2011). Root and leaf material (0.2 g) were chopped in 5.0 ml of
phosphate buffer and centrifugation was done for 10 min. Moreover, 20 mM of guaiacol and 10 mM of H2O2 were added to
0.1 ml of supernatant of each sample. At the end, OD was noted at 470 nm.

3.9. Statistical analysis

The experiment comprised two factors including varying levels of induced drought stress (5, 10, and 15 days) and CaCl2 sol-
ution (10 mM). The experimental design followed was the randomized complete blocked design (RCBD). Statistical analyses,

including analysis of variance (ANOVA) and multi-correlation were performed through statistical software programmes: Sta-
tistix 10 and SPSS Statistics 24. Standard errors and mean values were determined and the least significance difference (LSD)
test was performed and indicated by letters (a–i).

4. RESULTS

4.1. Effect of CaCl2 on agronomic attributes of barley under water-deficit stress

Inferences from statistical analysis (Tables 1 and 2) revealed significant (P� 0.05) improvement in growth parameters including
AGR, RGR, and NAR, under 5, 10, and 15 days of exposure to induced drought stress supplemented with 10 mM of CaCl2

Table 1 | Effect of calcium chloride solution on absolute growth rate, relative growth rate, and final emergence percentage under varying
levels of induced drought stress

Days Treatments AGR RGR FEP

T1 Control 1.546+ 0.121def 7.875+ 2.005cde 96.666+ 38.944ab

T2 5 days Drought 1.006+ 0.087efg 4.812+ 0.114ef 61.666+ 4.714b

T3 5 days Droughtþ calcium chloride 0.813+ 0.073a 5.695+ 0.658ab 73.333+ 4.721b

T4 Calcium chloride 1.441+ 0.101a 8.719+ 1.082ab 70.2+ 4.082bc

T5 Control 0.061+ 1.058ghi 1.612+ 0.493fg 65.1+ 29.533bc

T6 10 days Drought 0.541+ 0.114hi 0.629+ 0.193g 65.11+ 8.164bc

T7 10 days Droughtþ calcium chloride 0.413+ 0.275ab 0.721+ 0.302a 71.666+ 36.591bc

T8 Calcium chloride 0.506+ 0.245ab 2.272+ 0.601ab 68.333+ 6.236bc

T9 Control 3.666+ 1.546b 17.039+ 4.341b 65.112+ 31.885bc

T10 15 days Drought 2.346+ 0.073cd 9.149+ 0.597c 60.12+ 4.082c

T11 15 days Droughtþ calcium chloride 1.693+ 0.378bc 10.945+ 0.978b 60.11+ 30.912c

T12 Calcium chloride 3.373+ 0.405a 12.072+ 2.765a 65.111+ 4.082bc

AGR, absolute growth rate; RGR, relative growth rate; FEP, final emergence percentage.

(Mean+standard error) letters (a–i) indicating least significance difference among the mean values at p� 0.05.
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solution in comparisonwith the control and the rest of the groups.On the contrary, these parameterswere noted to be negatively
affected in the group which was exposed to varying levels of induced drought stress with no CaCl2 application. Moreover,
growth parameters including FEP, final germination percentage (FGP), and MET exposed to 5, 10, and 15 days of the induced

drought stress condition responded negatively. Moreover, application of 10 mM CaCl2 solution did not cause any significant
improvement in these parameters under varying levels of induced drought stress as compared to the control group.

4.2. Effect of CaCl2 on physiological attributes of barley under water-deficit stress

4.2.1. Effect on H2O2 concentration

Varying levels (5, 10, and 15 days) of induced water stressed condition significantly (P� 0.05) boosted the concentration of
H2O2 content in both leaf and root. Comparing with control group and rest of the groups, CaCl2 (10 mM) applied under all

the drought levels lowered down the quantity of H2O2 content in leaf and root (Figure 4; Table 3).

4.2.2. Effect on lipid peroxide content

All the levels of limited water regimes significantly (P� 0.05) enhanced the concentration of lipid peroxide (LPO) content in

foliar material and root. In contrast with control group and all other groups, application of CaCl2 (10 mM) solution under all

Table 2 | Effect of calcium chloride solution on final germination percentage, net assimilation rate, and mean emergence time under varying
levels of induced drought stress

Days Treatments FGP NAR MET

T1 Control 76.666+ 8.498b 1.774+ 0.233cd 1.133+ 1.331ab

T2 5 days Drought 91.666+ 4.714cd 1.034+ 0.095ef 3.144+ 3.349cd

T3 5 days Droughtþ calcium chloride 73.333+ 6.236abcd 1.291+ 0.135a 0.288+ 0.317cd

T4 Calcium chloride 70+ 4.082bc 2.154+ 0.073a 1.777+ 1.938bcd

T5 Control 65+ 4.082bc 0.512+ 0.451fg 0.611+ 0.735d

T6 10 days Drought 65þ 8.164bcd 0.151+ 0.287h 2.21+ 2.336def

T7 10 days Droughtþ calcium chloride 71.666+ 8.498cd 0.142+ 0.218ab 1.655+ 1.963abc

T8 Calcium chloride 68.333+ 6.236bc 0.087+ 0.238a 1.388+ 1.963ab

T9 Control 65+ 4.082bc 4.301+ 0.614b 1.377+ 1.541abcd

T10 15 days Drought 60+ 4.082c 1.728+ 0.195cd 0.6+ 0.734bcd

T11 15 days Droughtþ calcium chloride 60+ 8.164c 2.104+ 0.135ab 2.833+ 3.252abc

T12 Calcium chloride 65+ 4.082bc 5.754+ 0.555a 2.166+ 2.301abc

FGP, final germination percentage; NAR, net assimilation rate; MET, mean emergence time.

Figure 4 | Effect of CaCl2 on H2O2 content in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard error).
Letters (a–h) indicate least significance difference among the mean values at p� 0.05.
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Table 3 | Analysis of variance of the measured physio-biochemical parameters with calcium chloride application under varying levels of
induced drought stress

Trait Source of variance SS df MS F P

LPO-L Drought 0.041 3 0.014 34.622 0.056*

Treatment 0.049 11 0.004 22.755 0.005

Droughtþ Treatment 0.052 12 0.004 46.772 0.008**

Error 0.002 23 9.180

LPO-r Drought 0.051 3 0.017 44.372 0.565*

Treatment 0.058 11 0.005 21.531 0.089

Droughtþ Treatment 0.062 12 0.005 84.310 0.004**

Error 0.001 23 6.159

GB-L Drought 0.086 3 0.029 11.717 0.004**

Treatment 0.157 11 0.014 45.429 0.367

Droughtþ Treatment 0.158 12 0.013 44.224 0.005**

Error 0.007 23 0.000

GB-r Drought 0.097 3 0.032 11.467 0.005**

Treatment 0.180 11 0.016 49.828 0.007

Droughtþ Treatment 0.181 12 0.015 50.476 0.021**

Error 0.007 23 0.000

PRO-L Drought 0.209 3 0.070 14.114 0.008**

Treatment 0.360 11 0.033 107.824 0.000

Droughtþ Treatment 0.362 12 0.030 121.105 0.004**

Error 0.006 23 0.000

PRO-r Drought 0.088 3 0.029 12.977 0.089

Treatment 0.152 11 0.014 38.543 0.000*

Droughtþ Treatment 0.152 12 0.013 36.986 0.002***

Error 0.008 23 0.000

H2O2-L Drought 3.478 3 1.159 7.191 0.041*

Treatment 8.537 11 0.776 187.277 0.059

Droughtþ Treatment 8.580 12 0.715 294.871 0.021*

Error 0.056 23 0.002

H2O2-r Drought 3.012 3 1.004 8.120 0.000*

Treatment 6.387 11 0.581 23.928 0.023

Droughtþ Treatment 6.410 12 0.534 21.966 0.003**

Error 0.559 23 0.024

APX-L Drought 0.051 3 0.017 28.553 0.521

Treatment 0.052 11 0.005 6.316 0.065

Droughtþ Treatment 0.060 12 0.005 12.929 0.007**

Error 0.009 23 0.000

APX-r Drought 0.003 3 0.001 9.424 0.013*

Treatment 0.005 11 0.000 5.599 0.005

Droughtþ Treatment 0.005 12 0.000 5.220 0.005**

Error 0.002 23 7.397

CAT-L Drought 0.133 3 0.044 47.245 0.032*

(Continued.)
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the induced drought stress levels did not show any significant decrease in the levels of LPO content in leaf as well as in root

(Figure 5; Table 3).

4.2.3. Changes in total PRO concentration

From statistical analysis it was concluded that water-deficit stress conditions increased total PRO levels. On the contrary,
CaCl2 application under varying levels of induced drought stress significantly (P� 0.05) enhanced total PRO content as com-

pared to control, drought, and rest of the groups (Figure 6; Table 3)

4.2.4. Changes in GB levels

Likewise, total PRO content, increase was noted in the levels of GB content. In comparison with the control group and rest of
the groups, application of 10 mM of CaCl2 solution under water-stressed conditions showed significant (P� 0.05) enhance-

ment in GB content (Figure 7; Table 3).

4.2.5. Effect on APX activity

Varying levels of induced drought stress condition in combination with CaCl2 (10 mM) significantly (P� 0.05) increased APX
activity in both root and leaf. The amount of APX increased with increasing the duration of drought stress level. In

Table 3 | Continued

Trait Source of variance SS df MS F P

Treatment 0.158a 11 0.014 63.158 0.000

Droughtþ Treatment 0.162 12 0.013 225.285 0.001***

Error 0.001 23 5.98

CAT-r Drought 0.124a 3 0.041 39.375 0.098**

Treatment 0.154a 11 0.014 75.660 0.007

Droughtþ Treatment 0.157 12 .013 215.540 0.005**

Error 0.001 23 6.063

SOD-L Drought 0.042a 3 0.014 14.300 0.000***

Treatment 0.071a 11 0.006 49.051 0.000

Droughtþ Treatment 0.073 12 0.006 141.622 0.000***

Error 0.001 23 4.290

SOD-r Drought 0.028a 3 0.009 13.012 0.006**

Treatment 0.049a 11 0.004 38.287 0.313

Droughtþ Treatment 0.050 12 0.004 79.946 0.001**

Error 0.001 23 5.22

POD-L Drought 0.053a 3 0.018 15.359 0.009**

Treatment 0.086a 11 0.008 45.027 0.067

Droughtþ Treatment 0.088 12 0.007 75.055 0.004**

Error 0.002 23 9.779

POD-r Drought 0.055a 3 0.018 9.314 0.012**

Treatment 0.113a 11 0.010 52.479 0.008

Droughtþ Treatment 0.115 12 0.010 80.805 0.001**

Error 0.003 23 0.000

LPO-L, lipid peroxide in leaf; LPO-r lipid peroxide in root; GB-L, glycine betaine in leaf; GB-r, glycine betaine in root; PRO-L, proline in leaf; PRO-r, proline in root; H2O2-L, hydrogen

peroxide in leaf; H2O2-r, hydrogen peroxide in root; APX-L ascorbate peroxidase in leaf; APX-r, ascorbate peroxidase in root; CAT-L catalase in leaf, CAT-r catalase in root; SOD-L,

superoxide dismutase in leaf; SOD-r, superoxide dismutase in root; POD-L peroxidase in leaf; POD-r, peroxidase in root; SS, sum of square; Df, degree of freedom; MS, mean square;

F, variation between sample means; P, probability value.

*Correlation is significant at 0.05.

**Correlation is significant at 0.01.
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comparison with control group and other groups, higher APX activity was observed in the group which was treated with

CaCl2 application under varying levels of induced drought stress condition (Figure 8; Table 3).

4.2.6. Responses of CAT activity

Results from statistical analysis showed that the drought stress regimes adversely affected the plant enzymatic system. Differ-
ent levels of induced drought stress (5, 10, and 15 days) individually and in combination with CaCl2 (10 mM) application
significantly (P� 0.05) enhanced the activity of CAT in roots and leaves, as compared to the control group and other

groups (Figure 9; Table 3).

4.2.7. Responses of SOD activity

Application of 10 mM of CaCl2 via roots had a pronounced effect on the enzymatic system under induced drought stress situ-
ations. On exposure to varying drought stress levels and application of CaCl2 (10 mM) solution, a significant (P� 0.05)
increase was noted in SOD activity in both roots and leaves of the studied variety of barley (Figure 10; Table 3).

Figure 6 | Effect of CaCl2 on proline accumulation in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard
error). Letters (a–h) indicate least significance difference among the mean values at p� 0.05.

Figure 5 | Effect of CaCl2 on lipid peroxide activity in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard
error). Letters (a–d) indicate least significance difference among the mean values at p� 0.05.
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4.2.8. Effect on POD activity

With increasing levels of induced water-deficit stress condition, POD showed a notable increase. Application of 10 mM of

CaCl2 solution under varying drought stress regimes further enhanced POD activity to a significant (P� 0.05) level both
in roots and leaves (Figure 11; Table 3).

4.2.9. Multi-correlation analysis of physiological and biochemical attributes of barley

Multi-correlation analysis among physio-biochemical attributes of barley (Table 4) showed that lipid peroxide in root (LPO-r)
significantly (P¼ 0.05) correlated with lipid peroxide in leaf (LPO-L). Likewise, glycine betaine in leaf (GB-L) indicated sig-

nificant (P¼ 0.05) correlation with LPO-L and LPO-r. Moreover, PRO content in leaf (PRO-L) with GB-L, H2O2 in leaf
(H2O2-L) showed a positive correlation with LPO-L and LPO-r. Similarly, H2O2-r showed a positive correlation with
LPO-L, LPO-r, and H2O2-L. APX-L and APX-r presented a positive and significant (P¼ 0.05) correlation with GB-L, GB-r,

PRO-L, and PRO-r. All the enzymes of root and leaves showed a positive and significant correlation with each other and
also with osmolyte content of root and leaves which mainly included PRO and GB. From multi-correlation analysis it was
suggested that osmoprotectants and antioxidant enzymes work in a synchronized manner and correlated positively during

Figure 8 | Effect of CaCl2 on APX activity in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard error).
Letters (a–f) indicate least significance difference among the mean values at p� 0.05.

Figure 7 | Effect of CaCl2 on glycine betaine in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard error).
Letters (a–g) indicate least significance difference among the mean values at p� 0.05.

Journal of Water and Climate Change Vol 13 No 9, 3370

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/13/9/3357/1114733/jwc0133357.pdf
by guest
on 18 April 2024



stress conditions. Beside these results, a negatively significant (P¼ 0.05) correlation was noted between all the antioxidant

enzymes with H2O2 and LPO content both in root and leaf.

5. DISCUSSION

Continuous changes in environmental conditions have been proving dangerous for biotic components on earth; water-deficit
stress is one of the dire consequences of changes in climatic conditions. It is experimentally proven that drought stress
impedes plant growth and development. Plants have adopted the internal defence mechanism in the form of antioxidant
enzymes and production of osmoprotectants such as PRO and GB, which reduce the damaging effects of oxidative stress

by maintaining the salt and water balance (Khan et al. 2010a, 2010b, 2010c). Notably, drought-stressed situation results in
stomatal closure with reduced carbon dioxide exchange by diminishing the rate of photosynthesis that eventually decreases
plant total biomass (Avramova et al. 2015).

Interpretation from statistical analysis (Tables 1 and 2) revealed a significant (P� 0.05) increase in growth parameters
including AGR, RGR, and NAR exposed to 5, 10, and 15 days of drought stress supplemented with 10 mM of CaCl2 solution,
while these parameters were noted to be affected negatively in the rest of the groups. Moreover, growth parameters including

Figure 9 | Effect of CaCl2 on catalase activity in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard error).
Letters (a–h) indicate least significance difference among the mean values at p� 0.05.

Figure 10 | Effect of CaCl2 on superoxide dismutase activity in Hordeum vulgare L. under varying levels of induced drought stress (mean+
standard error). Letters (a–i) indicate least significance difference among the mean values at p� 0.05.
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FEP, FGP, and MET exposed to 5, 10, and 15 days of induced drought stress condition responded negatively. Application of

10 mM CaCl2 solution did not cause any significant improvement in these parameters under varying levels of induced
drought stress as compared to the control group. Therefore, it confirmed the results obtained by Abdelly et al. (2015) in sun-
flower; by Ayad et al. (2009) in Geranium cultivar; by Mekki et al. (2015) in cotton plant; and Semida et al. (2014) in Vicia
faba cultivar. Results in Tables 1 and 2 show AGR, RGR, NAR, FEP, FGP and MET, which showed improvement in the con-
trol group and affected negatively in the groups which were exposed to varying levels of induced drought stress with no CaCl2
application, thus confirming the same investigation achieved by Sardoei & Mohammadi (2014). Reduction in growth par-

ameters such as AGR, RGR, and NAR are closely related to cytokinesis and cell elongation under drought stress regimes.
It is believed that this reduction is due to stomatal closure and diminished photosynthesis, persistent exposure to water lim-
ited regimes eventually leading to shrinkage of leaves (Zaheer et al. 2019).

Water-deficit condition is characterized by low water content, reduced turgidity, wilting, closure of stomata, and eventually
decrease in cell enlargement and growth; plant growth is variously influenced by internal and external factors; despite its gen-
etic makeup, examination of external morphology is an essential tool for the evaluation of crop productivity and total biomass
(Sestak et al. 1971) Extensive root growth during drought stress regimes is a fundamental adaptation mechanism in drought-

tolerant plants; however, in drought susceptible species, the growth of the root system is adversely affected (Passioura 1982).
It has been reported that water stress conditions decreased the root length in Populus species (Yin et al. 2005). Similarly,
Stem length decreased in Albizzia seedlings under water limited conditions (Sundaravalli & Paliwal 2005). Leaf area and

root to shoot ratio are important to maintain control of water use in plants. Leaf area, RGR, and AGR are reported to be
significantly reduced under the drought stress (Yadav et al. 2005). Reduced leaf area under water-deficient regimes is the
main factor behind inefficient photosynthesis and low crop yield (Kramer 1983). Under drought stress conditions reduction

in plant height might be linked with poor cell enlargement and growth owing to the low turgor pressure and more leaf senes-
cence (Rane et al. 2001). Drought stress suppresses the photochemical proficiency of the photosystem (PS-II) by diminishing
electron transport, removal of extrinsic proteins, and release of magnesium and calcium ions from their binding, that ulti-
mately leading to photosynthetic pigments degeneration and low total plant biomass (Wahid et al. 2007; Barta et al. 2010).

Water-deficient stress condition significantly (P� 0.05) boosted the concentration of H2O2 content in both parts (leaf and
root) of barley, whereas comparing with control group and rest of the groups CaCl2 solution (10 mM) under varying levels of
induced drought stress condition lowered the quantity of H2O2 content in leaf and root (Figure 4; Table 1). Biotic and abiotic

stresses induce the overproduction of H2O2 in plant cells, H2O2 can directly lead to damage cell membranes, proteins, and
nucleic acids (Wang et al. 2009). Products like MDA, PRO, and H2O2 are generally known as stress markers. A pronounced
increase has been noted in the levels of MDA, PRO, and H2O2 during oxidative stress regimes (Khan et al. 2010a, 2010b,
2010c).

Figure 11 | Effect of CaCl2 on peroxidase activity in Hordeum vulgare L. under varying levels of induced drought stress (mean+ standard
error). Letters (a–h) indicate least significance difference among the mean values at p� 0.05.
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Table 4 | Multi-correlation analysis of physiological and biochemical components of Hordium vulgare L. with calcium chloride application under varying levels of induced drought
stress

Trait LPO-L LPO-r GB-L GB-r Pro-L Pro-r H2O2-L H2O2-r APX-L APX-r CAT-L CAT-r SOD-L SOD-r POD-L POD-r

LPO-L 1.0

LPO-r 0.517* 1.0

GB-L 0.448** 0.544** 1.0

GB-r 0.312 0.151 0.085 1.0

PRO-L 0.551 0.615 0.794** 0.092 1.0

PRO-r 0.555 0.640 0.755 0.100 0.965 1.0

H2O2-L 0.432** 0.692** 0.779 0.208 0.569 0.547 1.0

H2O2-r 0.515** 0.718** 0.781 0.176 0.635 0.623 0.945** 1.0

APX-L 0.549 0.472** 0.494** 0.07** 0.664** 0.689** 0.252** 0.349** 1.0

APX-r 0.461** 0.271** 0.431** 0.019** 0.610** 0.606** 0.209** 0.244** 0.591 1.0

CAT-L 0.546 0.645** 0.915** 0.051** 0.871** 0.839** 0.750** 0.761** 0.634** 0.646** 1.0

CAT-r 0.536** 0.647** 0.928** 0.052** 0.871** 0.842** 0.762** 0.775** 0.623** 0.620 0.995** 1.0

SOD-L 0.524 0.583** 0.880** 0.047** 0.807** 0.773** 0.659** 0.692** 0.700 0.459 0.854 0.867** 1.0

SOD-r 0.477 0.537** 0.909** 0.082** 0.819 0.761** 0.674** 0.694** 0.613** 0.443** 0.875** 0.886 0.976** 1.0

POD-L 0.517 0.633** 0.888** 0.011** 0.820** 0.790** 0.700** 0.732** 0.657** 0.445 0.879 0.896 0.971 0.953 1.0

POD-r 0.482** 0.577** 0.902** 0.005** 0.786** 0.754** 0.704** 0.724** 0.607 0.386* 0.848** 0.872** 0.970** 0.956** 0.983** 1.0

LPO-L, lipid peroxide in leaf; LPO-r lipid peroxide in root; GB-L, glycine betaine in leaf; GB-r, glycine betaine in root; PRO-L, proline in leaf; PRO-r, proline in root; H2O2-L, hydrogen peroxide in leaf; H2O2-r, hydrogen peroxide in root; APX-L,

ascorbate peroxidase in leaf; APX-r, ascorbate peroxidase in root; CAT-L, catalase in leaf; CAT-r, catalase in root; SOD-L, superoxide dismutase in leaf; SOD-r, superoxide dismutase in root; POD-L, peroxidase in leaf; POD-r, peroxidase in

root.

*Correlation is significant at 0.05.

**Correlation is significant at 0.01.
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Drought being a major abiotic stress causes the over production of H2O2 in plants, leading to damage to the plasma mem-

brane and other biomolecules. According to previous findings, H2O2 concentration tends to increase with increasing salinity
and drought. It is reported that application of CaCl2 solution in combination with NaCl solution slightly reduced H2O2 con-
tent in various plants exposed to drought stress regimes (Wang et al. 2009). Our results were closely parallel with the findings

made by Jaleel et al. (2007a, 2007b), who studied the effects of CaCl2 solution on Catharanthus roseus grown under drought
stress and noted a clear reduction in H2O2 content.

Varying limited water situation (5, 10, and 15 days) significantly (P� 0.05) enhanced the concentration of LPO content in
foliar material and root of barley. In contrast with the control group and all other groups, treatment with CaCl2 solution

(10 mM) in combination with varying levels of induced drought stress decreased the levels of LPO content in leaf and
root (Figure 5; Table 3).

LPO is generally quantified in the form of malondialdehyde (MDA) content. Under drought conditions, LPO takes place as

a result of oxidative damage to plasma membrane by the production of reactive oxygen species (ROS) and other free radicals
(Hernandez & Almansa 2002). CaCl2 is a vital macro-nutrient absorbed by roots and used directly as an osmotic solute for
osmotic adjustment. The exogenous application of CaCl2 promoted the defence mechanism in plants under water stress, sal-

inity stress, and heavy metals stress by creating osmolytes and activating antioxidant enzymes, decreasing the LPO of the
plasma membrane by connecting different proteins and lipids at the membrane surface (Jiang & Huang 2001). The same
results were achieved by Bhardwaj et al. (2018); Jaleel et al. (2007a, 2007b) in the case of Triticum aestivum and C.
roseus, respectively, applied with 10 mM CaCl2 solution under drought stress conditions.

In the current experimental work, an improvement in PRO content in H. vulgare L. seedling under an induced water stress
condition in combination with CaCl2 solution was observed. Results showed that water-deficit stress increased PRO content,
while CaCl2 (10 mM) solution further raised the levels of PRO content. Interactively, CaCl2 and varying drought stress

periods significantly (P� 0.05) enhanced the concentration of PRO content as compared to control, drought and the rest
of the groups (Figure 6; Table 3).

PRO accumulation in the leaves is considered an important adaptation of plants to abiotic stress conditions (Dobra et al.
2011). PRO is well known for its osmoprotective property under stress regimes. In plants, an increased level of PRO during
drought stress is believed to be an indicator of drought stress tolerance. PRO plays a key role in the mechanism of osmotic
adjustment in many crops under severely stressed conditions. The amount of PRO is regulated by two important enzymes:

proline oxidase (PROX) and γ-glutamyl kinase (γ-GK) (Ahmad et al. (2010)). Parallel to our results, similar findings were
noted by Jaleel et al. (2007a, 2007b) who carried out studies on C. roseus exposed to CaCl2 solution under drought stress.
Likewise PRO content, a significant (P� 0.05) increase was noted in the levels of glycine betaine content under induced
water-deficit stress conditions with CaCl2 application (Figure 7; Table 3).

GB is quaternary ammonium compound and acts as an osmotic solute. Glycophytes like oat, tomato, peas, beans, beets,
and carrots showed an increase in GB with increasing salinity and drought (Girija et al. 2002). Osmotic adjustment is an
important physiological event through which plants resist stress conditions. During abiotic stress accumulation of organic

solutes such as PRO and GB in the cytoplasm helps in the osmotic adjustment of organic molecules. In resistance to drought,
many species of plants accumulated higher content of organic solutes in their tissues (Khan et al. 2010a, 2010b, 2010c). The
same results were found by Bhardwaj et al. (2018); Jaleel et al. (2007a, 2007b) in the case of T. aestivum and C. roseus exposed
to 10 mM CaCl2 under drought stress regimes.

Varying levels of induced drought stress conditions in combination with CaCl2 (10 mM) application significantly (P� 0.05)
increased APX, CAT, SOD, and POD activities in H. vulgare L. The amount of all the above-mentioned enzymes increased

with increasing duration of drought stress. In comparison with the control group the rest of the groups’ higher enzymatic
activities were observed in 10 and 15-days of drought stress regimes with 10 mM CaCl2 solution (Figures 8–11; Table 3).
Under stress conditions, the accumulation of ROS and other free radicals cause corrosive effects on biological membranes
and biomolecules. APX, POD, SOD, and other protective enzymes effectively scavenge ROS and other free radicals

(Zhang et al. 2019). Plant cells have a complex enzymatic as well as a non-enzymatic antioxidant system to prevent cellular
damage caused by ROS (Hasanuzzaman & Fujita 2011; Kumar et al. 2013), non-enzymatic components like carotenoids, glu-
tathione and tocopherols, coupled with antioxidant enzymes, such as SOD, CAT, and glutathione peroxidase (GPX) scavenge

ROS and other free radicals (Ahmad et al. 2015a, 2015b). ROS attack proteins, lipids and nucleic acids, and the degree of
damage depends on the balance between ROS production and their removal by the antioxidative scavenging systems
(Menezes-Benavente et al. 2004).
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In the drought related studies, during the recovery process CaCl2 showed a significant effect on antioxidant enzymes. The

ability of Camellia sinensis genotypes to enhance CAT activities during post-stress rehydration and CaCl2 treatment could
improve the post-drought recovery process. As C. sinensis is a C3 plant, higher CAT activity could scavenge the H2O2

formed in the photorespiratory pathway and thereby reduce photorespiration rate (Jeyaramraya et al. 2003). SOD activities

were also increased in the tested C. sinensis cultivars along with consistently increasing activities of POX and GR (GR).
Increased GR activity in stress plants improves stress tolerance and has the ability to alter the redox potential of the important
component of the electron transport chain. Glutathione is maintained in a reduced state by GR, higher GR activity induced by
CaCl2 in water stressed plants could be an adaptive advantage for resumption of growth after stress conditions (Asada &

Takahashi 1987), but an increase in SOD activities after drought during the recovery period could be an adaptation to
improve growth after drought stress regimes. Parallel to our findings, Upadhyaya et al. (2011) claimed consistent results,
suggesting that CaCl2 solution improved the activities of antioxidant enzymes along with growth responses under drought

stress conditions.

6. CONCLUSIONS

In conclusion, it has been evident that CaCl2 solution (10 mM) applied via roots effectively curbed the damaging effects of
ROS and other free radicals formed during induced drought stress conditions; by regulating key physiological processes

such as osmolyte accumulation which mainly include PRO , proteins, GB, and the activation of the antioxidant enzymatic
system. In addition, the agriculture sector of Pakistan has been adversely affected by the continuous shifts in climatic con-
ditions that might lead the country towards food insecurity by 2030. Besides, the ground water table of Peshawar has

been reducing 1–3 feet annually. The present findings could be helpful for determining the ways in which conditions
could be handled to secure the survival and enhance the growth of barley under water-limited conditions. Furthermore,
there is still a great need for further research to assess various growth and physio-biochemical responses of barley cultivars

to different types of growth regulators under abiotic stress conditions.
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