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ABSTRACT

Flood flow forecasting is essential for mitigating damage in flood-prone areas all over the world. Advanced actions and methodology to opti-

mize peak flow criteria can be adopted based on forecasted discharge information. This paper applied the models of the integrated wavelet,

multilayer perceptron (MLP), time-delay neural network (TDNN), and gammamemory neural network (GMNN) to predict hourly river-level fluc-

tuations, including storage rate change variable. Accordingly, the researchers initially used the discrete wavelet transform to decompose the

water discharge time-series into low- and high-frequency components. After that, each component was separately predicted by using the

MLP, TDNN, and GMNN models. The performance of the proposed models, namely wavelet–MLP, wavelet–TDNN, and wavelet–GMNN,

was compared with that of single MLP, TDNN, and GMNN models. This analysis affirms that precision is better in the case of integrated

models for forecasting river reach levels in the study region. Furthermore, multiple inputs–multiple outputs (MIMO) networks (MIMO-1 arti-

ficial neural network (ANN) and MIMO-2 ANN), along with multiple inputs–single output (MISO) ANN were employed for obtaining flow

forecasts for several sections in a river basin. Model performances were also evaluated using the root mean squared error having less

than 10% of the average mean value, with the coefficient of correlation being more than 0.91 and with the peak flow criteria showing

the chances of flash floods being low to moderate with values not more than 0.15.

Key words: artificial neural network (ANN), gamma memory, multiple inputs–multiple outputs (MIMO), river systems, time-delay neural

network (TDNN)

HIGHLIGHTS

• The wavelet-based ANN model incorporating storage changes has been accounted for in river flow studies.

• The study is unique while showcasing comparative analysis between different ANNs modeling.

• Flood prediction using pre-processing technique wavelet along with the ANN seems the best model.

• The flood damage mitigation is the need of the hour, which is the main aim for areas prone to heavy precipitation.

• Results seem to be promising.
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GRAPHICAL ABSTRACT

LIST OF ACRONYMS
Qu,p
tþDt
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discharge at an upstream section at time tþΔt in a river system
Qd
tþDt
 discharge at downstream section at time tþΔt in a river system
Yu,p
tþDt
 flow depth at an upstream section at time tþΔt in a river system
Yd
tþDt
 flow depth at downstream section at time tþΔt in a river system
yut , ydt
 upstream and downstream flow depth at time t
Qu,e,r
t
 equivalent inflow at a point r in the basin for N upstream flows
c1, c3
 muskingum routing coefficients

a, b
 upstream hydrograph evolution parameters
Q(�)
(t)
 discharge through a river section
v
 parameters for computing discharge from the depth

y(�)(t)
 depth of flow at a section
yutþDt, y
d
tþDt
 upstream and downstream flow depth at time tþΔt
vu, vd, hd, hu
 parameters for computing discharge from depth at upstream

gr(t)
 kernel function
(m)p
 memory resolution

p
 memory order
INTRODUCTION

A hydrological forecast represents the preliminary assessments of future hydrological events and their characteristics. Hydro-
logical forecasts are necessary for effective water management and to mitigate the effects of natural hazards, such as floods
om/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf
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and droughts. The prediction of flow in a water system is required to minimize the impact of uncertainties of the climate on

the management of water resources, considered one of the main challenges related to integrated knowledge of climatology
and hydrology. The use of expected flows for the optimization of river flow operation is suggested by many authors such
as Owuor & Mwiturubani (2022) and Beker & Kansal (2022).

Currently, many hydrological models are being used in flood forecasting studies, distributed models or concentrated, con-
ceptual or empirical, discrete or continuous. The objective of studying most of these models is the basis of the simplicity they
offer in applying the water balance and mass balance principle. One of the models of the artificial neural network (ANN), the
time-delay neural network (TDNN), has been chosen from various models for being an empirical model which has been

widely accepted as potentially useful for modeling complex nonlinear systems with a large amount of data. A TDNN can
well approximate a number of functional relationships describing outputs that are some functions of the same inputs.
These models are especially helpful when it is unclear how the functional link between the input and output data works.

The multiple gamma memory neural network (MGMNN) models can also be used in place of and in conjunction with math-
ematical models.

With this in context, channel inundation, being a multiplex process, is distinguished by spatial and time-related alteration in

flow constraints. Applications can be seen in the literature regarding flood flow modeling having the use of the ANN. In most
of the ANN models, a multilayer perceptron (MLP) is employed to predict flow variations and storage change except for
models deploying the use of time lag feed-forward delays such as the TDNN. Memory in the ANN is assimilating mostly

in delays having both feed-forward and feedback. The MLP cannot identify time-related modifications in input series,
which is why MLP with a sliding window approach, equivalent to a TDNN, is being implicated in the modeling of temporal
variations. Self-recurrent network by Lang et al. (1990) can also be an instance of feedback delays in which the input holds
the state of past and neural states. Memory depth remains static in the case of the TDNN while training since it cannot scale

the time axis. An adaptive ANN can be best suited to find the robust memory depth for which the MGMNN can be best
employed.

In an unsteady flow channel, storage and flow rates change concurrently with respect to time. Thus, it may be said that

during unsteady flow along with flow rate, flow depths, storage and storage characteristics in reach evolve in time. Hence,
a river flow model must also be applicable to river systems with a number of upstream flows and a common downstream
flow. Flood flow modeling, being spatially and temporally dependent, requires effective investigation in quantifying the

relationship between the use of flood susceptibility maps and the applied machine learning model, since the use of different
ANN models on different watershed basins produces results that are dependent on the topographical and geomorphological
structures of the river basins (Avand et al. 2022).

In 2015, Choudhury and Roy predicted multiple rate flow in river systems using the ANN. The model is based on a time-

based application useful in real-time forecasting as flood predictions are time constraints. It is known that during unsteady
flow in river reaches, flow rate as well as storage in the channel change continuously with time and are governed by the
same causes. Such changes are dependent on common causes such as river reach, watershed basin characteristics and prop-

erties, and hydrological and geomorphological properties. Storage change also indicates unsteady flow; therefore, any model
utilized for predicting unsteady flow must incorporate storage characteristics. Considering this as a novelty, this study has
considered flow rates implicitly as well as explicitly incorporating storage properties. Since storage is as important as flow,

therefore, the model meant for predicting unsteady flow must incorporate storage characteristics also. Different storage indi-
cators have been taken to develop a model based on flows and storage characteristics, which is the novelty of this work. In
this work, extension and modification of multiple inputs–multiple outputs (MIMO)-based and multiple inputs–single output

(MISO)-based model (Aboutalebi et al. 2016) have been utilized for using different storage characteristics of which one may
be the storage based on the instantaneous storage rate change and the other is the storage based on the gauge height when
calculated from an arbitrary datum of the Tar River in North Carolina.

The principle of continuity plays a vital role and has tremendous significance when it comes to river flowmodeling. Routing

ANN does not incorporate the latter while modeling and training the network architecture. In this study, the basic fundamen-
tal continuity principle has been incorporated in order to predict the storage, rate of change of storage, and flow depth
variation, which implies the average rate of change in storage properties in the case of MIMO–ANN models. The models

in this study obey the continuity equation in the case of MIMO-1 and MIMO-2. But the MISO model does not follow the
continuity equation since the weights in the output node are set to zero for all the river sections, excluding the forecasting
section. The result shows that all ANNs very accurately matched the pre-decided zero value at the sections.
://iwa.silverchair.com/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf
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River flow forecasting is an essential aspect of flood damage mitigation and plays a vital role in water resource manage-

ment. The characteristics of river flow are governed by various factors and results of different factors, such as
precipitation, evapotranspiration, and groundwater discharge (Ardiclioglu et al. 2022). Recently, various artificial intelligence
techniques, such as MLP, TDNN, gamma memory, and adaptive neuro-fuzzy inference system (ANFIS), have been employed

for forecasting hydrological phenomena, which are highly nonlinear in nature and are continuously changing with time
(Choudhury & Roy 2015). The MLP has the potential to match flow parameters almost with full precision but does not
comply with continuity equation norms in the mass balance of river flow.

Since the last decade, artificial intelligence has promised many advantages in data feeding in computers directly without

any simplification, and it has been utilized in various applications in hydrology (Kerh & Lee 2006). Kerh & Lee (2006) pro-
jected and forecasted the river flow for flood using the information at upstream stations, and Karunanithi et al. (1994)
predicted the streamflow using an ANN model. The authors also found that ANNs have better performance in comparison

with an analytic nonlinear power model. Furthermore, Tayfur & Guldal (2006) employed ANN models for monthly stream-
flow forecasting and observed that neural network methods perform better than statistical methods. Tingsanchali &
Keokhumcheng (2006) also discussed the ANN-based literature to forecast river flows ranging from 1 day to 1 year in the

River of Thailand using only past flow observations.
Mostly, ANN-based flow models in river flow studies purposely comply with matching input–output sequences to forecast

the flow, as in the case of the study of Kerh & Lee (2006), where they used a routing-type ANN in river outreaches. Routing-

type ANN models should observe continuity norms to satisfy the mass balance in a river reach/river system. Nonetheless, the
routing-type ANNmodels that are available in the literature do not consider storage variation and, hence, may not fully satisfy
the law of conservation of mass in river reaches while issuing a forecast. ANN models for river flow studies commonly
employ static MLPs to predict the flow variables. Maier & Dandy (2000) reviewed 43 studies that dealt with the prediction

and forecasting of water resource-related variables and reported that all but only two studies used static MLP networks. More-
over, flood flow in river reaches is highly nonlinear and time-varying and is characterized by changes in channel storage and
flow rates at bounding sections over time (Thirumalaiah & Deo 1998). An MLP is a feed-forward and static network with no

recursion or memory elements; mapping in the MLP being instantaneous, it cannot recognize and integrate temporal vari-
ations in input sequences (Giles et al. 1997). Thus, the applications of the static MLP in forecasting flood flows, which is
a time-varying process, may not be preferable if the accuracy and timeliness of forecasts must be catered to. Shukla et al.
(2022) studied that depth–discharge forecasting requires actual field data and has a significant effect on model performances.
They also emphasized the use of the actual length of training data by using multi-artificial intelligence models. They found
that an ANFIS gives better results than simple ANNmodels. They also formulated depth–discharge relations by using various
ANN techniques coupled with wavelet.

Given that the state of a time-dependent process is a function of its previous states, ANN models that can store and utilize
past information are found to be more efficient in analyzing these processes. Broadly, memory by feed-forward delays and
memory by feedback delays classify ways to incorporate short-term memory in the neural network system. Lang et al.
(1990) classified memory by feed-forward delays as a TDNN, which involves the explicit inclusion of delays in the neural net-
work system. In the case of memory by feedback delays, recurrent units hold a trace of the past input and self-recurrent
network of Elman & Zipser (1988) and Jordan (1986). Static MLP-type ANN models with a sliding window approach,

which are equivalent to a TDNN, have been utilized in modeling temporal variations (Jain et al. 1999; Tokar & Johnson
1999; Coulibaly et al. 2000a, 2000b). In this case, a fixed number of past information selected by the user is presented as
inputs to the MLP network.

As fixed numbers of past samples are used as inputs, the network possesses a fixed or static memory. Most of the ANN-
based flood forecasting models available in the literature are capable of providing forecasts at a single location and do not
possess forecast updating capability (Agarwal et al. 2021b). This restricts the applicability of these models in real-time situ-
ations (Coulibaly et al. 2001). A TDNN creates memory by delaying the input sequences, and its application in river flow

studies is available in the work of Coulibaly et al. (2000b). A limitation of TDNN and MLP with memory is that with
memory depth being fixed and pre-decided, the selected memory depth does not match the temporal characteristics of
river flow studies, thereby giving poor results. Hence, transforming a river reach on a large scale and specifying calculating

characteristics for river flow even with a small catchment now depend on the geomorphological river reach characteristics
(Varentsova et al. 2020). Singh et al. (2021) categorized the flood plain into critical zones and developed it by considering
topographical aspects. Therefore, topography also plays a critical role in flood flow modeling. On the basis of the literature
om http://iwa.silverchair.com/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf
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study, the following broad objectives are attempted in the present study: to formulate an ANN-based flow forecasting model

for a river system incorporating storage characteristics, and to evaluate the performances of different memory-based ANN
models along with the use of wavelet technique in forecasting flows incorporating storage variations in river reaches.

MODELS AND METHODS

Concurrent storage predicting models with MIMO forms

A MIMO-1 ANN has (nþ1) output nodes of which the rth nodes provide the real flow forecast for the rth bounding section
while the remaining nodes are fixed to zero-rate flow as forecasts for other sections.

It may be emphasized here that this formulation has a significant advantage in real-time forecasting as alongside forecasting
the flow variable, the level of forecasting accuracy achieved can be judged by considering the errors made in matching the
known flow rate and flow depth values for other stations.

Qu,p
tþDt ¼ fn(Qu,1

t , Qu,2
t , Qu,3

t , . . . , Qu,N
t ; Qd

t , c, f);

8 p; p ¼ 1, 2, 3, . . . , N
(1)

Qd
tþDt ¼ g(Qu,1

t , Qu,2
t , Qu,3

t , . . . , Qu,p
t , . . . , Qu,N

t ; Qd
t , c, f) (2)

The MISO models rely on matching flow usually at one downstream section only using a number of upstream flows.
Equations (1) and (2) describe the fractional-storage change in the MIMO model form having different functional values

on each input. Fractional-storage change in MIMO-1 form combined together may depict the actual storage variation
since MIMO-1 models are complementary to each other and sum together, depicting actual storage change.

In the case of the MISO ANN, as the input–output data arrangements conform neither to the actual flow variation nor to
the storage variation in the reach, the inclusion of storage characteristics in mapping the forecasted flow is of least signifi-

cance. Applying flow depth variables for boundary channel flow in a catchment, Equations (3) and (4) can be obtained as
given in Equations (1) and (2).

Yu,p
tþDt ¼ Gn(yu,1t , yu,2t , yu,3t , . . . , yu,Nt ; ydt , c

0, f0);

8 p; p ¼ 1, 2, 3, . . . , N
(3)

Yd
tþDt ¼ Hn(yu,1t , yu,2t , yu,3t , . . . , yu,Nt ; ydt , c

0, f0); (4)

MISO ANNs do not comply with storage rate consideration in river flow since it only provides output with one single node,
i.e., forecasting station while feeding various multiple inflows section, as it does not follow the principle of continuity, hence
of least importance.

Qu,e,r
t ¼

Xn
p¼1

s p,rQp
t (5)

Qu,e,r
tþDt ¼

1
�(1� c1 � c3)

(c1aQ
u,e,r
t þ c3bQd

t ) (6)

Qd
tþDt ¼ c1(1� a)Qu,e,r

t þ c3(1� b)Qd
t (7)

where c1 and c3 stand for the Muskingum model parameters, whereas α and β are upstream hydrograph evolution parameters.
Equivalent flow is split into two complementary parts for upstream and downstream flows having storage, aQu,e,r

t ! Qu,e,r
tþDt and

bQd
t ! 0 in Equation (6) and (1� a)Qu,e,r

t ! 0, (1� b)Qd
t ! Qd

tþDt in Equation (7).
It may be mentioned that the MIMO-1 models, when trained using flow variables, only implicitly learn storage change

characteristics for the reach during a period. To make the networks learn the storage variation characteristics explicitly

from the data set rate of storage change data computed using instantaneous inflow and outflow rates and instantaneous aver-
age flow depth data computed using known concurrent flow depths at the bounding sections in the reach may be used along
with the flow rate/flow depth data in training the network.
://iwa.silverchair.com/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf
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Based on the literature survey, Agarwal et al. (2021a) computed storage rate change implicitly. With this in context, storage

rate change has been computed explicitly in this work, satisfying the continuity norm. MIMO-1 is mapping all outputs to zero
except for the forecasting sections. MIMO-1 ANN, learns characteristic fractional-storage changes providing a forecast for
flow variables at a single section only.

Multiple input multiple output-2

As the MIMO-1 is mapping all outputs to zero except for the forecasting sections, two MIMO-1 networks mapping upstream
and downstream future flow, respectively, for a single reach may be summed, obtaining a single MIMO-2 network that has the
same (two) inputs as the MIMO-1 network and two outputs representing real flow forecast for the upstream and downstream

sections, respectively.
It is evident that a MIMO-2 network explicitly learns flow variations in the upstream and downstream sections, and as indi-

cated by the continuity principle, the networks also implicitly learn the actual storage variation in the reach during the period.
It may be pointed out that a MIMO-2 network learns actual storage variation, whereas a MIMO-1 learns a fractional-storage

variation such that (Nþ1) fractional-storage variations learned by the MIMO-1 ANNs always sum to the actual variation
learned by the MIMO-2 network.

In the case of a river system having (Nþ1) flow series, all the series can be forecasted by training a single MIMO-2 network

with concurrent (Nþ1) inputs and concurrent (Nþ1) outputs separated by a time interval Δt.

Relationship between discharge and depth of flow

The relationship between discharge Q(�)
(t) passing through a river section and the depth of flow y(�)(t) at the sections is usually

described by a power relation given as the following:

Q(�)
(t) ¼ v(y(�)(t) )

h (8)

Equations (2), (5), and (6) reformulate the models using depth variables (Agarwal et al. 2021a). That is, by employing
Equation (8) in conjunction with Equations (5) and (6), the ‘end of the period’ flow depth for the upstream and downstream

stations can be written as a function (Choudhury 2007; Choudhury & Sankarasubramanian 2009) of the current flow depths
at the upstream and downstream stations as given in Equations (9) and (10).

yutþDt ¼
1

�(1� c1 � c2)vu
(c1avu(yut )

hu

)þ c3bvd(ydt )
hd

� � 1
hu

(9)

ydtþDt ¼
1
vd

(c1(1� a)vu(yut )
hu

)þ c3(1� b)vd(ydt )
hd

� � 1
hd

(10)

Multiple gamma memory neural network

The MGMNN is an extended version of an MLP having dynamic memory parameters that are self-adaptable and adjustable

based on input pattern sequences. Having feedback connections that are restrained by local units, it is in the form of a recur-
rent neural network having both feedback and feed-forward connections and memory structures. Since the adjustable
memory adapts and adjusts itself perfectly to the best possible memory depth while training, it has the advantage over

other memory-based ANNs models for a pattern that recognizes temporal variation in input sequences. Memory in
gamma of P order is a single input–multi-output linear structure where the impulse response in the regular time of the pth
tap is given by (Coulibaly et al. 2000b; Choudhury & Ullah 2014)

gr(t) ¼ (m)p

( p� 1)!
t p�1e�mt; p ¼ 1, 2, 3 . . . :P(m . 0) (11)

Here, μ is a memory parameter representing memory resolution. The generating kernels gr(t) are the integrands of the
gamma function (Γ(x)≡

Ð a
0 tx�1e�tdt), and thus the memory is called the gamma memory.
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The gamma memory has an adjustable memory parameter μ that can be optimized during the training period selecting the

best possible memory depth for a time-varying pattern. In the case of a focused MGMNN model, a number of gamma mem-
ories, one at each node in the input layer, are used, and, thus, the model can process multiple time-varying inputs using
different memory depths as in Shukla et al. (2022). In this study, the applicability of gamma neural networks having adaptive

memory has been investigated since gamma memory incorporates both feedback and feed-forward memory parameters, and
while training, it can adjust its memory resolution for a time-varying pattern. The MGMNN possesses an adaptive memory to
select the best duration in the past that the network should remember for giving the best result.

In the case of a river system having N upstream flows, Equations (5) and (6) can be written using equivalent inflow as fol-

lows (Choudhury & Sankarasubramanian 2009; Choudhury & Ullah 2014; Choudhury & Roy 2015):

Qu,e,r
tþDt ¼

1
�(1� c1 � c3)

(c1aQ
u,e,r
t þ c3bQd

t ), (12a)

Qd
tþDt ¼ c1(1� a)Qu,e,r

t þ c3(1� b)Qd
t , (12b)

Qu,e,r
t ¼

XN
p¼1

s p,rQp
t : (12c)

where Qu,e,r
t is the equivalent inflow at point r in the basin for N upstream flows measured at various locations; and s p,r is the

shift factor associated with the transfer of flow from p to r. Given the above fractional-storage variations for a river system,
each upstream flow and the common downstream flow at time tþΔt can be written explicitly as functions of flow rates at time

t for all sections in the system as given in Equations (13a) and (13b) (Choudhury & Sankarasubramanian 2009; Choudhury &
Roy 2015).

Qu,p
tþDt ¼ fn(Qu,1

t , Qu,2
t , Qu,3

t , . . . , Qu,N
t ; Qd

t , c, f); 8 p; p ¼ 1, 2, 3, . . . , N: (13a)

Qd
tþDt ¼ g(Qu,1

t , Qu,2
t , Qu,3

t , . . . , Qu,p
t , . . . , Qu,N

t ; Qd
t , c, f) (13b)

With the application of the flow depth variables for the bounding sections in a river system, Equations (13a) and (13b) can
be obtained as given in Equations (13c) and (13d) (Choudhury 2007; Choudhury & Roy 2015).

yu,ptþDt ¼ gn(yu,1t , yu,2t , yu,3t , . . . , yu,Nt ; ydt , c
0, f0); 8 p; p ¼ 1, 2, 3, . . . , N (13c)

ydtþDt ¼ G(yu,1t , yu,2t , yu,3t , . . . , yu,pt , . . . , yu,Nt ; ydt , c
0, f0) (13d)

Most of the flood forecasting models were developed using discharge and/or depth variables only. Although during the
flood flow, storage in river reaches continuously changes along with the bounding section flow rates, these storage variables

are required to be included in the model to accurately compute desired flow rates and the damages caused. In the present
study, different categories of the model using the artificial intelligence technique and incorporating storage change-related
variables have been developed and applied for real-life river system flood flow analysis (Equations (13a)–(13d)).

Studies have been conducted to capture variation in one variable at a time and also to capture variation in all the variables
simultaneously (Equations (12a) and (12c)). Both the models agree with the continuity equation. The application of the widely
used MISO model that does not explicitly agree with the continuity equation has been covered in the study.
Wavelet neural network based on gamma memory

A wavelet neural network (WNN) transform is a new signal analysis and processing technology that has emerged in the past
one or two decades. WNN is a new type of feed-forward network combining wavelet theory and ANN. In forward trans-

mission, the input signal is processed layer by layer from the input layer through the hidden layer to the output layer, and
the error is backpropagated. Unlike Back Propagation (BP) neural networks, in WNNs, the wavelet basis function is used
instead of the Sigmoid function as the excitation function.
://iwa.silverchair.com/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf
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The reduction and translation variables makeWNNs have both the characteristics of the time–frequency localization of the

wavelet transform and the self-learning characteristics of the neural network, and the network has a strong approximation
ability and also improves generalization (Choudhury & Roy 2015).

The Sigmoid function equation is as follows:

F(x) ¼ 1
(1þ e�ax)

, (14)

where ‘a’ is the incentive value.
When modeling natural systems such as floods, the problem of noisiness and nonlinearity of real data often occurs. This

problem is partly solved with the help of such filtration. Data filtering always arises when it is necessary to separate the
signal from the noise that distorts it. Here, the signal is ordered as a set of numerical information about the process, i.e.,
time-series; the signal source can be any change ratio system. The purpose of data filtering is to restore change of the original
signal against the background of interference or the definition of a proper signal and, therefore, the reduction of data unrelia-

bility. There are many filtering methods, and many of them can be applied in the creation of information systems of analysis
and forecasting, but the one of wavelet is considered the most promising transformation. One of the urgent tasks of digital
processing signals is cleaning the signal from noise.

Since any real signal contains not only useful information but also interference, this model can be written as:

S(t) ¼ f(t)þ k�e(t), (15)

where S(t) is the signal under study; f (t) is a useful signal; k is the noise level; and e(t) is the noise.
The task of filtering is to maximize the possible reduction of the second term in (15). Filtering a signal using wavelet trans-

formations is performed in the following four stages:

• The decomposition of the signal in terms of the wavelet basis.

• The choice of the noise threshold value for each decomposition level.

• The threshold filtering of detail coefficients.

• Signal recovery.

For the wavelet transform, two indicators are critical: the order of the wavelet and the depth of decomposition. Wavelet

depth—an indicator that determines the smoothed sharpness—the higher this value, the smoother the reconstructed signal.
It should be noted that smoother wavelets create a smoother signal approximation and vice versa (wavelets with a small
depth of the peaks of the approximated functions). The depth of decomposition determines the scale of shifted parts: the

more significant this value, the larger signal changes will be discarded, i.e., the depth of decomposition can be called the
degree of signal chopping.

Wavelet analysis employs standard wavelets. The fact that wavelets are spatially localized is their most significant advan-

tage. Data compression, data processing, and the solution of differential equations all use these algorithms.
STUDY AREA AND DATA DESCRIPTION

In the present study, a network of the river system and a single river reach in the Tar-Pamlico River basin located in North

Carolina, USA, have been selected for estimating and forecasting the river flow rates at all the bounding sections of river sys-
tems/reach. The model forms MIMO-1, MIMO-2, and MISO have been selected for modeling river flows in the Tar-Pamlico
River basin, North Carolina, USA, employing the ANN models, namely MLP-I, TDNN, and MGMNN. A brief description of
the study area and data are presented in Figure 1, where the application of the models for forecasting river flows at the gau-

ging sites of the selected river systems of river basins is made by using past recorded data for the basins.
Past recorded concurrent flow information for five gauging sites—Rocky Mount, Hilliardston, Enfield, Tarboro, and Greenville—is

used in the present study to forecast flow at each of the gauging sites. Concurrent flow records for the gauging sites of the basin

starting from 29 July 2004 to 20 October 2004 with an interval of 15 min were collected from the United States Geological
Survey (USGS) instantaneous streamflowData Archive (http://ida.water.usgs.gov/ida/available_records.cfm). Instantaneous stream-
flow values are continuous streamflow values recorded at intervals of 15 min and are converted into 2-h intervals.
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Figure 1 | The map of all the gauging stations in the Tar River Basin of the study area.

Journal of Water and Climate Change Vol 13 No 9, 3331

Downloaded from http
by guest
on 18 April 2024
RESULTS AND DISCUSSION

In the present study, ANN having no memory, i.e., multilayer perceptron MLP and having memory (i.e., TDNN and gamma

memory) are utilized to develop flood forecasting models. The models use water level and discharge as inputs. Input–output
data sets collected for five stations in the Tar River system are used to forecast downstream flood flows. In the Tar River Basin,
three stations, namely Enfield, Hilliardston, and Rocky Mount, are considered upstream stations, and the remaining two

stations (i.e., Greenville and Tarboro) are considered downstream stations. Furthermore, MISO and MIMO forecasting
models predict the flood while considering common downstream outflow features depending upon the topography and
river basin characteristics. The present study depicts the flow forecast while considering storage rate change, an important

criterion for river flow modeling satisfying the principle of continuity. Table 1 depicts the model’s performances in terms
of root mean squared error (RMSE) and various other statistical criteria incorporating storage rate changes explicitly.
Additionally, in Figure 2 ’dsdt’, which is instantaneous storage rate change, and ’delta S’, representing average storage, can
Table 1 | Model performances based on various statistical criteria in MIMO-2, including storage rate change

Model Performance Inflow (Upper Tar River Basin) Outflow (Lower Tar River Basin)

Gamma memory neural
network (MGMNN)

MIMO-2 actual
storage rate
change

MIMO-1 fractional-
storage rate change

MIMO-2 actual
storage rate
change

MIMO-1 fractional-
storage rate change

RMSE 305 280 295 298
CE 0.91 0.95 0.93 0.98
R 0.98 0.96 0.91 0.94
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Figure 2 | Observed and one-time-step ahead forecasted instantaneous storage rate and delta S flow at Tarboro (starting from 00:00 h of 29
July) using a wavelet–MIMO-1 MGNN Model.
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be seen in observed and forecasted state using the wavelet MIMO-1 MGNN model. The model formulation is mainly focused
on the study of characteristics of fractional and actual variations of storage during the unsteady flow of rivers. The applica-
bility of models is evaluated using performance criteria like the coefficient of correlation and many other statistical criteria.

Results depict that the ANN having an adaptable memory depth for gamma memory is best suited for real-time flood fore-
casting considering the storage rate change. In this model, the value of the coefficient of correlation is approximately 0.98,
which indicates its satisfactory performance. Furthermore, the maximum RMSE is approximately 20% less than the corre-

sponding observed mean. The study demonstrates the applicability of the ANN for flood forecasting, considering the
storage rate change that follows the principle of continuity.

The performances are presented in Table 1 for the MIMO-2 model form vs. MIMO-1 model form when validated. Here, the

RMSE error comes around less than 10% of the observed mean value, which is a positive sign for validation as shown in
Figure 3, where the MIMO-1 model forms with respect to the MIMO-2 model in terms of discharge in cusec for various
inflow and outflow stations, except for the case of an outflow station where discharge value is much higher for inflow stations.

Figure 4 illustrates the prediction of time-series data with the predicted flow rates having 2 h of lead time. The results shown
Figure 3 | An implicit validation of the MIMO-1 model form with respect to the MIMO-2 model in terms of discharge in cusec for various
inflow and outflow stations.
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Figure 4 | Desired and 2-h ahead predicted flows for various sections in the Tar River Basin obtained by using an integrated wavelet MIMO-2
MGMNN.
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here are of testing data sets, 25% of the entire input set. Here, the discharge is in cusec on the Y-axis and time in a 2-h gap

interval on the X-axis. The study area, which is the catchment of the Tar River Basin, USA, is shown in Figure 1. Gauging
stations, Enfield, Rocky Mount, and Hilliardston, are taken as inflow stations, whereas Greenville is considered a down-
stream gauging station. Table 2 shows the major outcome for the prediction of flash flood occurrences in the basin area

using various ANN architectures. It can be inferred from values calculated in Table 2 that flash flood variations prevailing
for August, September, and October 2004 are minimal in nature. Hence, the chances of river flow flooding are much less
during that period. Storage rate change implies instantaneous storage calculation while considering inflows stations, i.e.,

Enfield, Hilliardston, and Rocky Mount and the outflow station Tarboro.
In the case of delta S, calculated on the basis of the average storage rate, assuming that initially the storage is zero at the

beginning and multiplying the delta S with the time interval gap, the total amount of water can be obtained.

The calculation of PFC for all the bounding stations is conducted by the formula given subsequently, where Qo,r
t denotes

discharge at an observed location at time t and Qf,r
t represents discharge at a forecasted station at time t. Table 2 shows

the model performances in terms of peak flow criterion when it comes to forecasting flow rate using the MIMO-1 model
Table 2 | Model performances in terms of PFC for forecasting flow rates by using the MIMO-1 form of ANN models in the Tar Basin

Forecasting stations Models DSDT (storage rate change) Delta storage

Enfield Gamma 0.0913 0.1366
MLP 0.1061 0.0916
TDNN 0.1058 0.1650

Rocky Mount TDNN 0.1254 0.1556
Gamma 0.1292 0.1556
MLP 0.0898 0.1335

Tarboro Gamma 0.1080 0.0864
MLP 0.0515 0.0517
TDNN 0.1087 0.1090

Hillardston Gamma 0.1669 0.1304
MLP 0.1232 0.1021
TDNN 0.0987 0.0950
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form in the Tar River Basin.

PFC ¼

PTp

t¼1
(Qo,r

t �Qf,r
t )(Qo,r

t )2
 !1

4

PTp

t¼1
(Qo,r

t )2
 !1

2

(16a)

These values imply that there is a moderate-to-very low chance of occurrence of flood during the stipulated time interval.
Since the storage values calculated do not show much variation for the given time in Peak Flow Criteria (PFC) calculation.

Tables 3 and 4 exhibit the value of RMSE, coefficient of efficiency (CE), and coefficient of correlation (R) before and after
wavelet decomposition. The results verify that there is little improvement in these values updated due to the pre-processing
of the input data set. Wavelet has removed noise from the input data set, thereby making it more precise to obtain feed-for-
ward from ANNs. Tables 3 and 4 forecast and validate various statistical criteria in the MIMO-1 and MIMO-2 forms, whereas

Tables 5 and 6 show that the values obtained from statistical criteria showcase the differences in value in inflow and outflow
stations, respectively. Enfield, Hilliardston, and Rocky Mount are considered various upstream flows, whereas Tarboro is
regarded as an outflow station.

Weights and parameters are assigned to the optimized WNN, and from July to October 2004, forecast samples were
applied. In addition, the daily hourly flow from July to October 2004 was predicted. The prediction results are compared
with the WNN and BP network prediction values. The forecast test uses three methods, namely MISO, MIMO-1, and

MIMO-2. Tables 5 and 6 show the comparative results, and it can be observed that the prediction result of the WNN is
better than that of the simple MLP network and that after the gamma algorithm optimization (Liu et al. 2021), the prediction
accuracy has greatly been enhanced. In the wavelet model optimized by the gamma algorithm, in July, August, and September

2004, the reported value was almost consistent with the actual measured value, and the relative error was less than the results
obtained in the simple MLP which achieved a very accurate forecast accuracy. The dotted lines show forecasted flow dis-
charge, and the regular lines in the graph predict the observed or desired flow discharge in feet cube per second.
Table 4 | Performances of MGMNN ANN models in forecasting storage change rate changes in the Tar River Basin after wavelet
decomposition

Model Performance Inflow (Upper Tar River Basin) Outflow (Lower Tar River Basin)

Gamma memory neural
network (MGMNN)

MIMO-2 actual
storage rate
change

MIMO-1 fractional-
storage rate change

MIMO-2 actual
storage rate
change

MIMO-1 fractional-
storage rate change

RMSE 256 265 274 291
CE 0.91 0.96 0.94 0.98
R 0.98 0.97 0.95 0.96

Table 3 | Performances of MGMNN ANN models in forecasting storage change rate changes in the Tar River Basin before wavelet
decomposition

Performance Enfield Hilliardston Rocky Mount Tarboro DSDT (rate change storage) Delta storage

RMSE 63.38 66.08 217.12 393.99 211.73 209.41

NMSE 0.06 0.63 0.28 0.20 0.07 0.07

MAE 52.83 53.84 172.95 341.69 171.16 169.29

Min abs error 0.06 1.53 1.50 0.66 1.54 0.79

Max abs error 167.18 146.56 572.23 983.92 543.57 503.69

R 0.98 0.96 0.92 0.94 0.98 0.98
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Table 5 | Performances of MGMNN ANN models in forecasting flow at time t at a section by learning storage rate changes over an interval of
the Δt variation along with the flow variation in the Tar River Basin (before wavelet decomposition)

Model Performance measure Inflow (Upper Tar River Basin) Outflow (Lower Tar River Basin)

Gamma memory neural network (MGMNN) Enfield Hilliardston Rocky Mount Tarboro
RMSE 34.12 18.55 68.21 81.12
CE 0.99 0.94 0.95 0.98
R 0.95 0.97 0.91 0.92

Table 6 | Performances of MGMNN ANN models in forecasting flow at time t at a section by learning storage rate changes over an interval of
the Δt variation along with the flow variation in the Tar River Basin (after wavelet decomposition)

Model Performance measure Inflow (Upper Tar River Basin) Outflow (Lower Tar River Basin)

Gamma Memory Neural Network MGMNN Enfield Hilliardston Rocky Mount Tarboro
RMSE 31.02 16.12 65.02 80.01
CE 0.99 0.95 0.96 0.98
R 0.95 0.98 0.92 0.96

Figure 5 | The flow chart of the modeling process.
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CONCLUSION

Daily-based hourly-scale river forecasting has significant seasonality and trend. Choudhury & Roy (2015) developed the
model using an ANN in river flow studies using gamma memory and a TDNN, but they did not account for storage. Storage
://iwa.silverchair.com/jwcc/article-pdf/13/9/3323/1114839/jwc0133323.pdf



Journal of Water and Climate Change Vol 13 No 9, 3336

Downloaded fr
by guest
on 18 April 202
rate change and storage variables are critical factors that must be accounted for when it comes to river flow modeling. The

storage model concept is introduced as a phase of flood disaster management to visualize the picture of forecasts. As the flow
forecast is a time-bounded process depending on the evolution of flow parameters such as discharge, depth of flow, and also
storage which too is a time-varying variable, incorporation of it is a must to visualize the completeness in river flow forecast.

There is a need for an integrated storage model to effectively picture the complete scenario of the flood. In every case of the
forecast, it has been found that the storage forecast model, along with discharge and depth, is performing well. In all cases, the
results depicted are satisfactory, though, in each and every case, results may not be on a par with and better than previously
used models; the incorporation of storage in the prediction of spatial-time-bounding flood is undoubtedly of much impor-

tance. This incorporation is justified since it completely visualizes the importance of storage parameters in this time-
bounding flood forecasting. Otherwise, it can be a limitation or a drawback in the study. Some variables were left out of
the picture, which is equally important, and now this has been included in the MIMO-1 and MIMO-2 models along with

all the variables like discharge and the depth of flow. Figure 5 depicts the flow chart of the entire flood flowmodeling process.
This study uses a neural network with gamma memory along with the storage rate change variable, and the inter-sequence
model establishes a forecasting model. The daily hourly flow of the Tar-Pamlico River Basin in North Carolina is forecasted

and tested, which has already been conducted in the work of Choudhury & Roy (2015) but without storage. In addition, this
paper is an extension of the work performed by Choudhury & Roy (2015) while incorporating storage as a flow variable. In
the present study, the applications of ANN models in predicting concurrent flows in the Tar River Basin by using a single and

a number of trained networks are presented. ANNs having no memory, static memory, and adaptive memory are used to pre-
dict the concurrent flow rate in multiple sections in the Tar River Basin, USA. The model formulations MIMO-1 and MIMO-2
are based on learning storage characteristics fractionally and absolutely during unsteady flows in river reaches. The study
shows that to forecast the concurrent flows by using MIMO networks, either a single MIMO-2 or as many MIMO-1 networks

as the number of bounding sections in a river system can be trained that can learn storage variation characteristics. The
MIMO-1 and MIMO-2 ANNs satisfy continuity requirements for a reach implicitly; the study shows that MIMO-1 and
MISO ANNs are different forms of the MIMO-2 ANN obtained by constraining the outputs and connections to the

output nodes from the hidden layer to zero—for all sections except the forecasting section in a river reach/system. Pre-proces-
sing techniques, such as wavelet, enhance the result to a minimum of 5–10% by removing noise from the input data set.
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