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ABSTRACT

In the topographic complex catchments, landscape features have a significant impact on the spatial prediction of rainfall and temperature. In

this study, performance assessments were made of various interpolation techniques for the prediction of the spatial distribution of rainfall

and temperature in the Mille and Akaki River catchments, Ethiopia, through an improved approach on selecting the auxiliary variables as a

covariate. Two geostatistical interpolation techniques, ordinary kriging (OK) and kriging with external drift (KED), and one deterministic interp-

olation technique, inverse distance weighting (IDW), were tested through a leave-one-out cross-validation (LOOCV) procedure. The results

indicated that using the multivariate geostatistical interpolation technique (KED) with the auxiliary variables as a covsariate outperformed

the univariate geostatistical (OK) and deterministic (IDW) techniques for the spatial interpolation of sampled rainfall–temperature data in

both contrasting catchments, Akaki and Mille, with the lowest estimation errors (e.g., for Mille annual mean rainfall: root mean square

error¼75.32, 77.34, 245.72, mean bias error¼3.70, �33.18, �15.61, mean absolute error¼67.99, 69.51, 192.64) using KED with the combi-

nation of elevation and easting as a covariate, IDW and OK, respectively. Thus, the study confirmed that the use of elevation and easting/

northing coordinates as predictors in geostatistical interpolation techniques could significantly improve the spatial prediction of climatic

variables.
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HIGHLIGHTS

• Globally, there is no suitable interpolation technique for the spatial prediction of climatic variables like rainfall and temperature.

• In the mountainous catchment, geostatistical interpolation outperforms deterministic interpolation techniques.

• The combination of elevation and easting as a covariate significantly improves the performance of the spatial prediction of climatic

variables.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

In the topographic complex catchments, optimum spatial predictions of climatic variables, specifically rainfall and tempera-
ture, are essential as a principal input for downstream applications, namely hydrological and/or hydraulic modeling (Lebel
et al. 1987; Grimes et al. 1999), flood early warning, forecasting, and drought management (Bertini et al. 2020; Lu et al. 2020).
However, in developing countries, the spatial array of the weather stations of the aforementioned input rainfall and tempera-

ture is irregular and highly sparse, and the low network density (Washington et al. 2006; Parker et al. 2011; Dinku 2019) in
Ethiopia is not exceptional.

In Ethiopia, specifically in the lowlands, the spatial coverage of weather stations is highly sparse, and they are below the

standard of the World Meteorological Organization (WMO) (Washington et al. 2006; Dinku et al. 2017).
Although historically the ground-based stations have been the key source of rainfall and temperature for catchments’ spatial

pattern prediction and areal mean estimation (Taesombat & Sriwongsitanon 2009; Ly et al. 2011; Di Piazza et al. 2015;
Adhikary et al. 2017), the satellite-based climate data have been taking a leading role in predicting areal mean products,
especially rainfall and temperature using different prediction algorithms based on the satellite imagery, mainly geostationary
satellites, i.e. Meteosat Second Generation (MSG-2), which can produce high imagery both at spatial and temporal resol-

utions (Gebremichael & Hossain 2010; Gebere et al. 2015; Chen & Li 2016).
Although satellite-based weather data take advantage of ground-based highly sparse gauged weather data in many aspects,

for instance covering a large area at different spatial and temporal scales, there are still some limitations to using satellite-
based climatic data alone. For example, since the precipitation measurement is indirect, the accuracy is less, which requires

calibrations using ground-based rainfall data, specifically over mountainous regions (Dinku et al. 2008b), and tends to under-
estimate high rainfall values in mountainous regions such as Ethiopia (Le Coz & Van De Giesen 2020) and overestimate low
rainfall events (Toté et al. 2015). In addition to the aforementioned limitations, the spectral resolution of sensors, such as

thermal infrared (TIR) and passive micro-wave (PMW), varies with wavelength and fails to capture more accurate images
and predictions of climate variability. For instance, PMW sensors cannot properly capture and identify very cold cloud-
based rainfall from ice, especially at the top of mountainous regions, and background emissions from the land surface,
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which vary significantly depending on landscape characteristics (Toté et al. 2015; Petković & Kummerow 2017). Distinguish-

ing raining clouds from the non-raining cloud, like Cirrus clouds from top cloud temperature, and being unable to detect
warm orographic rainfall are some limitations of TIR sensors (Dinku et al. 2008a).

A novel approach, which is blending satellite and ground-based climatic data for optimum areal mean climatic variable

estimation, has emerged for three decades to solve the aforementioned limitations (Grimes et al. 1999; Yang et al. 2017;
Dinku et al. 2017; Gebremedhin et al. 2021).

There are two types of interpolationmethods: deterministic interpolationmethods, for example, radial basis function (RBF) (Yang
et al. 2017) and inverse distanceweighting (IDW) (Goovaerts 2000), and geostatistical interpolationmethods such as simple kriging

(SK), ordinary kriging (OK), ordinary cokriging (CK), universal kriging (UK), and kriging with external drift (KED) (Phillips et al.
1992; Goovaerts 2000; Haberlandt 2007; Taesombat & Sriwongsitanon 2009; Ly et al. 2011; Mukhopadhaya 2016).

Novikov (1981) investigated the impact of elevation on the prediction of the spatial pattern of precipitation and tempera-

ture for the New Hampshire and Vermont mountainous catchment via simple linear regression, and the results indicated that
the mean monthly precipitation increases strongly with elevation, whereas the mean monthly temperature decreases with
elevation. Cantet (2017) compared several spatial interpolation techniques to map the mean annual and monthly precipi-

tation of a small island, which has a complex topography, and the results indicated that the KED seems to outperform
regression methods. Similarly, another study in which the dependency of monthly precipitation on elevation was analyzed
by Lloyd (2005), focusing on Great Britain through the comparison of different interpolation techniques, concluded that

KED with an elevation as a covariate provides the most accurate estimates of precipitation for most months. Hudson &
Wackernagel (1994) noted that the integration of information about elevation as a covariate into the mapping of temperature
by kriging improves the performance of prediction. Numerous scholars have used the comparison approach of different
interpolation methods to predict the spatial disparity of rainfall and groundwater depth (Kisaka et al. 2016; Adhikary &

Dash 2017; Amini et al. 2019; Jalili Pirani & Modarres 2020), and their results indicated that geostatistical interpolation tech-
niques yield more accurate predictions than deterministic techniques.

The aforementioned literature review indicated that there was no globally suitable interpolation technique, and thus while

scholars used a comparative approach to assess the performance and select the suitable method for a specific site and a
specific objective, and as a knowledge gap, none of them considered the effect of the combination of elevation and easting
or northing as a covariate on the spatial prediction of climatic variables. Therefore, this research aimed (i) to assess the per-

formance of the deterministic model (IDW) and two geostatistical models, OK and KED interpolation techniques, and (ii) to
select and use the suitable technique for contrasting catchments, Mille and Akaki’s climatic variable spatial pattern predic-
tion, based on statistical and graphical evaluation methods.

2. MATERIAL AND METHODS

2.1. Study area

This research paper considers two contrasting catchments (in terms of physiographic features like climatic condition and land
cover) in the Awash River Basin as the case study area, namely the Mille River catchment and the Akaki River catchment,
which are located in the Western escarpment and the upper part of the Awash River Basin, respectively (Figure 1).

The Mille River catchment is situated between 39 °50 and 40 °90 longitude and 11 °20 and 11 °80 latitude, and covers an area
of 5,598.74 km2. Water resource management is an essential issue in the Mille River catchment because of its wide range of
water uses in its upper part as well as its lower part user requirements and environmental flow provisions (Ministry of Water

Resources 2009). The catchment significantly contributes to the water supply for different purposes like irrigation to commu-
nities that reside within it, specifically communities living in the upper catchment (Ministry of Water Resources 2009), and it
contributes a considerable share to the Tendaho multipurpose reservoir inflows. Consequently, a more accurate spatial dis-
tribution of rainfall in the whole catchment, particularly the upper part, would be essential for downstream water resource

management and developments, including Tendaho Reservoir operation.
The topography of the catchment is characterized by steep slopes of ridges and mountains in the upper part to a gentle

slope in the low-lying part.

The annual rainfall average in the Mille catchment ranges from 374.2 to 1,032 mm, with the highest and lowest monthly
average in August and February, respectively (Figure 2). The maximum and minimum mean temperatures range from 28.820
to 43.210 °C and 10.270 to 18.980 °C, respectively.
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The Akaki River catchment is located in the northwestern escarpment of the Awash River Basin, Ethiopia, and covers an
area of about 1,425 km2. It is located between 38 °60 and 39 °10 longitude and 8 °80 and 9 °20 latitude (see Figure 1). The Akaki
catchment is circumscribed by the Intoto Mountains to the north, Mount Menagesha and Wechecha volcanic mountains to

Figure 1 | Location of the study area.

Figure 2 | Mille catchment’s mean monthly climatological variables.
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the west, and Yerer Mountain to the east. In the Akaki catchment, there are three surface water reservoirs, Legedadi, Dire,

and Gefersa Reservoir, which are used for water supply for Addis Ababa city and its surrounding towns, and one hydropower
reservoir, Abasamuel. The catchment is very important from a water supply point of view, specifically for Addis Ababa and its
surrounding communities and for agricultural production.

The climate of the Akaki catchment has two distinct wet seasonal weather patterns. The main rainy season starts from late
June to mid-September, which contributes almost 70% of the total annual rainfall, and the pre-rainy season starts from March
to mid-May (Molla et al. 2005). Based on historic climatic data (2000–2016), the mean minimum and maximum rainfall was
935.2 and 1,011.6 mm, respectively. The mean minimum and maximum annual temperatures of the catchment vary from

8.640 to 10.330 °C and 21.610 to 23.460 °C, respectively (Figure 3).

2.2. Datasets

Both historic ground-based point data and blended gridded climatic variables, specifically rainfall and temperature data, were
obtained from the National Meteorological Agency (NMA), Ethiopia, from 1 January 1983 to 31 December 2016 (Table 1 and
Figure 1). The blended pixel climatic dataset was merged from the European Meteorological Satellites (METEOSAT) and

ground-based observations at the national level for some African nations, including Ethiopia (Dinku et al. 2017). However,
the ground-based climatic datasets were missing climatic variable values on some consecutive days, months, and years (.10%
missing data) for most ground stations. As a solution, we took a blended pixel value of the grid in which the gauging station

Table 1 | Mille and Akaki catchments’ climatological stations

Mille catchment Akaki catchment

Stations Altitude (m.a.s.l) Longitude Latitude Stations Altitude (m.a.s.l) Longitude Latitude

X055 2,089 39.75 11.32 X027 2,202 38.85 8.88

X058 1,854 40.77 11.43 X029 2,279 38.68 8.93

X059 1,573 39.62 11.54 X030 2,282 38.67 8.94

Weranso 643 39.67 11.66 X031 2,197 38.76 8.95

Waama 1,020 39.61 11.75 X036 2,385 38.75 9.02

Mille (AVA) 491 40.48 11.35 X038 2,440 38.73 9.03

Haik 2,003 40.08 11.45 X040 2,606 38.73 9.06

Chifra 928 40.00 11.75 X041 2,741 38.84 9.06

Bokeksa 1,771 40.75 11.42 X043 2,771 38.73 9.08

X044 2,543 39.02 9.15

Figure 3 | Akaki catchment’s mean monthly climatological variables.
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was laid within it, and then the authors performed the correlation and regression analysis (not shown here) with ground-

based historic climate datasets to check the similarity between two neighboring sample climatic datasets. We obtained
that a pixel value of a grid was much more strongly correlated with ground-based historic climate data because of the
close sample distance, and the same result was confirmed by Wilson et al. (1998). Therefore, based on their correlation,

we selected and used pixel values as point data instead of gauged station data. As a consequence, we selected and used
nine pixel values for the Mille catchment and 10 pixel values for the Akaki catchment as the point station dataset, which
were used as principal variables for spatial pattern prediction using different interpolation techniques. Based on collected
daily data, monthly and annual data for climatological variables were developed to predict the spatial pattern of both the rain-

fall and temperature of the interesting study areas, the Mille and Akaki catchments.
Unlike deterministic and univariate geostatistical interpolation techniques, multivariate geostatistical interpolation

methods, for instance KED, account for secondary information in the prediction of spatial climatological variables. The

90 m spatial resolution digital elevation model (DEM) elevation, longitudinal, and latitudinal positions, and their combi-
nation were considered as auxiliary variables (covariates) in this study.

In this research, the integration of R-programmingwith the gstat package (Pebesma 2004, 2012) andGIS tools were applied for

spatiotemporal interpolation techniques, preprocessing raster layers containing the predictive variables, and preparing shapefiles.

2.3. Methods

The three stages followed in the study plan were (1) the preparation and export of monthly and annual climatic variable data
in ‘.csv’ format, exporting raster of DEM, easting, and northing, and shapefiles for catchments into R-programming, (2) var-
ious interpolation technique applications to generate a spatial pattern of rainfall and temperature map and to estimate areal

mean rainfall and temperature (minimum and maximum), and (3) the assessment of the performance of various interpolation
methods based on statistical evaluation criteria. The details of each step are described as follows.

2.3.1. Collection and preprocessing of sampled historical climatological datasets

The sampled historic climatic data were collected and processed as Excel spreadsheets, and they were prepared and exported in

‘.csv’ format formonthly and annual rainfall and temperature. Consequently, the prepared sampled datawere exported intoR-pro-
gramming for the various types of spatial interpolation techniques. Simultaneously, the sampled data location shapefiles,
elevation, latitudinal, longitudinal raster, and shapefile of the study area were imported into R-programming. In R-programming,

point data were converted to a spatial points data frame (SPDF) using a longitude and latitude coordinate system. Then, for better
work in R, the longitudinal–latitudinal coordinate system was transformed to the Universal Transverse Mercator (UTM) coordi-
nate system. Finally, the sampled climatic data were combined with location data to form a new spatial point data frame.

2.3.2. Interpolation techniques

Various spatial interpolation techniques used in this study were briefly introduced and compared in R-programming (https://
cran.r-project.org) through gstat (Pebesma & Wesseling 1998; Pebesma 2003) and related packages. For this study, based on
their best performance (e.g., Chen & Liu 2012; Rata et al. 2020), one deterministic method, IDW, and two geostatistical
methods, OK and KED, were selected among the various spatial interpolation techniques. For details of the description of

geostatistical and other interpolation techniques, the reader can refer to geostatistical books (Wackernagel 1998, 2003;
Webster & Oliver 2007).

2.3.2.1. Inverse distance weighting. The IDW method estimates values at ungauged/unsampled points by the weighted

average of measured data that found surrounding points. It is based on the assumption that the sampled observations that
are close to the estimated points have more weight control on the estimated value than the sampled observations far apart
(Goovaerts 2000). According to Shepard (1968), the equation of IDW is given by:

ZIDW(U) ¼
Xn
/¼1

l(U/)Z(U/)

With l(U/) ¼ (r/)
�pPn

/¼1
(r/)

�p

(1)
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where ZIDW(U) is the climatic variable (in our case, either rainfall or temperature) at the unsampled point (U), Z(U/) is the
climatic variable at the sampled location U/, / ¼ 1, 2, . . . , n, and l(U/) are the undetermined weights to be estimated as a
function of distance.

The inverse distance power (p) by default is 2 (Shepard 1968; Goovaerts 2000; Otieno et al. 2014). However, the authors

took a certain value of inverse distance power (Table 2) in an interval of one unit to test the performance of each power and
selected the best power using the LOOCV method. Accordingly, power 4 was selected for the Mille catchment, and power 3
was selected for the Akaki catchment.

2.3.2.2. Ordinary kriging. Ordinary kriging (OK) is one of the geostatistical interpolation techniques by which local variation

is considered by limiting the domain of stationarity of the unknown local mean (m(X )) to the local neighborhood, and the
kriging weights sum to one (Goovaerts 1997, 2000; Webster & Oliver 2007). Its equation is given by:

ZOK(X) ¼
Xn
/¼1

(l)OK(X/)Z(X/)þ 1�
Xn
/¼1

lOK(X/)

" #
m(X)

ZOK(X) ¼
Xn
/¼1

(l)OK(X/)Z(X/)

With
Xn
/¼1

lOK(X/) ¼ 1

(2)

where ZOK(X ) is the climatic variable (in our case, rainfall and temperature) predicted at the unknown location (X ) using the
OK method, Z(X/) are the sampled values at X∝’s n data locations, and lOK(X/) are the OK weights determined to minimize

the estimation of variance while confirming no biasedness of the OK estimator (Goovaerts 1997; Wackernagel 1998). It is
mathematically expressed as follows:

d2 ¼ Var [{Z�
OK(Xo)� Z(Xo)} 2]

and the expected error is

E{Z�
OK(Xo)� Z(Xo)} ¼ E

XN
/¼1

l/Z(X/)� Z(XO)
XN
/¼1

l/

" #

¼
Xn
/¼1

l/E[Z(X/)� Z(XO)]

¼ 0 (3)

Table 2 | Inverse distance power selection using the LOOCV method (for the month of January)

Idp¼n,
where n¼ 1, 2, 3, 4, 5, 6

RMSE

Mille catchment Akaki catchment

1 5.153 1.274

2 4.353 1.221

3 3.940 1.206

4 3.861 1.210

5 3.900 1.219

6 3.960 1.226
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According to Goovaerts (1997, 2000), the weights are acquired by solving a system of linear equations known as the ‘OK

system’, which is given by the following equation:Pn
b¼1

lb(X)g(Xa �Xb)� m(X) ¼ g(Xa �Xo), a ¼ 1 . . .n

Pn
b¼1

lb(X) ¼ 1

8>>><>>>: (4)

where μ(X ) is the Lagrange parameter.
Unlike IDW, any geostatistical technique such as OK uses a variogram but not Euclidean distance to measure the degree of

dissimilarity between sampled data Z(Uα) and unsampled value Z(UO) (Goovaerts 2000; Webster & Oliver 2007). Let two

distinct climatic data values Z (Uα) and Z (Uαþ h) at two different locations be given, and if we assume isotropy, which is
the direction independence of the semi-variance, then the more distant sample value should receive less weight in the esti-
mation of Z (Uo). The experimental variogram is calculated as half the average squared difference between the
components of value pairs, as presented in Equation (5) and described in Goovaerts (2000):

ĝ(h) ¼ 1
2N(h)

XN(h)

a¼1

[Z(Ua þ h) � Z(Ua)]
2 (5)

where ĝ(h) is the experimental variogram, which is a function of both the direction and the distance (anisotropic–spatial
pattern), and N (h) is the number of pairs of climatic variable data locations separated by lag distance/vector h.

In this study, the automap package automatically selects some models, namely spherical, exponential, and Ste Mat

(Matern, M. Stein’s parameterization) models, which are widely applied (Goovaerts 2000; Webster & Oliver 2007; Stein
2010; Frazier et al. 2016) to model the theoretical variogram.

The equations for the spherical, exponential, and Ste models are as follows:

g(h) ¼
c0 þ c

3h
2a

� 1
2

h
a

� �3
" #

for 0 , h � a

c0 þ c for h . a
0 for h ¼ 0

8>>><>>>: (6)

g(h) ¼ c0 þ c 1� exp � h
a�

� �� �
, for 0 , h

0 for h ¼ 0

8<: (7)

g(h) ¼ C 1� 1
2n�1G(n)

h
r

� �n

Kn
h
r

� �� �
for jhj . 0 (8)

where c0 is a nugget effect, c is the sill variance, h is the lag distance (m), a is the actual range, a� is the practical range, which

is three times (a� ¼ 3a) the actual range (Stein 2010), n is the smoothness parameter varying from 0 to ∞, G(:) is the gamma
function, and Kn(:) is the modified Bessel function.

The most common technique of fitting variogram models to compute experimental variograms is performed using manual

fitting procedures (Nalder &Wein 1998; Haberlandt 2007). However, this is not an appropriate approach because it depends
on the expertise and the sample size in the data (Ly et al. 2011). In this research paper, an automatic fitting procedure was
applied using the ‘autofitVariogram’ function from the package ‘automap’ to choose the appropriate model for fitting a var-

iogram model to an experimental variogram and also calibrated its parameters such as range, nugget, and sill.

2.3.2.3. Kriging with external drift. KED is a kind of universal kriging that replaces one or more variables as a predictor by

the coordinates, and the trend mean, m(u), is modeled as a linear function of smoothly varying covariates y(u) instead of the
spatial coordinates as a function (Goovaerts 1997; Webster & Oliver 2007):

m(u) ¼ ao(u)þ a1(u)y(u)

With a1(u) ¼
Xn
/¼1

lKED
/ (U) Z(u/)

(9)
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wherem(u) is a local constant mean at location u, the trend coefficients ao and a1 are implicitly estimated through the kriging

system within each search neighborhood Z(u/), and y(u) is the independent variable used as an influence in the prediction of
the dependent variable.

Let y1, y2, y3,…,yn be several independent (external) variables linearly related to Z(u),

Z(u) ¼
Xn
k¼1

bkyk(u)þ 1(u)

¼ b0 þ b1y1(u)þ b2y2(u)þ . . .þ bnyn(u)þ 1(u)

(10)

and we might be able to calculate the KED estimator as follows:

ẐKED(X0) ¼
Xn
/¼1

lKED
/ Z(X/) (11)

The expectation is:

E[ẐKED(X0)] ¼
XK
k¼1

Xn
/¼1

bkl
KED
/ yk(X/) (12)

where bk, k¼ 1, 2, 3,…,K, are unknown coefficients to be determined, yk are known external variables/covariates at location

X/, ε(u) is the Lagrange multiplier, and lKED
/ are kriging weights calculated by:

Xn
i¼1

lKED
i g(Xi, Xj)þ w0 þ

XK
k¼1

wkyk(Xj) ¼ g(X0, Xj) for all j ¼ 1, 2, . . . , n,

Xn
i¼1

lKED
i ¼ 1

(13)

And the estimator is unbiased if:

Xn
i¼1

lKED
i yk(Xi) ¼ yk(X0) for all k ¼ 1, 2, . . . , K (14)

where g(Xi, Xj) is the semi-variance between the data points Xi and Xj, g(X0, Xj) is the semi-variance between the target
point and the data points surrounding the estimated point, and w0 and wk, k¼ 1, 2,…,K is a Lagrange multiplier.

Among spatial interpolation methods, the geostatistical technique assumes that the variable is normally distributed (Isaaks
& Srivastava 1989). However, point data is/are often not symmetrical (skewness either to the right or to the left), which
affects spatial reduction of input data in which the few values will overcome all the others. According to Goovaerts
(1997), nonsymmetrical distributions are often transformed to conditions of normality using one of the three transformations

such as natural logarithmic function, square root transformation to reduce the skewness of input data, and the influence of
extreme values. But, for small sampled data such as our case, we have chosen not to use transformation to conditions of nor-
mality for the sake of highly sparsely distributed gridded sampled climate data (Rossiter 2014; Bati 2022), and we have also

intended to ignore the possibility of anisotropy for this research work for the sake of not missing the remaining sample data
and for simplicity of modeling.

2.3.3. Performance evaluation

The performances of three selected interpolation techniques, IDW, OK, and KED, were accomplished via evaluations and

comparisons of estimated climatic variable values and observed data. In this study, the available climatic variable data
were split into two parts: training and test/validation data. The training data were used to fit the model, while the test
data were used to calculate prediction accuracy, and the procedure is called regular-validation.
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The cross-validation procedure was applied to compare the spatial interpolation performance of KED with univariate

interpolation methods. The basic idea behind cross-validation is that we split our test/validation dataset into k-folds. For
this study, the commonly used type of cross-validation, the so-called leave-one-out cross-validation (LOOCV), was applied,
where the climatic data consecutively took the role of test data, and the remaining data took the role of training data. We

train our model on k� 1 folds and use the resulting model to predict the values of the left-out fold. In our case, sampled cli-
matic data for two contrasting catchments, Mille (number of observations (k¼ 9)) and Akaki (number of observations (k¼
10)), from 2000 to 2016 were used for modeling. Accordingly, the LOOCV technique involves using only one observation
data as the test set and the k� 1 remaining observations as the training set.

To assess and select a suitable interpolation technique, this study evaluated and compared different interpolation tech-
niques via four statistical indicators, such as root mean square error (RMSE), mean bias error (MBE), mean absolute error
(MAE), and coefficient of correlation (r), between the predicted and observed climatic variable values, which are given as

follows (Vicente-Serrano et al. 2003; Li & Heap 2008):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(Ẑ(Xi)� Z(Xi))
2

vuut (15)

MBE ¼ 1
n

Xn
i¼1

[Z(Xi)� bZ (Xi)] (16)

MAE ¼ 1
n

Xn
i¼1

[jẐ(Xi)� Z(Xi)j] (17)

r ¼

Pn
i¼1

Z(Xi) � Ẑ(Xi)�
Pn
i¼1

Z(Xi)
� � Pn

i¼1
Ẑ(Xi)

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Pn
i¼1

(Z(Xi))
2

� �
� Pn

i¼1
Z(Xi)

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn
i¼1

(Ẑ(Xi))
2

� �
� Pn

i¼1
Ẑ(Xi)

� �2
s (18)

where Z(Xi) and Ẑ(Xi) are the mean of observed and estimated climatic variable values, respectively, and n is the number of

paired climatic data.
Then, the model showing the lowest error on the test sample (i.e., the lowest test error) is identified as the best one in this

study area. This was the reason why the normality condition was not checked.

3. RESULTS

3.1. Variogram parameter estimation and modeling

For the Mille catchment, in the KED interpolation method with elevation and easting as a covariate, an experimental vario-
gram and two variogram models (i.e., exponential and spherical) automatically fit the theoretical variogram with the
experimental variogram. Both monthly and annual variogram parameters, namely range, nugget, and sill, were generated

using historic climatic variable data (Table 3).
Dissimilarities expressed by semi-variance were increased following the separation distance (lag) increase and resulted in

both sampled climatic data close to each other being more similar; hence, their squared difference was less significant than

those that were farther apart. The theoretical variogram model rises to a certain distance and then the model levels off, and
the distance at which the model first levels off is termed the range parameter. The semi-variance value that reaches the range
parameter is known as the sill. For instance, year long-based mean annual and August mean rainfall were used to simulate the
experimental variograms using nine sampled stations, which were then fitted with theoretical variograms using spherical and

exponential variogram models, respectively (Figure 4). Accordingly, the exponential and spherical values of the two vario-
gram models provided ranges of approximately 38.8 and 12.9 km, nugget effects of 2,608 and 218 mm2, and sills of
approximately 4,029 and 313 mm2 for the annual and August months, respectively.

As seen from Table 3, among the two models used, the spherical model was the most frequently applied to fit the monthly
experimental semivariogram with the theoretical variogram. For most months (9 out of 12), the theoretical variogram was
fitted with an experimental variogram by using the same model, and the same covariates resulted in the same range, but
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the sill and nugget varied, which may be in connection with the spatial pattern and smaller sample size of the sampled rainfall
data over the fixed domain (Kaufman & Shaby 2013). Moreover, unlike the spherical model, since the exponential model
asymptotically approaches the sill, the effective range was three times the actual range parameter (a) (a*¼ 3a) (Goovaerts

1997; Nalder & Wein 1998), which means that the proximity by which the spatial dependency decay was longer than the
spherical model’s effective range (see Table 3).

For the mean minimum and maximum temperatures, both the spherical and exponential variogram models were fitted to
the mean annual and monthly (e.g., April month) experimental variograms (Figure 5(a)–5(d)). For the mean minimum annual

temperature, the theoretical variogram was fitted to the experimental variogram using an exponential model with a range of
38.8 km, a sill of 0.16°C2, and a nugget effect of 0.06°C2. For April, the theoretical variogram was fitted to the experimental
variogram using a spherical model with a range of 12.93 km, a sill of 0.2°C2, and a nugget effect of 0.16°C2. The same pro-

cedure was applied for the mean maximum temperature; as a result, unlike the minimum temperature, both mean
monthly (e.g., April) and mean annual maximum temperature experimental variograms were fitted using a spherical
model with the same range of 12.93 km but with nugget effects of 0.69 and 0.48°C2 and sills of approximately 0.83 and

0.9°C2, respectively.
As depicted in Figure 5(a)–5(d), the number of bins (each possesses 11 and 8 paired climatic datasets) was highly scattered,

and these were the results of the sample size and/or the density of sampled climatic data (see Figure 1), which may affect the

reliability of the experimental variogram complements to the statistical distribution of the sampled data (Webster & Oliver
2007). According to Webster & Oliver (2007), the reliability of the experimental variogram is affected by factors, namely
the size/density of the sampled data (e.g., Ly et al. 2011), the statistical distribution of the sampled data, and the configuration
or design of the sample. As the sample data size increases, such scatter decreases, and the plotted paired points (bins) tend to

be closer to a theoretical variogram (e.g., Figure 6).
In the case of the Akaki catchment, satisfactory computation results were obtained in response to the success in producing

an experimental variogram (Table 4 and Figure 6) and have resulted in successful attempts at fitting theoretical variograms

with experimental variograms for both mean monthly and annual rainfall and the mean maximum temperature.
For instance, in KED with northing as a covariate, the theoretical variogram was fitted with an experimental variogram

model using the spherical model with a range of 4.9 km, a sill of 0.65 mm2, and a nugget effect of 0.3 mm2 for January

mean monthly rainfall, and the Ste model was fitted to the theoretical variogram and the experimental variogram using a
range of 7.5 km, a sill variance of 1,943 mm2, and a nugget variance of 0 mm2 for the mean annual rainfall.

Overall, the variogram value is often zero at a lag distance equal to zero in theory. Nevertheless, within the shortest dis-

tance, which is less than lag, the variogram often exhibits the phenomenon called the ‘nugget effect’, which is a value

Table 3 | Variogram parameters and variogram models were developed for the Mille catchment using the KED interpolation technique with
the combination of elevation and easting as covariates

Month Range (m) Nugget (mm2) Sill (mm2) Model Selected covariate/predictor

Jan 12,925 18 22 Spherical Elevationþ easting

Feb 12,925 6 6.8 Spherical Elevationþ easting

Mar 12,925 11 21 Spherical Elevationþ easting

Apr 12,925 19 24 Spherical Elevationþ easting

May 12,925 24 30 Spherical Elevationþ easting

Jun 12,925 10 15 Spherical Elevationþ easting

Jul 38,775 211 888 Exponential Elevationþ easting

Aug 12,925 218 313 Spherical Elevationþ easting

Sep 12,925 26 38 Spherical Elevationþ easting

Oct 38,775 28 43 Exponential Elevationþ easting

Nov 38,775 0.55 0.73 Exponential Elevationþ easting

Dec 12,925 1.6 3.6 Spherical Elevationþ easting

Annual 38,775 2,608 4,029 Exponential Elevationþ easting
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greater than zero (Webster & Oliver 2007). The nugget effect can be attributed to measurement errors, which occur because
of the error inherent in measuring devices, or spatial sources of variation at microscale distances smaller than the lag distance

(or both).

Figure 4 | Empirical and theoretical semivariogram models: exponential (a) and spherical (b) for annual and August monthly mean rainfall,
respectively.
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3.2. Verifying the performance of interpolation methods via the LOOCV procedure

All the methods described in subsection 2.3.2. were performed and evaluated through a cross-validation technique, specifi-

cally the LOOCV method, which allows us to compare estimated and actual values using sampled data (Isaaks 1990)
(e.g., Mille catchment rainfall and maximum temperature; Tables 5 and 6). The results in Table 5 show that the KED
using the combination of longitude and elevation gives overall the best spatial estimation results with the smallest statistical

evaluation parameters, followed by KED with longitude alone as a covariate and IDW and KED with elevation as the
covariates.

For example, in the case of the August month rainfall, some interpolation techniques with and without predictors, for
example, KED using northing as a predictor and OK, both show relatively higher statistical indicators than the rest of the

interpolation methods. In contrast, IDW shows higher performance with the lowest statistical indicators than KED with
elevation/northing as the covariate.

The combination of predictors, for instance easting and elevation used by KED, significantly improves the prediction of

sampled mean monthly and annual rainfall data. Therefore, KED with the combination of two predictors, elevation and east-
ing (Table 5), seems to be the optimum method to predict mean monthly climatic data (e.g., August: RMSE¼ 20.66, r¼ 0.96,
and mean annual rainfall: RMSE¼ 75.62, MBE¼ 3.61, r¼ 0.96). However, the KED with predictors, i.e. northing and OK,

shows the worst results (RMSE¼ 258.35, MAE¼ 204.18, and RMSE¼ 245.72, MAE¼ 192.64), respectively.
Accordingly, based on the statistical evaluation results, KED with the combination of elevation and easting as a covariate

was selected as the optimum spatial interpolation technique for Mille’s catchment area mean rainfall estimation.

Similarly, Table 6 illustrates the performance of the different predictionmethods for estimating themonthly and annualmaxi-
mum temperatures for the Mille catchment in terms of statistical indicators, namely RMSE, MBE, MAE, and r. The smaller the
values of statistical parameters (and the higher the r-value), the better the predictor/s with the corresponding interpolation tech-
niques (Adhikary et al. 2017). As a result, Table 6 presents the performance of the various prediction techniques for the mean

Figure 5 | Empirical and theoretical semivariogram models: exponential (a) and spherical (b) for annual and April mean minimum temp-
eratures and spherical (c and d) for annual and April mean maximum temperatures.
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annual and monthly maximum temperatures for 12 months. Based on the estimated results, there was little difference between
KED with the combination of elevation and easting as a covariate and KED with elevation alone as a covariate followed by
IDW, and these interpolation techniques performed better than the rest of themethods for spatial prediction andmeanmonthly

Figure 6 | Experimental (bins) and fitted theoretical (curve) variograms of January mean monthly ((a) and (c)) and annual ((b) and (d)) rainfall
and maximum temperature, respectively.

Table 4 | Variogram parameters and models developed for Akaki’s catchment mean monthly and annual rainfall and maximum temperature
using KED with various covariates

Parameters and variogram model for mean rainfall Parameters and variogram model for mean Tmax

Month Range Nugget Sill Model Covariates Range Nugget Sill Model Covariates

Jan 4,869 0.3 0.65 Spherical Northing 9,128 0 0.4 Ste Elevationþ northing

Feb 12,471 0 12 Ste Easting 8,915 0 0.45 Ste Elevationþ northing

Mar 8,295 0 24 Ste Easting 9,224 0 0.5 Ste Elevationþ northing

Apr 5,725 0 14 Ste Northing 9,954 0 0.56 Ste Elevation

May 11,838 0 24 Ste Easting 10,962 0 0.72 Ste Elevation

Jun 4,743 0 17 Ste Elevation 9,057 0 0.62 Ste Elevation

Jul 6,015 0 231 Ste Northing 9,666 0 0.71 Ste Elevation

Aug 8,954 0 504 Ste Northing 9,447 0 0.58 Ste Elevation

Sep 5,240 0 106 Ste Elevation 10,489 0 0.51 Ste Elevation

Oct 2,904 0 10 Ste Easting 8,931 0 0.6 Ste Elevationþ northing

Nov 9,547 0 2.2 Ste Elevation 8,526 0 0.43 Ste Elevationþ northing

Dec 9,773 0 1.5 Ste Easting 8,384 0 0.42 Ste Elevationþ northing

Annual 7,527 0 1,943 Ste Northing 10,658 0 2,496 Ste Elevation
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Table 5 | Mille catchment’s mean monthly and annual rainfall spatial prediction using various interpolation techniques

Month Est. rainfalla Obr. rainfalla RMSE MBE MAE r V.model Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model

KED with 90 m DEM elevation KED with the combination of 90 m DEM elevation and easting

Jan 11.79 11.42 5.71 �0.36 5.05 �0.01 Spherical Jan 11.62 11.42 5.41 �0.20 4.56 0.30 Spherical

Feb 6.75 6.80 3.17 0.05 2.62 0.57 Spherical Feb 6.42 6.80 3.89 0.38 3.21 0.5 Spherical

Mar 38.33 37.92 9.07 �0.42 8.09 0.86 Exponential Mar 37.17 37.92 7.31 0.75 6.38 0.92 Spherical

Apr 58.14 57.64 9.92 �0.50 8.37 0.86 Exponential Apr 57.04 57.64 7.69 0.6 6.49 0.93 Spherical

May 43.95 43.40 9.27 �0.56 8.46 0.84 Exponential May 43.18 43.40 6.68 0.22 5.61 0.92 Spherical

Jun 16.62 16.49 4.36 �0.13 3.61 0.88 Exponential Jun 16.59 16.49 4.41 �0.1 3.34 0.88 Spherical

Jul 194.87 192.76 36.00 �2.12 30.40 0.89 Exponential Jul 193.10 192.76 26.85 �0.36 19.22 0.94 Exponential

Aug 218.10 216.06 34.90 �2.05 32.46 0.88 Exponential Aug 214.80 216.06 20.66 1.26 18.5 0.96 Spherical

Sep 64.69 64.03 13.45 �0.67 11.27 0.87 Exponential Sep 63.46 64.03 9.3 0.56 7.6 0.95 Spherical

Oct 24.64 24.16 7.39 �0.48 6.35 0.75 Exponential Oct 24.45 24.16 7.07 �0.3 6.21 0.77 Exponential

Nov 16.25 16.08 2.77 �0.17 2.50 0.85 Exponential Nov 16.01 16.08 1.28 0.07 1.04 0.97 Exponential

Dec 12.23 12.00 4.71 �0.24 3.88 0.50 Exponential Dec 11.72 12.00 2.82 0.28 2.41 0.88 Spherical

Annual 706.40 698.80 124.17 �7.67 110.66 0.88 Exponential Annual 695.1 698.8 75.32 3.70 67.99 0.96 Exponential

KED with easting alone as a covariate IDW

Jan 11.81 11.42 4.90 �0.39 4.42 0.40 Exponential Jan 10.88 11.42 3.86 0.54 2.55 0.69 –

Feb 6.35 6.80 3.63 0.45 2.90 0.52 Spherical Feb 7.30 6.80 2.92 �0.50 2.66 0.67 –

Mar 37.25 37.92 7.10 0.66 5.71 0.93 Spherical Mar 40.09 37.92 6.96 �2.17 6.23 0.93 –

Apr 57.24 57.64 7.66 0.40 6.06 0.93 Spherical Apr 59.50 57.64 6.87 �1.86 5.23 0.94 –

May 43.47 43.40 6.42 �0.07 5.18 0.93 Spherical May 45.02 43.40 6.16 �1.62 5.78 0.94 –

Jun 16.43 16.49 5.47 0.06 4.58 0.81 Spherical Jun 17.86 16.49 3.81 �1.37 3.33 0.92 –

Jul 193.78 192.76 25.38 �1.02 19.88 0.95 Exponential Jul 204.34 192.76 29.32 �11.58 26.31 0.94 –

Aug 215.25 216.06 22.27 0.82 18.45 0.95 Spherical Aug 227.10 216.06 23.15 �11.04 18.97 0.96 –

Sep 63.44 64.03 8.92 0.58 7.14 0.95 Spherical Sep 66.31 64.03 9.67 �2.28 8.21 0.94 –

Oct 24.76 24.16 6.37 �0.60 5.46 0.82 Exponential Oct 24.98 24.16 3.40 �0.83 2.72 0.97 –

Nov 16.02 16.08 1.12 0.06 0.90 0.98 Exponential Nov 16.65 16.08 1.12 �0.56 0.92 0.99 –

Dec 11.87 12.00 2.81 0.12 2.31 0.86 Exponential Dec 11.91 12.00 2.68 0.08 2.52 0.87 –

Annual 697.40 698.80 78.39 1.37 66.75 0.96 Exponential Annual 731.90 698.80 77.34 �33.18 69.51 0.97 –

KED with northing alone as a covariate OK

Jan 11.45 11.42 5.95 �0.02 4.62 �0.15 Spherical Jan 11.45 11.42 5.85 �0.03 4.77 �0.99 Exponential

Feb 6.54 6.80 4.65 0.26 4.11 �0.75 Exponential Feb 6.85 6.80 3.93 �0.05 3.55 �0.59 Exponential

Mar 37.98 37.92 18.01 �0.06 15.36 �0.10 Exponential Mar 38.73 37.92 16.71 �0.81 13.29 0.40 Exponential
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Table 5 | Continued

Month Est. rainfalla Obr. rainfalla RMSE MBE MAE r V.model Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model

Apr 58.06 57.64 19.88 �0.42 16.58 �0.02 Exponential Apr 58.67 57.64 18.67 �1.03 14.90 0.40 Exponential

May 43.07 43.40 18.51 0.33 15.13 �0.56 Exponential May 44.00 43.40 17.01 �0.60 13.78 �0.01 Exponential

Jun 16.19 16.49 10.18 0.30 8.16 �0.26 Exponential Jun 16.71 16.49 9.25 �0.22 7.38 �0.24 Exponential

Jul 197.60 192.76 75.24 �4.79 56.99 0.41 Exponential Jul 198.00 192.76 71.71 �5.25 54.10 0.60 Exponential

Aug 217.50 216.06 72.55 �1.47 57.69 0.03 Exponential Aug 267.50 269.30 68.54 �3.67 52.78 0.48 Exponential

Sep 64.55 64.03 27.91 �0.52 23.91 �0.03 Exponential Sep 65.26 64.03 26.61 �1.23 21.37 0.29 Exponential

Oct 24.23 24.16 11.88 �0.07 9.26 �0.73 Exponential Oct 24.53 24.16 11.26 �0.37 8.70 �0.15 Exponential

Nov 16.38 16.08 4.87 �0.29 4.18 0.38 Exponential Nov 16.44 16.08 4.77 �0.35 3.62 0.63 Exponential

Dec 11.82 12.00 5.02 0.18 4.20 0.43 Exponential Dec 12.13 12.00 5.57 �0.14 4.71 �0.25 Exponential

Annual 708.80 698.80 258.35 �10.04 204.18 0.25 Exponential Annual 714.40 698.80 245.72 �15.61 192.64 0.53 Exponential

aEst. rainfall, estimated rainfall; Obr. rainfall, observed rainfall.
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Table 6 | Mille catchment’s mean monthly and annual maximum temperature estimated and actual values, and descriptive statistics using various interpolation techniques

Month Est. Tmax
a Obr. Tmax

a RMSE MBE MAE r V.model Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model

KED with 90 m DEM elevation KED with the combination of 90 m DEM elevation and easting as a covariate

Jan 31.71 31.62 1.72 �0.09 1.41 0.90 Exponential Jan 31.62 31.62 1.401 0.006 1.29 0.93 Exponential

Feb 33.45 33.47 0.67 0.02 0.61 0.98 Spherical Feb 33.45 33.47 0.706 0.024 0.625 0.9824 Spherical

Mar 36.11 36.06 1.68 �0.05 1.50 0.94 Spherical Mar 35.92 36.06 1.734 0.143 1.542 0.9345 Spherical

Apr 36.77 36.69 1.44 �0.08 1.13 0.97 Spherical Apr 36.77 36.69 1.269 �0.082 1.116 0.9752 Spherical

May 37.38 37.36 0.90 �0.02 0.80 0.99 Spherical May 37.38 37.36 0.972 �0.014 0.859 0.9828 Spherical

Jun 39.08 39.01 1.88 �0.07 1.72 0.94 Exponential Jun 39.07 39.01 1.860 �0.056 1.738 0.9426 Exponential

Jul 38.99 38.86 2.20 �0.14 1.86 0.93 Exponential Jul 38.92 38.86 2.066 �0.059 1.763 0.9404 Exponential

Aug 35.85 35.77 1.42 �0.08 1.13 0.97 Spherical Aug 35.89 35.77 1.452 �0.115 1.174 0.9747 Spherical

Sep 34.32 34.38 1.64 0.06 1.24 0.96 Exponential Sep 34.55 34.38 1.779 �0.177 1.498 0.956 Exponential

Oct 34.36 34.33 1.15 �0.03 0.99 0.98 Spherical Oct 34.43 34.33 1.348 �0.100 1.2 0.97 Spherical

Nov 33.18 33.04 2.14 �0.14 1.82 0.92 Exponential Nov 33.06 33.04 1.762 �0.022 1.43 0.94 Spherical

Dec 30.43 30.42 0.62 �0.02 0.52 0.99 Spherical Dec 30.44 30.42 0.595 �0.021 0.531 0.99 Spherical

Annual 35.13 35.08 1.16 �0.05 1.03 0.97 Spherical Annual 35.11 35.08 1.150 �0.029 1.06 0.97 Spherical

KED with easting alone as a covariate IDW

Jan 31.84 31.62 2.92 �0.22 2.41 0.68 Exponential Jan 31.17 31.62 1.54 0.46 1.37 0.94 –

Feb 33.55 33.47 1.76 �0.08 1.48 0.89 Exponential Feb 32.98 33.47 1.47 0.49 1.26 0.94 –

Mar 36.25 36.06 3.18 �0.19 2.74 0.77 Exponential Mar 35.44 36.06 2.49 0.62 2.09 0.87 –

Apr 36.99 36.69 3.76 �0.30 3.31 0.77 Exponential Apr 35.96 36.69 2.12 0.73 1.76 0.94 –

May 37.56 37.36 2.83 �0.20 2.37 0.85 Exponential May 36.64 37.36 1.70 0.72 1.39 0.96 –

Jun 39.34 39.01 3.78 �0.33 2.98 0.76 Exponential Jun 38.36 39.01 1.83 0.66 1.55 0.96 –

Jul 39.18 38.86 4.04 �0.32 3.36 0.76 Exponential Jul 38.04 38.86 2.07 0.82 1.67 0.96 –

Aug 36.10 35.77 3.98 �0.33 3.55 0.80 Exponential Aug 34.91 35.77 2.44 0.86 1.86 0.93 –

Sep 34.54 34.38 2.74 �0.16 2.37 0.89 Exponential Sep 33.59 34.38 2.47 0.78 1.98 0.92 –

Oct 34.61 34.33 3.24 �0.27 2.82 0.83 Exponential Oct 33.61 34.33 2.04 0.72 1.65 0.94 –

Nov 33.32 33.04 3.82 �0.28 3.41 0.71 Exponential Nov 32.36 33.04 2.65 0.68 2.02 0.87 –

Dec 30.57 30.42 2.30 �0.15 2.00 0.82 Exponential Dec 29.85 30.42 1.20 0.56 1.08 0.97 –

Annual 35.32 35.08 3.09 �0.24 2.66 0.81 Exponential Annual 34.41 35.08 1.86 0.68 1.57 0.94 –

KED with northing alone as a covariate OK

Jan 31.59 31.62 3.93 0.04 3.82 0.11 Exponential Jan 31.47 31.62 3.55 0.16 3.40 0.61 Exponential

Feb 33.38 33.47 3.77 0.10 3.54 0.10 Exponential Feb 33.29 33.47 3.50 0.18 3.21 0.60 Exponential

Mar 35.91 36.06 4.89 0.15 4.64 0.11 Exponential Mar 35.84 36.06 4.47 0.22 4.14 0.55 Exponential
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Table 6 | Continued

Month Est. Tmax
a Obr. Tmax

a RMSE MBE MAE r V.model Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model

Apr 36.50 36.69 5.46 0.18 5.26 0.21 Exponential Apr 36.40 36.69 4.97 0.29 4.74 0.72 Exponential

May 37.21 37.36 5.07 0.16 4.90 0.24 Exponential May 37.09 37.36 4.63 0.28 4.43 0.74 Exponential

Jun 38.89 39.01 5.60 0.12 5.46 0.07 Exponential Jun 38.76 39.01 5.00 0.25 4.88 0.67 Exponential

Jul 38.70 38.86 5.91 0.15 5.74 0.23 Exponential Jul 38.55 38.86 5.28 0.31 5.13 0.77 Exponential

Aug 35.51 35.77 6.02 0.26 5.77 0.27 Exponential Aug 35.43 35.77 5.49 0.35 5.21 0.75 Exponential

Sep 34.10 34.38 5.62 0.28 4.89 0.42 Exponential Sep 34.04 34.38 5.32 0.33 4.55 0.64 Exponential

Oct 34.14 34.33 5.48 0.19 5.28 0.20 Exponential Oct 34.04 34.33 5.01 0.29 4.77 0.71 Exponential

Nov 32.94 33.04 5.16 0.10 5.00 0.22 Exponential Nov 32.79 33.04 4.74 0.25 4.43 0.66 Exponential

Dec 30.26 30.42 3.79 0.16 3.59 0.25 Exponential Dec 30.20 30.42 3.45 0.22 3.27 0.75 Exponential

Annual 34.92 35.08 4.96 0.16 4.82 0.21 Exponential Annual 29.85 30.42 1.20 0.56 1.08 0.97 Exponential

Journ
al

of
W
ater

an
d
C
lim

ate
C
h
an

ge
V
ol13

N
o
9,

3291

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/13/9/3274/1114976/jwc0133274.pdf
by guest
on 18 April 2024



and mean annual maximum temperature estimation. Nevertheless, KED with the combination of easting and elevation (see

Table 6) seems to be the optimum technique to estimate the mean monthly (e.g., April: RMSE¼ 1.27, r¼ 0.98) and mean
annual maximum temperature (RMSE¼ 1.15, r¼ 0.97). Therefore, it was selected for monthly and annual mean maximum
temperature spatial prediction as an optimum interpolation technique. For the maximum temperature and mean rainfall,

KED with easting and elevation as covariates seems to be the most suitable technique to predict the mean minimum tempera-
ture, since, for most months, the statistical parameters were the lowest with the aforementioned method.

Figures 7 and 8 are a map of different interpolation techniques with and without covariates for August rainfall and the
mean annual maximum temperature of the Mille catchment to visualize the spatial pattern of predicted mean rainfall and

mean maximum temperature, and the maps show the fundamental differences between the various interpolation approaches.

Figure 7 | Spatial maps for the August mean rainfall (mm) pattern using OK (a), IDW (b), KED with elevation (c), KED with easting (d), KED with
northing (e), and KED with the combination of elevation and easting (f) by the interpolation of nine sampled observations.
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For the Akaki catchment, Tables 7 and 8 present the performance of different interpolation methods for predicting both

mean monthly and mean annual climatic variables. These interpolation techniques were quantitatively compared based on
evaluation performance scores to identify a suitable method for the spatial prediction of climatic variables at the catchment
scale. As depicted in Table 7, overall, KED with northing as a covariate and KED with easting as a covariate perform rela-

tively better than the rest of the interpolation techniques, specifically OK, IDW, and KED, with elevation as a covariate for
mean monthly rainfall estimation. For mean annual rainfall, KED with elevation as a covariate performs better than the rest
of the interpolation methods (e.g., RMSE¼ 40.28 mm, MBE¼�10.43 mm, and MAE¼ 33.54 mm). Nevertheless, KED with

Figure 8 | Spatial maps for the annual mean maximum temperature (°C) pattern using IDW (a), OK (b), KED with elevation (c), KED with
northing (d), KED with easting (e), and KED with the combination of elevation and easting (f) by the interpolation of nine sampled
observations.
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Table 7 | Akaki catchment long year-based predicted vs. observed mean monthly and annual rainfall using various interpolation techniques

Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model

KED with 90 m DEM elevation IDW

Jan 6.650 6.652 0.99 0.002 0.81 0.59 Exponential Jan 6.85 6.65 1.17 �0.19 0.94 0.31 –

Feb 9.58 9.14 2.48 �0.44 1.93 0.46 Exponential Feb 9.94 9.14 2.05 �0.80 1.60 0.66 –

Mar 34.73 34.14 2.95 �0.59 2.78 0.54 Ste Mar 35.65 34.14 4.07 �1.51 2.94 0.54 –

Apr 55.09 55.78 3.92 0.69 1.94 0.47 Ste Apr 55.35 55.78 2.41 0.43 1.90 0.67 –

May 66.20 64.89 6.99 �1.31 4.68 0.31 Ste May 67.89 64.89 7.60 �3.00 4.61 0.22 –

Jun 114.60 113.50 4.47 �1.08 3.74 0.80 Ste Jun 115.40 113.50 5.72 �1.93 4.75 0.65 –

Jul 249.10 248.60 17.49 �0.49 11.84 0.52 Ste Jul 248.30 248.60 17.55 0.35 14.22 0.36 –

Aug 267.00 265.40 23.48 �1.57 16.48 0.46 Ste Aug 267.80 265.40 25.60 �2.39 20.26 0.23 –

Sep 128.50 123.90 10.51 �4.56 8.27 0.74 Ste Sep 130.40 123.90 11.51 �6.45 9.83 0.75 –

Oct 16.77 15.86 4.01 �0.91 2.73 0.50 Ste Oct 17.96 15.86 4.32 �2.10 3.17 0.62 –

Nov 6.60 6.08 1.16 �0.52 0.78 0.69 Ste Nov 6.74 6.08 1.24 �0.66 0.98 0.77 –

Dec 5.73 5.69 1.26 �0.05 1.05 0.15 Ste Dec 5.96 5.69 1.14 �0.27 0.84 0.34 –

Annual 960.10 949.70 40.28 �10.43 33.54 0.65 Ste Annual 968.20 949.70 48.20 �18.53 41.72 0.50 –

KED with easting alone as a covariate OK

Jan 6.84 6.65 1.48 �0.19 1.01 �0.42 Exponential Jan 6.70 6.65 1.29 �0.05 0.95 �0.315 Exponential

Feb 9.48 9.14 1.70 �0.34 1.45 0.76 Ste Feb 9.78 9.14 2.16 �0.64 1.67 0.606 Ste

Mar 33.95 34.14 2.28 0.19 1.88 0.86 Ste Mar 34.75 34.14 3.82 �0.61 2.67 0.544 Ste

Apr 55.96 55.78 3.10 �0.18 2.13 0.53 Ste Apr 55.18 55.78 2.38 0.60 1.58 0.687 Ste

May 64.84 64.89 5.18 0.05 3.32 0.69 Ste May 66.29 64.89 7.00 �1.40 4.66 0.312 Ste

Jun 113.50 113.50 5.98 �0.05 5.00 0.56 Exponential Jun 113.80 113.50 6.41 �0.30 5.50 0.518 Exponential

Jul 244.40 248.60 25.23 4.27 19.11 �0.59 Ste Jul 248.40 248.60 20.16 0.22 16.23 �0.702 Exponential

Aug 259.90 265.40 49.75 5.49 30.66 �0.56 Ste Aug 266.30 265.40 28.40 �0.91 22.06 �0.509 Exponential

Sep 121.81 123.90 12.24 2.10 8.79 0.75 Exponential Sep 127.70 123.90 8.41 �3.80 6.51 0.865 Ste

Oct 15.81 15.86 1.85 0.06 1.56 0.92 Ste Oct 15.87 15.86 4.99 �0.01 4.08 �0.997 Ste

Nov 5.98 6.08 1.58 0.10 1.07 0.61 Ste Nov 6.58 6.08 1.05 �0.50 0.87 0.85 Ste

Dec 5.70 5.69 0.96 �0.01 0.71 0.58 Ste Dec 5.77 5.69 0.95 �0.08 0.65 0.60 Ste

Annual 940.50 949.70 91.14 9.13 61.53 0.07 Ste Annual 952.80 949.70 51.53 �3.181 42.24 0.07 Exponential

KED with northing alone as a covariate KED with the combination 90 m DEM elevation and northing as a covariate

Jan 6.71 6.65 0.73 �0.05 0.59 0.79 Spherical Jan 6.85 6.65 1.07 �0.20 0.83 0.52 Ste

Feb 10.17 9.14 4.59 �1.03 2.79 �0.01 Ste Feb 10.17 9.14 3.43 �1.04 2.33 0.08 Ste

Mar 35.38 34.14 4.88 �1.24 3.12 0.24 Ste Mar 36.46 34.14 8.22 �2.32 4.66 �0.34 Ste

(Continued.)
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Table 7 | Continued

Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model Month Est. rainfall Obr. rainfall RMSE MBE MAE r V.model

Apr 55.31 55.78 2.36 0.48 1.63 0.69 Ste Apr 55.51 55.78 3.68 0.27 2.38 0.35 Ste

May 67.79 64.89 10.16 �2.90 6.23 �0.53 Ste May 69.39 64.89 13.82 �4.50 8.02 �0.82 Ste

Jun 114.40 113.50 8.22 �0.93 6.19 0.15 Exponential Jun 114.70 113.50 3.69 �1.23 3.19 0.88 Ste

Jul 249.10 248.60 14.14 �0.46 12.37 0.69 Ste Jul 246.70 248.60 23.78 1.98 17.88 0.18 Ste

Aug 268.60 265.40 11.35 �3.25 8.88 0.92 Ste Aug 268.10 265.40 20.61 �2.69 15.95 0.62 Ste

Sep 129.70 123.90 5.16 �5.81 8.77 0.55 Ste Sep 131.90 123.90 16.51 �7.97 11.28 0.20 Ste

Oct 17.55 15.86 5.16 �1.69 3.14 0.17 Ste Oct 18.73 15.86 8.31 �2.87 4.47 �0.47 Ste

Nov 6.82 6.08 1.44 �0.73 1.10 0.50 Ste Nov 6.61 6.08 1.37 �0.53 0.84 0.51 Ste

Dec 5.95 5.69 1.40 �0.26 1.07 0.08 Ste Dec 6.17 5.69 2.20 �0.48 1.54 �0.13 Ste

Annual 967.10 949.70 41.78 �17.41 35.59 0.67 Ste Annual 969.80 949.70 47.72 �20.10 40.51 0.57 Ste
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Table 8 | Akaki catchment long year-based predicted vs. observed mean monthly and annual maximum temperature using various interpolation techniques

Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model

KED with 90 m DEM elevation IDW

Jan 23.56 23.68 0.83 0.1250 0.69 0.80 Ste Jan 23.56 23.68 1.04 0.126 0.89 0.68 –

Feb 24.83 24.96 0.83 0.13 0.69 0.81 Ste Feb 24.82 24.96 1.08 0.14 0.92 0.68 –

Mar 25.03 25.17 0.94 0.1415 0.77 0.76 Ste Mar 25.03 25.17 1.09 0.1453 0.93 0.67 –

Apr 24.53 24.70 0.95 0.16 0.76 0.75 Ste Apr 24.49 24.70 1.15 0.20 0.95 0.64 –

May 24.56 24.77 1.10 0.22 0.84 0.70 Ste May 24.50 24.77 1.20 0.27 0.95 0.65 –

Jun 22.91 23.17 0.89 0.26 0.67 0.82 Ste Jun 22.79 23.17 1.23 0.38 0.98 0.67 –

Jul 20.75 20.99 0.89 0.233 0.67 0.80 Ste Jul 20.66 20.99 1.21 0.32 0.98 0.63 –

Aug 20.30 20.51 0.79 0.21 0.61 0.83 Ste Aug 20.23 20.51 1.12 0.28 0.92 0.66 –

Sep 21.49 21.69 0.84 0.19 0.63 0.83 Ste Sep 21.46 21.69 1.13 0.22 0.89 0.70 –

Oct 22.74 22.89 0.93 0.15 0.78 0.80 Ste Oct 22.74 22.89 1.16 0.15 1.00 0.67 –

Nov 23.02 23.15 0.86 0.13 0.71 0.81 Ste Nov 23.05 23.15 1.06 0.10 0.10 0.69 –

Dec 22.77 22.86 0.78 0.10 0.64 0.79 Ste Dec 22.77 22.86 0.99 0.10 0.86 0.67 –

Annual 23.03 23.20 0.87 0.17 0.69 0.80 Ste Annual 22.75 22.81 0.92 0.06 0.73 0.67 –

KED with easting as a covariate OK

Jan 23.84 23.68 1.56 �0.15 1.29 �0.25 Exponential Jan 23.677 23.684 1.31 0.01 1.11 0.120 Exponential

Feb 25.13 24.96 1.62 �0.17 1.34 �0.26 Exponential Feb 24.96 24.97 1.36 0.01 1.14 0.101 Exponential

Mar 25.35 25.17 1.66 �0.18 1.36 �0.29 Exponential Mar 25.16 25.17 1.37 0.01 1.15 0.044 Exponential

Apr 24.89 24.70 1.73 �0.19 1.41 �0.25 Exponential Apr 24.68 24.70 1.41 0.02 1.16 �0.035 Exponential

May 24.98 24.77 1.83 �0.21 1.46 �0.15 Exponential May 24.74 24.77 1.47 0.03 1.17 �0.062 Exponential

Jun 23.34 23.17 1.71 �0.17 1.38 0.08 Exponential Jun 23.12 23.17 1.46 0.05 1.09 0.094 Exponential

Jul 21.16 20.99 1.70 �0.17 1.40 �0.004 Exponential Jul 20.95 20.99 1.45 0.04 1.12 �0.052 Exponential

Aug 20.64 20.51 1.54 �0.13 1.30 0.004 Exponential Aug 20.47 20.51 1.37 0.04 1.08 �0.0002 Exponential

Sep 21.81 21.69 1.60 �0.12 1.34 �0.06 Exponential Sep 21.66 21.69 1.42 0.03 1.14 0.112 Exponential

Oct 23.08 22.89 1.77 �0.19 1.47 �0.28 Exponential Oct 22.88 22.89 1.47 0.01 1.25 0.051 Exponential

Nov 23.33 23.15 1.64 �0.17 1.34 �0.29 Spherical Nov 23.15 23.15 1.36 0.001 1.14 0.14 Exponential

Dec 23.04 22.86 1.54 �0.18 1.25 �0.35 Exponential Dec 22.86 22.86 1.25 0.001 1.06 0.05 Exponential

Annual 23.37 23.20 1.65 �0.17 1.36 �0.18 Exponential Annual 23.18 23.20 1.38 0.022 1.13 0.05 Exponential

KED with northing as a covariate KED with the combination of northing and 90 m DEM elevation as a covariate

Jan 23.60 23.68 0.95 0.08 0.88 0.71 Exponential Jan 23.37 23.68 0.85 0.32 0.61 0.86 Ste

Feb 24.88 24.96 1.01 0.08 0.94 0.69 Exponential Feb 24.63 24.96 0.88 0.34 0.64 0.85 Ste

Mar 25.07 25.17 0.99 0.10 0.90 0.70 Exponential Mar 24.8 25.17 0.997 0.37 0.71 0.82 Ste

(Continued.)
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Table 8 | Continued

Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model Month Est. Tmax Obr. Tmax RMSE MBE MAE r V.model

Apr 24.54 24.70 1.08 0.15 0.93 0.66 Exponential Apr 24.24 24.7 1.22 0.46 0.82 0.75 Ste

May 24.60 24.77 1.27 0.17 1.07 0.54 Exponential May 24.18 24.77 1.56 0.60 1.02 0.64 Ste

Jun 23.03 23.17 1.59 0.14 1.34 0.27 Exponential Jun 22.52 23.17 1.62 0.65 1.03 0.57 Ste

Jul 20.71 20.99 1.39 0.28 1.07 0.44 Exponential Jul 20.36 20.99 1.62 0.63 1.03 0.580 Ste

Aug 20.21 20.51 1.29 0.30 0.97 0.49 Ste Aug 19.93 20.51 1.52 0.58 0.98 0.59 Ste

Sep 21.58 21.69 1.36 0.10 1.24 0.47 Ste Sep 21.12 21.69 1.44 0.57 0.96 0.68 Ste

Oct 22.75 22.89 1.03 0.13 0.93 0.72 Exponential Oct 22.52 22.89 0.97 0.37 0.72 0.85 Ste

Nov 23.01 23.15 0.79 0.14 0.68 0.82 Ste Nov 22.91 23.15 0.62 0.244 0.50 0.92 Ste

Dec 22.81 22.86 0.84 0.06 0.79 0.75 Exponential Dec 22.62 22.86 0.62 0.24 0.46 0.91 Ste

Annual 23.09 23.20 1.16 0.11 1.04 0.59 Exponential Annual 22.76 23.2 1.16 0.45 0.79 0.76 Ste
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easting as a covariate shows a high RMSE during the rainy season (June up to Sep). Therefore, based on the overall results
shown in Table 7 and considering the rainy season, KED with northing as a covariate was selected as a suitable method for
monthly interpolated rainfall datasets, and KED with elevation as a covariate was proven to be the best interpolation tech-

nique (in terms of errors but not r) selected for interpolating annual mean rainfall.
Table 8 depicts the descriptive statistical performance of the KED with various descriptors as covariates, IDW, and OK in

terms of RMSE, MBE, MAE, and r for both the monthly and mean annual maximum temperature datasets. Based on the

results shown in Table 8, KED with the combination of elevation and northing as a predictor shows the lowest statistical
errors and the highest r-value compared to the rest of the interpolation techniques for most months and annually, followed
by KED with elevation as a predictor. KED with easting as a covariate and OK relatively score the highest errors: RMSE,

Figure 9 | Spatial map of 17 years August mean rainfall by (a) IDW, (b) KED 90 m DEM elevation, (c) KED with easting, (d) KED with northing, (e)
KED with the combination of 90 m DEM and northing, and (f) OK.
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MBE, and MAE on spatial prediction and mean monthly and annual maximum temperature estimation. As a result, KED

with the combination of elevation and northing as a predictor was proven to be used as a suitable technique for the spatial
prediction of the mean maximum temperature and the mean minimum temperature. The map shows that the spatial pattern
of August mean rainfall, and April mean maximum temperature interpolated with various interpolation techniques, are dis-
played in Figures 9 and 10, respectively.

Figures 11 and 12 show the box plots of mean monthly rainfall using KED with northing as a predictor and mean minimum
and maximum temperatures using KED with the combination of elevation and northing as a covariate for the Akaki catch-
ment and for the Mille catchment using KED with a combination of elevation and easting as a covariate, respectively.

As observed from Figures 11 and 12 box plots, much higher scales plotting of climatic variable data were observed for the
Mille catchment than the Akaki catchment, and the reason behind this was that both the estimated and actual climatic data
were generally highly varying in the spatial pattern than Akaki’s climatic variables. The bimodal nature of the rainfall pattern

Figure 10 | Spatial map of 17 years April mean maximum temperature by (a) IDW, (b) KED with 90 m DEM elevation, (c) KED with easting, (d)
KED with the combination of 90 m DEM elevation and northing, (e) KED with northing, and (f) OK.
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was boldly observed in the Mille catchment, which was higher in the months of April and August than in the Akaki catch-

ment. The maximum temperature was picked from February to May for the Akaki catchment, whereas it was picked
approximately from March to July for the Mille catchment (see Figures 11 and 12). From careful inspection and prior knowl-
edge of the authors, the KED with the combination of elevation and easting/northing as a covariate was generally acceptable

in its predictive accuracy.

4. DISCUSSION

4.1. Spatial pattern of rainfall

Based on descriptive statistical evaluation parameters that the authors made (see subsection 3.2.), suitable interpolation tech-
niques were selected for each spatial prediction of mean monthly and annual rainfall for Akaki and Mille catchments,

respectively. The IDW and OK approaches resulted in the most constant zonal pattern of rainfall covering regions of different
spatial elevations. In contrast, the KED method produced a spatial rainfall distribution that was closely related to the topo-
graphy, and this was a result of the use of some external variables, namely elevation, easting, and northing, as the predictors

(see Figures 7 and 9). The complex topographic relief influence on rainfall spatial distribution was more highly observed in
the Mille catchment than in the Akaki catchment, and the reason for the latter catchment was that the catchment is compara-
tively flat but includes some higher elevation locations and areas such as the ‘Intoto’ mountain. Consequently, KED with
various descriptors as a covariate (mentioned in Tables 5 and 7) was selected and performed to map the spatial mean monthly

and annual rainfall.
The maps in Figures 7 and 9 depict that the spatial rainfall patterns and trends following the catchment’s elevation trend

were generally acceptable in their prediction reliability and accuracy. For instance, our obtained results showed that the

spatial patterns by KED with northing as a covariate interpolated the mean monthly and annual rainfall gradually increase
from south to north of the Akaki catchment (see Figure 9(d)) following the elevation increments, and for the Mille catchment
from the east to the west (see Figure 7(f)) as catchment’s elevation gradually increased using KED with the combination of

Figure 11 | Box plots for mean rainfall, Tmin, and Tmax for the Akaki catchment, obtained with KED.
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elevation and easting as a covariate. It is noted that the weakest correlation is between Mille’s January rainfall and elevation

because of the stronger correlations with the longitudinal location in summer.
The study by Goovaerts (2000) found that rainfall depths generally vary spatiotemporally and tend to increase with increas-

ing elevations because of the orographic effect of mountainous terrain, which causes warm air to ascend vertically, and

condensation occurs due to the adiabatic cooling effect. Havesi (1991) also discovered that there is a significant correlation
between a natural log of average annual precipitation (AAP) and station elevation using a cokriging method with 62 rainfall
stations in Nevada and southeastern California, which is similar to our obtained research findings, specifically for the Mille
catchment. However, unlike the mille catchment, the spatial rainfall distribution in the Akaki catchment is less likely affected

by orographic effects as well as longitudinal and/or latitudinal effects.

4.2. Spatial distribution of temperature

Similar to spatial rainfall but for temperature, the spatial interpolation techniques using KED with various covariates, IDW
and OK, resulted in different spatial distributions of temperature (see Figures 8 and 10) for both the Mille and Akaki catch-

ments. The OK and IDW methods resulted in the most gradual and smooth zonal patterns, while the KED with elevation,
easting, and northing as covariates or with the combination of elevation and easting/northing as covariates showed an irre-
gular distribution following the elevation trend; the temperature pattern exhibited a remarkable decrease with increasing
elevation, and the research findings obtained by Matsuura (1995) exhibited the same results.

The spatial distribution of temperature determined by KED showed that the temperature gradually decreases from the east
to the west for the Mille catchment (see Figure 8(c)–8(f)) and the south to the north for the Akaki catchment (see
Figure 10(b)–10(e)). Accordingly, the spatial distribution of temperature produced by KED with the combination of elevation

and easting (for the Mille catchment) and elevation and northing (for the Akaki catchment) as covariates exhibited better
performance than the two unilateral interpolation techniques, IDW and OK, and they produced the most detailed and irre-
gular spatial pattern compared with the results of the remaining techniques.

Figure 12 | Box plots for mean rainfall, Tmin, and Tmax for the Mille catchment, obtained with KED.
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The principal contribution of this research resides in the covariate selection used in KED, and based on the proposed

method, the selected predictors improved the predictive performance of KED. For instance, KED with the combination of
either elevation and easting or elevation and northing as a predictor highly improves the prediction performance compared
with KED with elevation, easting, or northing independently as a covariate (see Tables 5–8). Overall, from the results

explained in sections 3 and 4, there were strong improvements in the spatial climatological variable prediction by using
KED with the combination of elevation and easting/northing as a predictor.

5. CONCLUSIONS

As an important landscape descriptor, considering the combination of elevation and longitudinal/latitudinal location as a
covariate in the spatial interpolation technique, especially in catchments with complex topography, is a key issue. Three

interpolation techniques, i.e., two geostatistical techniques, OK and KED, and one deterministic interpolation technique,
IDW, were described, and their performances were evaluated using cross-validation methodology. Among the geostatistical
methods used in the estimation of the areal average climatological variables on both contrasting catchments, the KED

approach incorporated secondary data, i.e. elevation, easting, and northing. Two univariate approaches, OK and IDW,
served as benchmarks to which the multivariate approach, KED, could be compared to improve interpolation methods.
The KED approach using auxiliary variables as a covariate exhibited significant improvement in interpolation accuracy

and/or in reductions in interpolation error relative to unilateral interpolation methods, for example, OK and IDW. Among
the KED approaches with a covariate, the one that combined DEM dataset (elevation) and the catchment’s longitudinal
location as a predictor performed the best, specifically for the Mille catchment. Therefore, it is clear that the incorporation
of secondary data, as in our case study, can significantly minimize both the rainfall and temperature spatial interpolation

errors for catchments with complex topography where climate stations are poor in terms of coverage and quality. Thus, it
can be concluded that KED is identified as the best interpolation technique for the spatial interpolation of mean monthly
and annual rainfall and temperature using the combination of elevation and easting/northing data as secondary information

in both contrasting catchments, which is expected to be very useful in various climatological, hydrological, and water
resource planning studies.
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