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ABSTRACT

This study evaluates the performance of four bias correction methods based on CORDEX (coordinated regional climate downscaling exper-

iment) domain six regional climate models (RCMs) at the Mara River Basin. A suitable bias correction method was considered to develop the

future climate scenario. The performance of bias correction methods was evaluated by various statistical metrics based on the historical

period and revealed that the distribution mapping (DM) techniques have strong performance under the different climatic conditions. The

effectiveness of the DM method is found to be better at capturing the coefficient of variation and standard deviation of observed rainfall

and temperature. Therefore, this study considers the future climate (2026–2095) from bias-corrected RCMs output using DM techniques.

The results from bias-adjusted RCMs show an increase of rainfall (þ118.3%) and temperature (þ2.91) in the future climate under Represen-

tative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5. In addition, this study tested the random forest (RF) method to determine the capacity

of each bias-corrected RCMs for reproducing the future rainfall and temperature under the RCP 4.5 and RCP 8.5 scenario. The results demon-

strate that the RF can reproduce the climate variable with its average correlation (R2) of 0.93 for rainfall and 0.95 for temperature.
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HIGHLIGHTS

• The performance of four bias correction methods and climate simulation of six CORDEX Africa regional climate models (RCMs) was

evaluated.

• The statistical matrix showed that the distribution mapping (DM) method results were better when compared to the other methods.

• The random forest (RF) model was performed for reproducing the climate scenario from the RCMs.

• It was found that the ensemble of all RCMs showed better results for the future climate scenario.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

The high-resolution global climate models (GCMs) and regional climate models (RCMs) are essential for understanding the
global climate change variability and mitigation (Rauscher et al. 2010; Oo et al. 2020). As a major vulnerable region of climate
variability, Africa is the first continent selected by the World Climate Research Program (WCRP) CORDEX (coordinated

regional climate downscaling experiment) to generate an ensemble of high-resolution climate projections. The output of
CORDEX evaluates the GCMs to understand the local climate variability and changes through the downscaling method.
In general, it establishes coordination among regional climate downscaling for producing the GCMs (Dosio & Panitz
2016). Thus, downscaling the various GCMs output simulation is important for local climate change impact studies

(Worku et al. 2020). Also, it is vital to select a better downscaling approach for GCMs simulation at the local scale to
reduce the uncertainty.

Simulating the African climate models using the GCM is challenging due to complex and diverse processes, and the models

have difficulties simulating the current climate (Laprise et al. 2013). Another factor is scale issues in the simulation process
due to low spatial resolution 250 km� 250 km, respectively (Alemseged & Tom 2015), although GCM grid resolution (2°) is
not a suitable approach for representing climate variables such as precipitation and temperature at regional climate (Dobler
://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf
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& Ahrens 2008; Urrutia & Vuille 2009; Lafon et al. 2013; Fiseha et al. 2014; Teng et al. 2015; Roy et al. 2018). Through the

better representation of regional climate, regional climate models (RCMs) provide high-resolution (50 km� 50 km) climate
simulation and variability (Urrutia & Vuille 2009). Most of the previous studies proved that the output of CORDEX
domain RCMs could reproduce the feature of African climate (Kim et al. 2014; Dosio & Panitz 2016; Favre et al. 2016;
Pinto et al. 2016). In general, very few studies simulated the CORDEX domain RCMs at a local scale in the African continent
(Hernández-Díaz et al. 2013; Laprise et al. 2013; Alemseged & Tom 2015; Dosio & Panitz 2016). In addition, the evaluation
of CORDEX shows a reasonable standard and is used in various climate change impact studies of Africa (Worku et al. 2020).
However, the downscaled RCMs cannot be used directly without bias correction for climate change impact studies due to

systematic error and the reliability of the simulation.
Bias correction is a scaling method of climate model variables with observation values (Gudmundsson et al. 2012; Lafon

et al. 2013). Although various bias correction methods have been developed and used in numerous studies to reduce the

RCMs simulation biases, in general, most of the existing studies only focus on projecting the future climate variable but
not for bias correction methods (Kim et al. 2019). Tschöke et al. (2017) evaluate two bias correction methods – gamma dis-
tribution and power transformation (PT) for precipitation simulation; they found that gamma distribution methods are more

efficient in reducing the error from RCMs. Worku et al. (2020) evaluate four bias correction methods such as distribution
mapping (DM), linear scaling (LS), variance scaling and PT for adjusting the RCMs temperature and precipitation with obser-
vation and developed future climate scenarios. The study proved that the DM correction method is more effective in adjusting

the frequency of temperature and rainfall. Moreover, very few studies utilize the statistical metrics (e.g. Räty et al. 2014;
Worku et al. 2020) to find the suitable bias correction method that has not yet been tested in the Mara River Basin
(MRB). In addition, there are some limitations on various bias correction methods due to its strong dependency on obser-
vation data (Teng et al. 2015). However, bias correction methods factor in various climatic studies for reducing the error

from climate models. Therefore, it is important to investigate the strongest bias correction method from RCMs output
before developing the future climate change scenario.

The bias correction approach cannot correct the non-stationary RCMs biases and uncertainties (Wang et al. 2018). The
machine learning (ML) approach for an ensemble of various GCMs/RCMs is selected in numerous studies to reduce these
uncertainties (Tripathi Srinivas & Nanjundiah 2006). Campozano et al. (2016) compared two ML approaches – artificial
neural network (ANN) and least square support vector machines (LS-SVM) – and both methods performed equally for down-

scaling the monthly precipitation. Crawford et al. (2019) used six ML approaches, including random forest (RF) and SVM and
linear regression (LR), to evaluate the performance of ensemble coupled model intercomparison project phase 5 (CMIP5);
they found that the RF method performed better than other approaches to simulate temperature. In a similar context,
Wang et al. (2018) compared four ML methods (RF, Bayesian model averaging, the arithmetic ensemble means (EM) and

SVM) for reproducing the observed monthly temperature and rainfall. The output of this study indicates that the RF ensemble
method performs well and can reproduce monthly climatic datasets. However, no published work is found for the application
of ML to reproduce the future rainfall and temperature datasets from the bias-corrected multiple RCMs ensemble. This study

considers an RF ML approach to reproduce the future rainfall and temperature.
The MRB hydrologic system has been selected to evaluate the various bias corrections and an ML method using RCMs

from CORDEX. Dessu & Melesse (2012) evaluate the five GCMs for climate change assessment at the MRB using a

single bias correction method. Similarly, Roy et al. (2018) used the CIMP5 GCM to develop the future climate change scen-
ario on the hydrological application of the MRB. However, most studies were based on the GCM instead of the RCM, and
very few used RCMs at the basin scale, although dissimilar topography and various extra-terrestrial climatic phenomena

impact the MRB rainfall and temperature pattern. For example, the rainfall of MRB is strongly influenced by the intertropical
convergence zone (ITCZ) and Indian ocean surface temperature. In addition, these rainfall variabilities are also controlled by
Eastern Pacific Ocean surface temperature, ENSO (El Nino Southern Oscillation) and La-Nina conditions (USAID 2019).
Furthermore, it is important to understand the complex interaction of the climate component of the region (Laprise et al.
2013). Therefore, high-resolution simulation from RCMs is needed to improve climate change assessment representation
on water resources and agriculture at the MRB.

The main objective of this study is to evaluate the performance of four bias correction methods in adjusting the CORDEX

domain RCMs at the regional scale of Africa. This evaluation mainly finds the most effective bias correction method using
statistical metrics and cumulative distribution function (CDF) derived from the historical RCMs. It assumes that the most
effective bias correction method from historical RCMs performed better and developed the future climate change assessment.
om http://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf
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Therefore, the best bias-corrected ensemble of RCMs was used to generate future climatic scenarios at the MRB. In addition,

this study tested an ML (RF) approach based on the bias-corrected RCMs output to reproduce the future rainfall and temp-
erature at a basin scale. Furthermore, the RF model determines the most important variable from each RCM. Moreover, to
evaluate the performance of the bias correction method, the RF model was validated using various statistical metrics.

2. MATERIALS AND METHODS

2.1. The Mara River Basin

The MRB shares the transboundary between two African countries, Kenya and Tanzania, with latitudes �0.331573°S to

1.975056°S and longitudes 33.88372°W–35.907682°W (Figure 1). 65% of the upper MRB portion covers Kenya, and the
remaining 35%, the lower part, is located in Tanzania (Mati et al. 2008). The Mara river (395 km) originates from the
Mau Forest in Kenya at 3,000 m altitude and has fed into the Victoria Lake in Tanzania (Mango et al. 2011). The main tribu-

taries of the MR are Nyangores and Amala, and other sub-tributaries are Engare Egito, Talek, Kenyo and Tambura. The river
basin is affected by agriculture activity, deforestation, mining and other human activity.

The seasons of MRB are influenced by the movement of ITCZ and dry north-eastern wind, which comes from the Sahara

Desert. The annual rainfall pattern of the MRB varies from 1,000 to 1,750 mm at the upper catchment and 700–850 mm at the
lower catchment (around Musoma), which falls between April–September and November–December (Mati et al. 2008). The
rainfall pattern in March to June is influenced by southeast trade winds from the Indian Ocean (Dutton et al. 2018). The aver-

age temperature of MRB is 25°C, where the maximum temperature recorded is 28 °C in the daytime and a minimum 10 °C at
Figure 1 | Map of the MRB and the meteorological station with elevation data, obtained from the Shuttle Radar Topographic Mission (SRTM)
(https://earthexplorer.usgs.gov/).
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night. The climate is warm in the daytime and cool at night, which also depends on elevation. The temperature increased from

October to February and slightly decreased from June to August.

2.2. Datasets

2.2.1. Meteorological station data

The historical observation of daily rainfall and temperature data was obtained from four meteorological stations in the MRB,

and it is available at https://geographic.org/global_weather/. Thus, the website creates a database to store historical weather
station datasets for the world based on the National Centres for Environmental Information (NCEI) (https://www.ncdc.noaa.
gov/). One major problem in simulating RCMs in the African region is the lack of observation data availability, especially for
the regional level, such as the river basin. It is tough to obtain African historical data from 1900; however, the historical data-

sets are available in the studied region from 1980. Therefore, this study considers historical observation datasets during 1986–
2005 (20 years) to evaluate the various bias correction methods and develop future climate projections.

2.2.2. Regional climate models

This study obtained six historical and future RCMs from CORDEX projected to evaluate the bias correction method followed
by Favre et al. (2016). The RCMs datasets are obtained from the Lawrence Livermore National Laboratory (LLNL) web

portal powered by the Earth System Grid Federation (ESGF) (https://esgf-node.llnl.gov/search/esgf-llnl/). In this study, his-
torical (1986–2005) and future (2026–2095) simulation of daily rainfall, maximum temperature (TMAX) and minimum
temperature (TMIN) of ICHEC-EC-EARTH, CCCma-CanESM2 and MOHC-HadGEM2-ES models driven by six

CORDEX RCMs (Table 1) were considered for bias correction and the RF model. Moreover, simulated and observation
data vary in elevation and need bias adjustment in various locations (Worku et al. 2020). After retrieved the observation
and RCMs rainfall and temperature, the data proceeded with a grid resolution of 0.44°�0.44° using the bilinear interpolation

method to match the grid resolution of each RCMs. In addition, RCP 4.5, RCP 8.5 and RCP 2.6 emission scenarios were used
to represent the radiative forcing level (Javadinejad et al. 2020; Oo et al. 2020). RCP 4.5 shows the intermediate emission
levels of 4.5 W/m2, while RCP 8.5 W/m2 demonstrates the high radiative forcing with the emission level of 8.5 W/m2,
which could be stabilized after 2100 (Worku et al. 2020). Furthermore, RCP 2.6 is selected for considering the Paris agree-

ment and sustainability for future climate change.

2.3. Evaluation of bias correction methods

2.3.1. Linear scaling method

The simulated average precipitation and temperature are scaled by the ratio of long-term observation and RCMs. The ratio is

used to multiply the daily precipitation and temperature for each year (Lenderink et al. 2007), and this function is simplified
Table 1 | Description of RCMs used in this study

CORDEX Africa Research Centre RCMs Reference

(ICHEC: Consortium of European research
institute and researchers) KNMI –
RACMO

Koninklijik Nederlands
Meteorological Institute
(Nederland)

RAC (EC-Earth) Alemseged & Tom (2015)

(ICHEC) DMI-HIRHAM Denmark’s Meteorological institute
(Denmark)

HIRHAM5 (EC-
Earth)

Schmidli et al. (2007); Kim et al.
(2014); Favre et al. (2016)

(ICHEC) MPI-ESM-LR Max Planck Institute (Germany) REMO (EC-
Earth)

Navarro-Racines et al. (2020); Kim
et al. (2014); Favre et al. (2016)

(ICHEC) CLMcom CLM Community (www.clm-
community.eu)

CCLM (EC-
Earth)

Kim et al. (2014); Favre et al.
(2016)

CCCma Canadian Centre for Climate
Modelling and Analysis (Canada)

CanESM2 Alemseged & Tom (2015)

MOHC Met Office Hadley Centre (UK) HadGEM2-ES Navarro-Racines et al. (2020)
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by the following equations (Zhang et al. 2018):

rcon,cor (f) ¼ rcon(f) � (robs(y)=rcon(y)) (1)

rsec,cor (f) ¼ rsec(f) � (robs(y)=rcon(y)) (2)

Tcont:cor (t) ¼ Tcon(t) þ (Tobs(y) � Tcon(y)) (3)

Tsec:cor (t) ¼ Tsec(t) þ (Tobs(y) � Tcon(y)) (4)

where rcon,cor (f) and Tcon,cor (t) are the corrected daily precipitation and temperature during the historical corresponding year.
rcon,sec (f) and Tsec,cor (t) are the corrected daily precipitation and temperature for the future climate scenario. rcon(f) and rcon(f)
represent the historical and future daily precipitation during the corresponding year. A similar process is followed for
Tcon(t) and Tsec(t), which represent the temperature of historical and future scenario. robs(y) and Tobs(y) are the observation
of daily precipitation and temperature corresponding to the year. rcon(y) and Tcon(y) represent simulated data for the historical

and future scenarios of the corresponding year.
2.3.2. Delta change method

The delta change (DC) method creates a scenario based on adding anomalies for the future climate obtained from the RCMs
simulation. It assumes that the regional level bias is constant over time (Beyer et al. 2019; Mendez et al. 2020). Although the

evaluation of the DC method is expressed by many researchers (Räty et al. 2014; Sarr et al. 2015; Navarro-Racines et al.
2020), the function is simplified by the following equations (Mendez et al. 2020) for precipitation and (Beyer et al. 2019)
for temperature.

rDC
Contr(t) ¼ robs(t) (5)

rDC
frc (t) ¼ robs(t):

mmrfrc(t)
mmrcontr(t)

� �
(6)

Tsim(t) ¼ Tobs(0)þ (Tsim(t)� Tsim(0)) (7)

where r is the daily precipitation and ‘contr’ is the simulated RCMs during the period, ‘obs’ represents the observational time
series and ‘frc’ is the future RCMs scenario during the period, and ‘DC’ is the simulated RCMs. ‘t’ shows the time step and 0mm0

is the long-term yearly average. The expression of temperature 0Tsim(t)
0 represents the simulated anomalies based on present

observation. 0T 0
obs is the observed daily temperature and 0T 0

sim is the simulated daily temperature during the year. ‘t’ is the
obtaining time after bias term simulated temperature.
2.3.3. Local intensity method

The local intensity (LI) method widely reported that GCMs/RCMs precipitation works on the daily precipitation. This simu-
lated precipitation from the GCM/RCM is corrected based on frequencies and the intensity of the wet and drizzle days
(Dobler & Ahrens 2008). Although this method reported the daily precipitation of RCMs simulation is larger than obser-
vation, the threshold values of the wet days are adjusted for future wet-day frequencies (Olsson et al. 2015; Zhang et al.
2018). However, many researchers studied the evaluation of the LI method (Schmidli et al. 2007; Dobler & Ahrens 2008;
Olsson et al. 2015), but the function was simplified by the following equations (Zhang et al. 2018):

P1
contr(d) ¼

0, if Pcon(d) , Pthres
Pcon(d), otherwise

�
(8)

P1
sce(d) ¼

0, if Psec(d) , Pthres
Psec(d), otherwise

�
(9)

where P1
contr(d) and P1

sce(d) are the daily precipitation of the historical and future climate, Pcon(d) is the observation daily pre-
cipitation and Psec is the future daily precipitation for the control period and Pthres is the threshold value.
://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf
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In the next step, the scaling factor is calculated based on the long-term mean wet-day frequencies. The intensity scaling is

estimated from the S ratio:

S ¼ m(Pobs,m,d=Pobs,m,d . 0)� 0=m(Pcon,m,d =Pcon,m,d . Pthres)� Pthres (10)

In the last step, the bias-corrected daily precipitation was estimated using scaling factor and daily precipitation

Pcon,cor(d) ¼ s � P1
con,(d) (11)

Psec,cor(d) ¼ s � P1
sec, (d) (12)

where Pcon,cor(d) and Psec,cor(d) are represented for the bias-corrected historical and future daily precipitations and P1
sec is the

same as shown in Equations (8–10).
2.3.4. Distribution mapping method

The DM technique is based on different approaches such as probability mapping (PMAP), empirical CDF mapping, quantile
mapping (QMAP) and Kernel density distribution (KDDM) (McGinnis Nychka & Mearns 2015) and is used in various cli-
mate simulation studies (Lafon et al. 2013; Olsson et al. 2015; Switanek et al. 2017). The main principle of this method is to fit

the transfer function of RCMs simulation with an observational mean value (Zhang et al. 2018). Mainly there are two func-
tions suitable for precipitation and temperature – gamma and Gaussian distribution (Worku et al. 2020) – although the
histogram of bias-corrected RCMs and observation values has properties of positive skewness (Tschöke et al. 2017) to

adjust the mean value, extreme, standard deviation (SD) and distribution of precipitation.
2.4. RF model

RF is a classification approach used in various predictive climate change assessment studies. This method mainly consists of a

decision tree approach where each classifier is developed from the bootstrap sample (Gaál 2012). The bootstrap sampling
makes RF less susceptible to overfitting than a decision tree (Wang et al. 2018), although the decision tree methods are devel-
oped from partitioning the training data (yi, xi), i¼1, ………, n, which is based on the independent variable (Crawford et al.
2019). However, the RF model contains a regression tree, which consists of many regression trees like a forest and obtained
the prediction model based on the two parameters: (1) the n number of regression tree (ntree) and (2) the selected evidential
feature at each node (mtry) (Wang et al. 2018). Breiman (2001) and Segal (2003) have more details of the RF computation

process.
In this study, we set the number of ntree ranges from 500 to 100 and selected evidential feature mtry ranges from 5 to 20 for

reproducing the future rainfall and temperature followed by Wang et al. (2018). The six bias-corrected RCMs output are con-
sidered a predictor variable in RF and used to determine the rank of relative impotence of each predictor, which may suggest

the most important RCMs for contributing to reproducing the future climate scenario.
2.5. Performance evaluation

The CMhyd tool was used to process the four bias corrections methods (LS, DC, LI and DM) and retrieved the rainfall and
temperature datasets from the RCMs (Zhang et al. 2018). However, the CDF is used to adjust the simulated and non-simu-
lated rainfall and temperature datasets, then compared to the observational values (Figure 2) (Maurer & Pierce 2014). In
addition, four statistical matrices (mean, SD, coefficient of variation (CV) and 90th percentile) are selected for evaluating

the bias correction methods from historical RCMs and observation data. This evaluation is used to obtain the suitable bias
correction method to obtain the future climate change scenario. The strongest bias correction method was applied for
developing the near-term (2026–2045) and long-term (2076–2095) climate scenario at the MRB. Furthermore, the perform-

ance of the various bias correction methods and the RF model was validated using four evaluation metrics such as (a) the
coefficient of determination (R2), (b) mean square error (MSE), (c) mean absolute error (MAE) and (d) root mean square
error (RMSE).
om http://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf

4



Figure 2 | CDF of simulated RCMs and observed (a) and daily rainfall (b) temperature in the MRB. DM, distribution mapping; DC, delta change;
LS, linear scaling; LS, local intensity.
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3. RESULTS

3.1. Evaluation of bias correction methods

The African continent is not suitable for a large global and regional model of precipitation change with different aspects

(Déqué et al. 2017). In this study, results suggest that the four bias correction methods, LS, DC, LI and DM, are effective
for adjusting the mean annual RCM simulation of rainfall. However, a significant difference was found between bias-cor-
rected RCM and raw RCM for the spatial distribution of rainfall in the MRB (Figure 3). Also, the CDF results indicate the

overestimation and underestimation of the annual rainfall were adjusted sufficiently in the entire sub-basin using LS, DC,
LI and DM methods (Figure 2) (Worku et al. 2020). These four methods have comparable performance in adjusting the
mean annual observed rainfall and RCMs output of the MRB (Figure 3). But the significant distribution of the total

amount of rainfall was overestimated and underestimated depending on the changes in elevation (Gudmundsson et al. 2012).
The seasonal variation of precipitation derived from the bias-corrected RCMs shows comparable performance at a regional

scale (Urrutia & Vuille 2009). In general, the mean monthly rainfall of simulated RCMs is adjusted through observed precipi-

tation. The seasonal distribution of rainfall from bias-corrected RCMs and observation output provides the maximum peak of
rainfall in the summer month of MJJ (May, June and July) and winter months of NDJ (November, December and January)
(Figure 4(a)). Similarly, the LS and DC methods were found inadequate to adjust the CV of rainfall with an average value
of 1.5, which is overestimated compared to the observation (Figure 4(d)). In the same contrast, LI and DM show good

strength for CV with a value of 0.8 to adjust the rainfall from individual simulated RCMs. The rainfall pattern concerns
the SD from various computed RCMs simulation (Figure 4(b)) at individual grid (Meehl Arblaster & Tebaldi 2005), although
simulated CCCma-CanESM2 RCMs shows the maximum peak in SD compared to other simulated RCMs for rainfall and
Figure 3 | Annual mean rainfall (mm) (a), observation (b), KNMI (EC-EARTH) using raw simulation (c), KNMI (EC-EARTH) using DM (d), KNMI
(EC-EARTH) using linear scaling (LS) (e), KNMI (EC-EARTH) using LI (f), HadGEM2 DM (g), HadGEM2-ES (MOHC) using DC (h), REMO (EC-EARTH)
using linear scaling (LS) (i) and REMO (EC-EARTH) using LI (j) CanESM (CCCma) using LI bias-corrected output from the period (1986–2005).
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Figure 4 | The ability of LS, DC, LI and DM to adjust daily rainfall measured by mean (a), SD (b), 90th percentile (c) and CV (d) in the MRB.
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shows the poor performance with a MSE value of 204.33 mm (Table 2). In addition, the 90th percentile of precipitation indi-
cates a significant result between the DM-corrected RCM and the observation value (Figure 4(c)). However, the LI and DM
methods show similar results in adjusting the annual mean rainfall corresponding to observation values.

Other studies also suggest a comparable performance among various bias correction methods in adjusting the rainfall and
temperature values (Liang 2004; Räty et al. 2014; Tschöke et al. 2017; Wang et al. 2018). In addition, there is a limitation in
various bias correction processes at individual RCMs, which is mainly based on resolution (Rauscher et al. 2010). However,
LS, DC and LI methods shows overestimated or underestimated rainfall variation in the statistical framework. Therefore, the

DM bias correction method was selected to compare the performance of individual RCMs output against observation output,
followed by Worku et al. (2020).

Four evaluation matrices (R2, RMSE, MAE and MSE) were selected to evaluate the performance of bias-corrected individ-

ual RCM and the EM of six RCMs. The bias-corrected DMI-HIRHAM (R2¼0.35) and HadGEM2-ES (R2¼0.26) RCMs
showed excellent performance to reproduce the rainfall and temperature compared to observation values (Table 2). In
addition, RMSE error values of these two RCMs were 12.94 mm (DMI-HIRHAM) and 11.84 mm (HadGEM2- ES), respect-

ively, although the bias-corrected KNMI (ICHEC-EC-Earth) RCMs output showed poor performance compared to
observation values with the RMSE of 10.54 mm and the MSE of 111.2 mm. However, the ensemble of all bias-corrected
Table 2 | R2, RMSE, MAE and MSE between observation and simulated RCMs

Error
KNMI
(EC-EARTH)

DMI- HIRHAM
(EC-EARTH)

CLMcom – CCLM
(EC-EARTH)

MPI-CSC-REMO
(EC-EARTH)

KNMI-HadGEM2-ES
(MOHC)

CanESM
(CCCma) Ensemble

R2 0.11 0.35 0.12 0.30 0.26 0.21 0.45

RMSE 10.54 12.94 8.12 3.53 11.84 14.29 3.433

MAE 6.74 9.75 5.55 2.66 8.88 9.47 2.32

MSE 111.2 167.55 65.92 12.46 140.04 204.33 11.78
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RCMs showed excellent performance with a correlation coefficient (R2) of 0.4 and a minimum value for RMSE, MAE and

MSE (3.43, 2.32 and 11.78). Therefore, this study selected DM-corrected ensemble of six RCMs output to develop the
short-term (2026–2045) and long-term (2076–2095) future climate under the RCP 4.5, RCP 8.5 and RCP 2.6 scenario.

3.2. Future rainfall and temperature scenario in the MRB

The future rainfall and temperature pattern in the MRB were projected using the ensemble RCMs output (Figure 5). The indi-
vidual RCMs of rainfall results were compared to historical simulated RCMs (Table 3). However, the future mean annual
rainfall and temperature were categorized into short-term (2026–2045) and long-term (2076–2095) based on the emission
scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. The spatial variation of rainfall for the near-term (2026–2045) and long-term

(2076–2095) is shown in Figure 6. The results from the ensemble RCMs demonstrate the increasing trend of future rainfall
variation under various RCP scenarios such as RCP 4.5 (þ110.45%), RCP 8.5 (þ 108.87%) and RCP 2.6 (þ134.28%)
(Table 3) in the near term (2026–2045). Similarly, the long-term (2076–2095) climate of rainfall trend increased þ114.32,

þ123.305 and þ121.57% under the emission scenario of RCP 4.5 and RCP 8.5. But the highest increased rainfall recorded
based on the ensemble RCM output in the near-term future (2026–2045) with the amount of þ123, þ117 and þ115%
under the emission scenarios of RCP 4.5, RCP 8.5 and RCP 2.6. In addition, a slight increasing rainfall trend was found

(13–23%) for REMO (MPI-ESM-LR) RCMs in the near-term and long-term scenario. Moreover, all the RCMs output and
EM suggest the increasing rainfall trends for short-term (2026–2045) and long-term (2076–2095) climate in the MRB.

Most of the individual RCMs showed an increasing trend in annual rainfall (Table 3), except simulated REMO output
(Worku et al. 2020). Other studies show similar rainfall trends for the future scenario in the MRB. For example, Dessu &

Melesse (2012) found a 30–50% increase in the rainfall trend during the wet season (MAM) using five GCMs output for
the year 2050. Also, this study’s results suggest a significant increase in the water flow of MRB from 2046 to 2065 and
2081 to 2100. Roy et al. (2018) projected 31 CMIP5 RCMs output to evaluate the daily precipitation and found an increased

rainfall trend in the MRB for the short-term future scenario (2020–2050). Similar studies carried out by Mellander et al. (2013)
Figure 5 | Future RCMs ensemble of rainfall (a) EM of RCP 4.5 (2026–2045), (b) EM of RCP 8.5 (2026–2045), (c) EM of RCP 2.6 (2026–2045),
(d) EM of RCP 4.5 (2076–2095), (e) EM of RCP 8.5 (2076–2095) and (f) EM of RCP 2.6 (2076–2095).
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Table 3 | Future annual mean rainfall for the near-term (2026–2045) and long-term (2076–2095) compared to the historical rainfall
(1986–2005)

Scenario RCMs 2026–2045 Changes in % 2076–2095 Changes in %

Observation (1986–2005) 148.16

RCP 4.5 KNMI (ICHEC-EC-EARTH) 250.80 þ64.8 252.95 þ70.72

CLMcom – CCLM (ICHEC-EC-EARTH) 262.53 þ77.19 281.93 þ90.28

DMI-HIRHAM (ICHEC-EC-EARTH) 262.98 þ77.49 278.93 þ88.26

MPI-CSC-REMO (ICHEC-EC-EARTH) 180.23 þ21.64 172.49 þ16.42

SMHI (CCCma-CanESM) 294.05 þ98.46 374.32 þ152.64

KNMI (MOHC-HadGEM2-ES) 620.45 þ318.77 544.63 þ267.59

EM 311.84 þ110.45 317.54 þ114.32

RCP 8.5 KNMI (ICHEC-EC-EARTH) 263.39 þ77.77 267.30 þ80.41

CLMcom – CCLM (ICHEC-EC-EARTH) 246.99 þ66.70 266.83 þ80.09

DMI-HIRHAM (ICHEC-EC-EARTH) 266.48 þ79.85 308.52 þ108.23

MPI-CSC-REMO (ICHEC-EC-EARTH) 183.09 þ23.57 167.89 þ13.31

SMHI (CCCma-CanESM) 291.79 þ96.94 420.32 þ183.69

KNMI (MOHC-HadGEM2-ES) 605.11 þ308.41 554.24 þ274.08

EM 309.475 þ108.87 330.85 þ123.305

RCP 2.6 KNMI (ICHEC-EC-EARTH) 260.07 þ75.53 263.24 þ77.67

MPI-CSC-REMO (ICHEC-EC-EARTH) 183.20 þ23.65 180.99 þ22.16

KNMI (MOHC-HadGEM2-ES) 598.05 þ303.65 540.65 þ264.90

EM 347.11 þ134.28 328.29 þ121.57
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showed the þ6% increased rainfall pattern in the upper Blue Nile basin based on the downscale of ECHAM5/MP1-OM
during 2050–2100. In addition, Fenta Mekonnen & Disse (2018) reported the downscaled annual mean precipitation

increased from 2.1 to 43.8% under A1B, A2, and B1 scenarios for 2006–2100 using the LARS-WG model.
Similarly, maximum temperature (TMAX) and minimum temperature (TMIN) showed an increasing trend in the near-term

(2026–2045) and long-term (2076–2095) climate under the emission scenarios of 2.6, 4.5 and 8.5 (Figures 7 and 8). However,

the ensemble of temperature output have shown the rise of TMAX 1.31 °C and TMIN 2.66 °C under the RCP 4.5 scenario and
an increasing trend of TMAX 1.85 °C and TMIN 3.6 °C under the RCP 8.5 scenario during the near-term period (2026–2045).
The maximum increase trend from the ensemble of TMAX (11.81 °C) and TMIN (15.12 °C) has been recorded in the long-
term (2076–2095) scenario based on the RCP 8.5. The lower emission of increased TMAX and TMIN was projected under the

RCP 2.6 scenario (Table 4). The spatial pattern of future TMAX and TMIN is shown in Figures 7 and 8 based on ensemble
RCMs and observed values. IPCC projected a similar condition of an increased trend in East Africa (IPCC 5th assessment),
which is estimated to change from 0 to 4 °C warmer by 2050 under the RCP 4.5 scenario (Solomon et al. 2007). The other

studies also found a similar increasing trend in the MRB. For example, USAID (2019) reported the average temperature of
MRB would increase by 1.97 °C (2030) and 2.71 °C (2050), which is a similar output of the ensemble near-term (2026–
2045) and long-term future (2076–2095) under the RCP 4.5 scenario (Table 4). Therefore, the emission scenario of RCP

4.5 and RCP 8.5 was selected for the RF model to reproduce the rainfall and temperature.
3.3. RF model prediction

The study used EM of six observed RCMs output in the RF model to reproduce future climatic datasets. For developing the

RF-based future climate scenario (precipitation and temperature), RCP 4.5 and RCP 8.5 were selected during the period
(2006–2100). Most previous studies used 70% of datasets as training and the remaining 30% for testing in various ML
models (Tripathi et al. 2006; Anandhi et al. 2012; Gaál 2012). Therefore, 70% of datasets (2006–2069) are considered training
://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf



Figure 6 | Future RCMs ensemble of Tmax (a), observation (b) EM RCP 4.5 (2026–2045), (c) EM RCP 8.5 (2026–2045), (d) EM RCP 2.6 (2026–
2045), (e) EM RCP 4.5 (2076–2095), (f) EM RCP 8.5 (2076–2095) and (g) EM RCP 2.6 (2076–2095).
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data to establish the relationship between observed EM and predicted EM and the rest of the 30% datasets (2070–2100) are
used for testing. Four evaluation parameters (R2, RMSE, MSE and MAE) were used to compare the performance of RF-based
predicted EM against observed EM (Table 5). The results indicate that the RF model can predict and reproduce the future

precipitation and temperature from each RCM. All the RF model-based EMs provide best agreement with observed EM,
and each RCP shows an R2 value of more than 0.90, which indicates excellent performance. The results also demonstrate
the small error with the RMSE of 0.26 °C on average temperature and 0.45 mm on average rainfall.

Figure 8(a) and 8(b) shows the functional relationship between observed EM and predicted EM using the RF model during
the testing period (2070–2100). RF-based predicted EM RCP 4.5 is similar to the observed EM for precipitation (Figure 8(a)),
Tmax and Tmin (Figure 8(b)). The maximum difference between predicted EM and observed EM datasets is larger during the
RCP 8.5 scenario for temperature and precipitation. Also, a precise degree of scattering was observed between estimated EM

and predicted EM (Figure 8(c) and 8(d)) during the testing period, which indicates that the RF model can reproduce
future rainfall and temperature datasets. The performance of each RCM was evaluated based on their relative importance
shown in Figure 8(e) and 8(f). The relative performance of each RCM is automatically assessed in the RF model based on

their variance of importance (Wang et al. 2018). The results suggest that the HadGEM2_ES RCM had more important
variables in the RF model for production precipitation and CLMcom_CCLM for temperature, including RCP 4.5 and
RCP 8.5 scenarios.
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Figure 7 | Future RCMs ensemble of Tmin (a), observation (b) EM RCP 4.5 (2026–2045), (c) EM RCP 8.5 (2026–2045), (d) EM RCP 2.6 (2026–
2045), (e) EM RCP 4.5 (2076–2095), (f) EM RCP 8.5 (2076–2095) and (g) EM RCP 2.6 (2076–2095).
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4. UNCERTAINTY

The study evaluates various bias correction methods from six RCMs (KNMI, CLMcom – CCLM, CLMcom – CCLM, REMO,
CanESM2 and HadGEM2- ES), obtained from three CORDEX (EC – Earth, CCCma and MOHC). The uncertainty of the
observation and individual bias-corrected RCMs pattern was captured frommonthly mean rainfall and temperature (Figure 9).

This study did not trigger the climate change of future rainfall (Räty et al. 2014). The bias-corrected monthly rainfall from
RCMs showed a comparable increase trend in MJJ and NDJ. The EMs of RCMs and individual RCMs showed uniformity
in future climate change scenarios with different magnitude. But strong similarities were found in observation and EMs rain-

fall. Furthermore, HadGEM2 RCMs projected the highest increasing rainfall trend under every emission scenario. The
individual RCMs showed various rainfall patterns in the sub-grid process, which depends upon the grid resolution.

In this study, the results demonstrate the rising rainfall pattern in the near-term and long-term climate under the emission
scenario of RCP 4.5 and RCP 8.5. However, this emission scenario described the changes in rainfall that may trigger the con-

vective activity and moisture of the atmosphere over the MRB, although various regional climatic phenomena and local
forcing are also the major driving factors for rainfall in the MRB, East Africa. Also, the changes in ITCZ could impact the
rainfall variation in the near-term and long-term future. For considering the Paris agreement, the future temperature and rain-

fall are also investigated under the RCP 2.6 scenario. The RCP 2.6 scenario showed a lower percentage of rainfall increase in
the MRB. KNMI (EC- EARTH) and CCLM (EC-EARTH) showed the lower increased rainfall rate under the RCP 4.5 and
RCP 8.5 scenario. But the REMO (EC-EARTH) showed a slight increase in the rainfall pattern under the RCP 4.5, RCP
://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf



Figure 8 | Time series of observation and predicted ensemble based on RF model (a) precipitation (b) temperature, scatter plot of observed
and predicted ensemble for (c) precipitation and (d) temperature, (e) (precipitation) and f (temperature) showing the importance of each RCMs
to predict and reproduced the datasets during the testing period (2070–2100).
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Table 4 | Future annual mean of TMAX and TMIN for future climate scenarios compared to observation

Scenario RCMs
TMAX
(2026–2045)

Changes
in °C

TMAX
(2076–2095)

Changes
in °C

TMIN
(2026–2045)

Changes
in °C

TMIN
(2076–2095)

Changes
in °C

Observation (1986–2005) 25.47 25.47 13.03 13.03

RCP 4.5 KNMI (ICHEC-EC-EARTH) 25.67 þ0.20 28.39 þ2.92 15.47 þ2.44 19.31 þ6.28

CLMcom – CCLM (ICHEC-EC-
EARTH)

25.50 þ0.03 29.03 þ3.56 14.72 þ1.69 18.81 þ5.78

DMI-HIRHAM (ICHEC-EC-EARTH) 25.52 þ0.05 28.27 þ2.80 15.51 þ2.48 18.54 þ5.51

MPI-CSC-REMO
(ICHEC-EC-EARTH)

24.11 �1.47 27.85 þ2.38 15.02 þ1.99 19.95 þ6.92

SMHI (CCCma-CanESM) 29.91 þ4.44 35.51 þ10.04 16.23 þ3.2 19.93 þ6.9

KNMI (MOHC-HadGEM2-ES) 30.38 þ4.91 31.89 þ6.42 17.18 þ4.15 22.14 þ9.11

EM 26.78 þ1.31 30.16 þ4.69 15.69 þ2.66 19.78 þ6.75

RCP 8.5 KNMI (ICHEC-EC-EARTH) 26.199 þ0.73 33.82 þ8.35 16.53 þ3.5 28.1 þ15.07

CLMcom – CCLM (ICHEC-EC-
EARTH)

26.42 þ0.95 37.44 þ11.97 15.94 þ2.91 27.15 þ14.12

DMI-HIRHAM (ICHEC-EC-EARTH) 25.76 þ0.29 35.33 þ9.86 15.6 þ2.57 26.69 þ13.66

MPI-CSC-REMO (ICHEC-EC-
EARTH)

25.78 þ0.31 30.69 þ5.22 16.27 þ3.24 24.89 þ11.86

SMHI (CCCma-CanESM) 30.55 þ5.08 47.77 þ22.30 16.84 þ3.81 29.27 þ16.24

KNMI (MOHC-HadGEM2-ES) 29.22 þ3.75 38.65 þ13.18 18.59 þ5.56 32.81 þ19.78

EM 27.32 þ1.85 37.28 þ11.81 16.63 þ3.6 28.15 þ15.12

RCP 2.6 KNMI (ICHEC-EC-EARTH) 25.21 þ0.26 24.85 �0.62 14.89 þ1.86 14.73 þ1.7

MPI-CSC-REMO
(ICHEC-EC-EARTH)

23.588 �1.882 24.37 �1.1 14.63 þ1.6 15.06 þ2.03

KNMI (MOHC-HadGEM2-ES) 28.81 þ3.34 28.21 þ2.74 16.76 þ3.73 17.01 þ3.98

EM 25.87 þ0.40 25.81 þ0.35 15.43 þ2.4 15.59 þ2.56

Table 5 | Evaluation matrices of the emission scenarios of RCP 4.5 and RCP 8.5 using the RF model during the testing period (2070–2100)

PRCP 4.5 PRCP 8.5 Tmax 4.5 Tmax 8.5 Tmin 4.5 Tmin 8.5

R2 0.93 0.94 0.92 0.97 0.93 0.98

RMSE 0.44 0.46 0.27 0.35 0.17 0.25

MSE 0.194 0.209 0.0714 0.119 0.027 0.063

MAE 0.323 0.376 0.204 0.279 0.143 0.200
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8.5 and RCP 2.6 scenario. The importance of large uncertainty was found in various RCMs, which is comparable to a different
scenario. However, it found that the global emission will not be reduced by 2030 (10%), which could not be achieved accord-
ing to the Paris climate agreement (Déqué et al. 2017). `

In a similar contrast, the TMAX and TMIN projected high emissions in the near-term and long-term future. The long-term

future (2076–2095) scenario showed the high emission of greenhouse gases, increasing the temperature under the RCP 4.5
and RCP 8.5 scenario. But the lower increase rate is observed under RCP 2.6. The IPCC report also contributed that the emis-
sion scenario is a major driver of global temperature attributed to global climate change.

In addition, the RF method reduced the uncertainty of the bias-corrected ensemble RCM output and reproduced the future
climate variable. The relative importance of each RCM for developing the future rainfall and temperature is beneficial for
understanding the contribution of each model adding the value to the ensemble (Wang et al. 2018).
://iwa.silverchair.com/jwcc/article-pdf/13/4/1900/1043046/jwc0131900.pdf



Figure 9 | Uncertainty among the observation and RCMs simulation (a) rainfall and (b) temperature. The comparison with observation and
historical bias-corrected period (1986–2005).
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5. CONCLUSION

The bias correction method is a major pre-processing step to investigate the climate variable at a regional scale from RCMs
results. This study tested four bias correction methods (LS, DC, LI and DM) to adjust the rainfall and temperature retrieved
from six historical RCMs. These methods were evaluated in a statistical metrics framework to project future rainfall and temp-

erature at the basin scale. Our results suggest that the DM method showed the best performance in adjusting the rainfall and
temperature based on the historical period. Therefore, the DMmethod was applied to generate future climate scenarios at the
MRB. The future climate scenario from the individual RCMs and all EM of RCMs revealed that wetter conditions and high

temperature characterize the future climate of the MRB. In a similar context, the DM method can analyze the climatic
extremes such as flood and drought and design new policies to reduce the impact of extreme events. In addition, to
reduce the uncertainties of the EM of RCMs, we used an ML approach, namely RF. Thus, the method was applied to develop
the most robust ensemble-based future climate scenario. The RF ensemble provides comparable results based on the evalu-

ation matrices and perfectly reproduces future rainfall and temperature, although the relative importance was assigned based
on the performance of each RCM in RF ensemble simulation. However, this study used DC, LS and LI methods to adjust the
RCMs simulation and develop future climate scenarios. Moreover, it will assist in future water resource management and

planning in the MRB.
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