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ABSTRACT

The estimate of changes in hydrological fluxes from a climate change perspective is inevitable for assessing the sustainability of watersheds

and conserving water resources. Here, we quantify and assess the changes in different hydrological flux components for the Manu-Deo River

Basin (MDRB) of northeast India using Soil and Water Assessment Tool (SWAT) simulations and multi-temporal data at various resolutions.

Sequential Uncertainty Fitting (SUFI-2) optimization is used to calibrate and validate the simulations for the periods 1984–2006 and 2007–

2016 and for the four future representative concentration pathway (RCP) scenarios. The model performed reasonably well for the calibration

and validation of daily data, in accordance with the Nash–Sutcliffe efficiency and coefficient of determination (0.54/0.55 and 0.52/0.72,

respectively). The analysis for the period 1985–2013 reveals a decreasing trend in streamflow, which indicates increasing trends of drought

there. Furthermore, it shows an increasing trend in evapotranspiration (ET) and decreasing trend for baseflow (BF), suggesting an adverse

impact on agricultural production during lean periods. In addition, the RCP 2.6 and 6.0 scenarios for the monsoon season in future time

scales are expected to cause a reduction in different flow components, although RCP 8.5 shows increased water availability there. The

sub-basin-scale quantification and multi-temporal analysis of water availability under the present and future climate scenarios, as presented

here, can assist water managers in formulating a suitable operational policy to implement a better decision-making framework for river and

waterbody management. This is particularly important for mountainous regions, where input data are sparse and modelling of hydrological

fluxes is challenging.
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HIGHLIGHTS

• A model for a mountain river basin is customized to analyse hydrological fluxes.

• The model performs better at a monthly time scale than at a daily time scale.

• Streamflow has been decreasing in the basin but increases in all RCP scenarios.

• Increase in evapotranspiration in monsoon seasons in both past and future periods.

• A multi-model approach provides more reliable estimates of water balance components.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Hydrological modelling stands as a suitable tool for quantitative analysis of water resources. Nevertheless, the availability of
appropriate hydro-meteorological inputs and suitable hydrological model selection would decide model performance (Dash

et al. 2021). The hydrological cycle is more dynamic and highly susceptible to frequent alterations in the magnitude of differ-
ent water balance components. Furthermore, an accurate quantification of available water resources is highly essential, which
is particularly important in mountainous regions. Nevertheless, the remote location of a mountain region leads to poor avail-

ability of model input data, which makes the hydrological modelling process very difficult and intricate.
There are several hydrological modelling initiatives, ranging from the lumped black-box model, artificial neural network

(ANN) to the distributed MIKE-SHE model. The lumped black-box models are subject to larger uncertainties due to

inadequate representation of basin characteristics and hydrological processes in their modelling process. Conversely, the
physically based modelling approach is limited to input data availability and detailed basin information. In this context,
the Soil and Water Assessment Tool (SWAT) is a good alternative that focuses on the basin-scale assessment of streamflow,
evapotranspiration (ET), groundwater recharge and baseflow (BF; Arnold et al. 1993, 2000). This model has also been useful

for diagnosing the effect of global warming on long-term water availability and nutrient and sediment loading (Padhiary et al.
2020). Although the SWAT model is recognized internationally as a powerful interdisciplinary tool for watershed manage-
ment, relatively few studies have been conducted for northeast India with mountainous terrains, and hydrological

simulations for such regions are complex and challenging.
Northeast India is considered as the wettest region on earth with heavy rainfall in summer or during the southwest mon-

soon (Kuttippurath et al. 2021). An increased number of heavy rainfall events have produced frequent floods there (Singh &

Kumar 2013), and the annual rainfall has increased by 3.72 mm/year in the hilly regions of the northeast, although this rate is
not statistically significant (Varikoden & Revadekar 2020). Choudhury et al. (2012) reported a marginal drop in rainfall in
monsoon months, with about 1.7 mm/year. The most recent study also points out that there is a substantial decrease in rain-

fall across the northeast regions, which has shifted the wettest place on earth to Mawsynram from Cherrapunji (Kuttippurath
et al. 2021). The decrease in rainfall can affect the hydrology of the region and, therefore, demands modelling of hydrological
fluxes to analyse past trends and future projections.

The global rise in temperature and unpredictability in precipitation across different spatial–temporal scales are major con-

cerns, and this variability in climate is likely to intensify in the coming century (Kharin et al. 2013). Furthermore, climate
change may affect the basin-wide hydrology through changes in the precipitation characteristics (e.g., Sinha et al. 2020).
Therefore, an assessment of basin hydrological behaviour and subsequent estimates of water balance components are inevi-

table in the wake of global warming. Hydrological models could be a good alternative in assessing the water balance of
watersheds, although validation and calibration are very difficult in mountainous regions such as northeast India, due to
the inherent natural randomness, and data, model and operational uncertainties (Tung 2005).
://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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SWAT can be calibrated with a trial-and-error approach or using an auto-calibration technique, SWAT-CUP (SWAT Cali-

bration and Uncertainty Programs). As the watershed-scale model involves a higher number of parameters for calibration, it is
common in hydrological studies to use automated calibration tools involving certain optimization techniques (Murasingh
et al. 2018). Therefore, it would be imperative to examine the impact of changes in climate on regional scales at which man-

agement decisions are to be taken. For instance, earlier studies on smaller basins (i.e., ,10,000 km2 area) were performed for
the Upper Baitarani River Basin (Dhar & Mazumdar 2009; Raneesh & Santosh 2011; Verma & Jha 2015). Studies on small
basins are few, and those on the northeast regions are also limited (Kusre et al. 2010; Goyal et al. 2018), suggesting the impor-
tance of this study.

The Manu-Deo River Basin (MDRB) has rubber plantations, agricultural land (paddy), and semi-urban development that
require a substantial amount of water. The rapid development in agriculture and increased deforestation have consequences
on the MDRB environment. The MDRB has surface and groundwater availability issues because it is a medium-scale river

basin in a hilly region. Therefore, climate change could have an impact on the hydrology of the MDRB. Here, we analyse
the long-term changes in climate variables, assess the efficiency of the SWAT model in mountainous basins and estimate
the changes in hydrological fluxes for the future representative concentration pathway (RCP) scenarios. The MDRB’s histori-

cal and future trends of mean annual and seasonal fluxes are studied using a multi-temporal approach based on linear
regression and the Mann–Kendall test.
2. DATA AND METHODOLOGY

2.1. Area of the study

The MDRB (2,278 km2) is a sub-basin of Barak and other basins that lies between 23°390 and 24°220N and 91°540 and 92°

160E (Figure 1). The MDRB is characterized by a combination of two major perennial rivers, i.e., Manu and Deo, that orig-
inate from the hills of northeast India. River Deo is the main tributary of river Manu, which runs through 132 km before
meeting Manu near Kumarghat. The Manu River originates from the Sakhan range, flows parallel to the Deo River and

joins the Meghna River in Bangladesh, with a total length of about 167 km in India. About 88.8% (2,023 km2) of the
MDRB lies in the hilly region and about 11.2% (255 km2) in the plains (Bhattacharya 2017). The MDRB exhibits high topo-
graphical variation as envisaged from its elevation ranging from 4 to 945 m. The basin is characterized by a humid sub-

tropical climate and it receives an annual rainfall of 1,500–2,500 mm, 62% of which is from the southwest monsoon.
The occurrence of heavy rainfall during the monsoon season causes frequent floods and related damage in the area.
Occasional pre-monsoon rainfall is also found during the last week of March to mid-April there, and this is termed ‘Kal

Baishakhi’.
A rapid increase in temperature is observed from March, and the highest monthly temperature is found in June, which is

about 30 °C, whereas the lowest monthly temperature is observed in January, which is about 16 °C. Naturally grown forests of
the MDRB are mostly characterized by bamboo plants. Nearly 65.83% of the MDRB area is covered with forest, and the

floodplain is predominantly used for agriculture. Lateritic soil is found in the hilly areas and river valleys, but younger
Figure 1 | India map (left), northeast India (middle) and Tripura state with the river basin selected for this study.
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soils are found in the floodplain of all major ‘Tuisa’ (local name for ‘stream’) and clay soils in the paddy fields. The dominant

soil texture of the MDRB is the residual, transported and lateritic (Supplementary Table S1).

2.2. Pedo-hydrologic database

Soil map, land use land cover (LULC) and digital elevation model (DEM) are the primary inputs to the SWAT model. In
addition, temporal information on meteorological parameters and stream discharge (streamflow) is required. Supplementary

Table S2 lists data procured from different sources. The DEM of the area was obtained from the Shuttle Radar Topographic
Mission (SRTM) DEM (30 m�30 m). A cloud-free satellite image (Landsat ETMþ imagery) for 25 December 2008, having
path 136 and rows 43, with 44 of 30 m spatial resolution, is used to make the LULC map. The Landsat imageries were classi-

fied (supervised) into six LULC classes using ERDAS IMAGINE 2014 software. The daily rainfall, temperature (Tmax and
Tmin) and other meteorological parameters for the period 1980–2016 were obtained from the India Meteorological Depart-
ment station located at Kailashahar. Similarly, the daily streamflow measured at the Kailashahar gauge station for the

same period was taken from the Central Water Commission, Assam. We used RCP 8.5, 6, 4.5 and 2 scenario simulations
from five different GCMs: NorESM1-M, GFDL-ESM2M, MIROC-ESM-CHEM, IPSL-CM5A-LR and HadGEM2-ES (Moss
et al. 2010) (Supplementary Table S3).

2.3. Methodology

2.3.1. SWAT model

The ArcGIS 10.1 interface of SWAT (version 2012) is used in this study, which is commonly known as ArcSWAT. The model

simulates the hydrological cycle based on water balance (Neitsch et al. 2011):

SWCt ¼ SWC0 þ
Xt

t¼1

(Pday �QSurface Runoff � ET � I �Gw) (1)

where SWCt (mm/day) is the soil water content (final), and SWC0 (mm/day) is the initial soil water content on day t, t (days) is
the time, Pday is the amount of precipitation (on day t), Qsurface Runoff is the amount of surface runoff (on day t), ET (mm/day)
is the amount of evapotranspiration (on day t), I (mm/day) is the amount of percolated water (on day t) and Gw is the amount
of return flow (on day t). Hydrology, weather, soil temperature, crop growth, nutrients, bacteria and land management are the

major modelling components of SWAT. In the hydrologic response unit (HRU) scale, the model performs the simulation of
different process components such as streamflow, sediment yield and pollutant loading. The HRUs are treated as the sole
combinations of soil classes, land-use type and slope condition. The study area is divided into 29 sub-basins, which are further

discretized into 640 HRUs that effectively represent the watershed heterogeneity.

2.3.2. Sensitivity analysis of ArcSWAT

SWAT includes over 200 parameters, wherein a large percentage does not affect the model output significantly. In this con-

text, it is essential to select the appropriate model parameters for streamflow simulations. This step certainly helps in the
sorting of a number of calibration parameters, and subsequently, gives an overview of the model parameter selection and
handling. The calibration and validation of streamflow simulations were done using the observed flow time series for the
periods 1984–2006 and 2007–2016, respectively. The beginning 4-year period, i.e., 1980–1983, was treated as the spin-up

time, so that model initial conditions could be stabilized.
The model performance is generally evaluated by using different goodness-of-fit indicators such as the R2 and the Nash–

Sutcliffe efficiency (NSE). In addition, the percent bias (PBIAS) is also considered, which provides an overview of whether

the model error lies within the acceptable limit or not. The corresponding equations of the above-said goodness-of-fit indi-
cators are given below:

NSE ¼ 1�

Pn
i¼1

(Oi � Pi)
2

Pn
i¼1

(Oi �O0)2
(2)
://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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R2, which ranges from 0 to 1, is used to check the co-linearity between simulated and observed streamflow values.

R2 ¼

Pn
i¼1

(Oi �O0)(Pi � P0)
� �2

Pn
i¼1

(Oi �O0)2
Pn
i¼1

(Pi � P0)2

8>>><
>>>:

9>>>=
>>>;

(3)

PBIAS ¼

Pn
i¼1

(Oi � Pi)

Pn
i¼1

Oi

� 100 (4)

where n is the total number of data, Oi and Pi are the observed and simulated data at time i and O0 and P0 are the mean of

observed and simulated data. Still closer to the values of the NSE and R2 to 1, the model tends to perform better, and better
captures the dynamics. The NSE generally lies between �∞ and 1, with positive values indicating that the model reproduced
the observed changes with less uncertainty. However, a PBIAS estimate of �25 to þ25% corresponds to acceptable model

section criteria in hydrological modelling (Dash et al. 2019).
2.3.3. Pre-processing of climatological data

We use five GCMs for analysing the future climate scenarios over the MDRB as listed in Supplementary Table S3. Therefore,
all GCM output data are downscaled to a common resolution of 0.5°�0.5° prior to the future hydrological quantification.

Because of the random and systematic model errors, a bias correction of the GCM output is quite essential (Teutschbein
& Seibert 2010; Fiseha et al. 2014). Both parametric and non-parametric bias correction methods, as shown in Supplemen-
tary Figure S1, can be used to reduce the existing bias in meteorological variables. The mountain regions experience
orographic precipitation with variable intensities at different elevations. Therefore, the usual downscaling approach adopted

in plain regions may not adequately represent the variability of precipitation in the mountainous regions (e.g., Praskievicz
2018). To deal with this situation, we adopted the local topographic lapse rate (LTLR)-based downscaling method proposed
by Praskievicz & Bartlein (2014). Time series of precipitation, and the maximum and minimum temperatures were extracted

from the LTLR-downscaled and localized constructed analogs (LOCA) downscaled grid cell that includes each station. Prob-
ability density function (PDF) skill scores were then calculated for the LOCA and LTLR-downscaled data using the observed
time series at each station:

Sscore ¼
Xn
1

minimum(Zm, Z0)

where Sscore is the skill score, n is the number of bins used to calculate the PDF, Zm is the frequency of modelled values in a
given bin and Z0 is the frequency of observed values in a given bin. If the forecast were perfect, the skill score would be 1
because the PDFs of the observed and modelled values would completely overlap, whereas a little overlap between those
data would result in a low skill score near 0.
2.3.4. Spatiotemporal quantification of hydrological fluxes

We have considered five different hydrological fluxes, namely, streamflow (Q), ET, BF, shallow aquifer recharge (SAR) and
deep aquifer recharge (DAR), for the assessment. The relative variation in the hydrological fluxes over a longer time scale was
analysed using the parametric and non-parametric trend analysis as detailed below.

Simple regression is a parametric statistical technique that has been extensively used for identifying the direction and rate
of change that occur in a long-term time series. The simple linear regression model is expressed as follows:

Y ¼ mXþ c (5)
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where Y is the rainfall, X is the time step in a year,m is the average rate of change of rainfall per year and c is the y-intercept.
The rate of change with respect to time is indicated by m, and the sign of the slope defines its direction. A positive sign is used
to indicate increase and a negative sign is for decrease.

The Mann–Kendall analysis (Mann 1945; Kendall 1975), also known as the MK test, is formulated as distribution:

Var(S) ¼ 1
18

[n(n� 1)(2nþ 5)] (6)

where the size of data is given by n and Z statistic of Mann–Kendall analysis is computed as such:

Zcalculated ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p if S . 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p if S , 0

8>>>>><
>>>>>:

(7)

If the computed value ofZcalculated is greater than Ztabulated, it is a statistically significant trend and rejects the null hypothesis.
The upward and downward trends in a time series are known by a positive or negative value of Zcalculated. For the present
analysis, the level of significance, i.e., α, is considered at 5% (Z0.05¼+1.96), and the cut-off mark for rejecting the null hypothesis

is considered as the level of significance (α). TheMK test may not represent the actual trend in data when subjected to autocor-
relation. Therefore, the modified MK test is applied in this study to estimate the trends to overcome the above-mentioned
problem. It is found from the analyses that there is no difference between the original and the modified MK test results (see

Supplementary Tables S9 and S10 for the results) in the absence of autocorrelation in the data. Henceforth, the original MK
test results are retained here for further discussions for clarity reasons. Figure 2 illustrates the overall methodology of the study.
3. RESULTS

3.1. Model calibration and validation

The SWAT model was calibrated using the SWAT-CUP tool (version 5.1.6) using various optimization techniques and to ana-
lyse the uncertainty in the simulations. The ArcSWAT model was then calibrated with the Sequential Uncertainty Fitting
(SUFI-2) optimization technique (Khalid et al. 2016). In SUFI-2, parameter uncertainty accounts for that in all sources,

such as the inaccuracies in driving variables (e.g., rainfall), conceptual model, parameters and measurements. The degree
to which all uncertainties are accounted for is quantified by a measure referred to as the P-factor, which is the percentage
Figure 2 | Methodology adopted for SWAT model runs and GCM bias correction. The input and output data of SWAT model runs are also
illustrated.

://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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of data bracketed by the 95% prediction uncertainty (95PPU). The goodness of calibration and prediction uncertainty were

determined on the basis of the closeness of the P-factor to 100% (i.e., all observations bracketed by the prediction uncertainty)
and the R-factor to 1 (i.e., achievement of rather small uncertainty band). The model was calibrated and validated with daily
and monthly streamflow time series once the major calibration parameters were identified utilizing the Latin hypercube one-

factor-at-a-time (LH-OAT) technique (van Griensven et al. 2006).

3.1.1. Daily time step

Figure 3 illustrates the output of daily calibration and sensitivity analysis using the SUFI-2 optimization technique. During the
periods of calibration and validation, NSE values are 0.54 and 0.52, respectively, revealing the model performance to be sat-

isfactory. Similarly, R2 values of 0.55 and 0.72 for calibration and validation demonstrate a strong correlation between the
observed streamflow and its simulated counterpart. The value of the PBIAS for the calibration period is found to be
þ21.6, whereas it is þ22.3 for the validation period, signifying that it lies between the model acceptance criteria defined

by Moriasi et al. (2007). After sensitivity analysis, 13 most sensitive parameters with considerable effects on streamflow simu-
lation are identified, as shown in Supplementary Table S4 for the daily time step. The actual BF from the observed streamflow
using a digital recursive filter is estimated and an illustration is made, from which the NSE is found to be 0.62. The value of
the NSE is under the satisfactory limit for model results, as demonstrated in Figure 4.
Figure 3 | Observed and simulated daily (upper panel) and monthly (bottom panel) streamflow hydrographs for the calibration and validation
periods.

Figure 4 | Actual and simulated BF in the study region.
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3.1.2. Monthly time step

Similar to the daily time step, NSE values of 0.81 and 0.61 are obtained during the calibration and validation periods for the
monthly time step. On the other hand, R2 values for the calibration and validation periods are 0.82 and 0.92, respectively, as

shown in Figure 3, which demonstrates a better correlation for the monthly than daily time step between observed and simu-
lated streamflow. This improvement in the monthly-scale streamflow is due to a reduction of bias in the streamflow data. The
value of the PBIAS was þ15.7 for the monthly calibration and þ18.4 for the validation. The most influential parameters
obtained during the sensitivity analysis for the monthly time steps are listed in Supplementary Table S4.

Thirteen most sensitive parameters are found to be similar for both time steps (Supplementary Table S4), i.e., for daily and
monthly. While comparing the sensitivity analysis outcomes of daily and monthly time step simulations, it can be inferred that
in the case of the monthly time step, two additional parameters, i.e., ‘R__MSK_CO1.bsn’ and ‘R__MSK_CO2.bsn’ (Muskin-

gum Routing Cofficient_1 and Coefficient_2, respectively), are significant. The rank of the rest of the parameters varies for
both daily and monthly time steps. Additionally, ranking is performed on the absolute t-value, and the parameter with the
highest rank affects the streamflow the most. A multiple linear regression analysis is used to find the t-statistics of parameter

sensitivity. It is a measure of the precision with which the regression coefficient is measured. It is given by

t� stat ¼ Coefficient of parameter
Standard error

On the other hand, ‘R_CN2.mgt’ is found to be the most sensitive parameter as it ranks 1 for both time steps during sen-
sitivity analysis. The initial SCS runoff curve number for antecedent moisture condition II (R_CN2.mgt) is a function of soil
permeability, land use and soil water condition. For monthly calibration, the routing method plays an important role, and,

thus, R_MSK_CO1.bsn is one of the important parameters in this regard. Therefore, the Muskingum routing coefficient
also controls the catchment runoff characteristics to a great extent. This suggests that this method can be applied for the cali-
bration in the mountainous regions. Furthermore, corresponding to curve number and routing parameter, the main channel
Manning’s roughness coefficient (V_CH_N2.rte) is identified as another major sensitive parameter. The overall catchment

characteristics are, therefore, governed by the surface runoff calibration parameter, but the surface runoff plays a big role
in deciding the catchment hydrology. The two additional parameters, i.e., R_MSK_CO1.bsn and R_MSK_CO2.bsn, are
found as the sensitive parameters based on the method of routing selected. The method selected corresponds to the Musk-

ingum method of flow routing. In the case of daily streamflow simulation, the variable storage routing approach is more
appropriate as opposed to the Muskingum method. Therefore, the two sensitive parameters chosen for the monthly-scale
simulation are not considered in the daily-scale simulation.

3.2. Quantification of hydrological fluxes

3.2.1. Past trends

3.2.1.1. Monthly Analysis. All five hydrological fluxes are analysed in monthly time step for the period 1985–2013 and the
trends are presented in Supplementary Table S5. A decreasing trend is noticed for discharge flux during the whole study
period (Supplementary Figure S2(a)). However, the trend is statistically significant in February and November, but is

insignificant in other months. The decreasing trend of streamflow across all analysis periods can be attributed to a
reduction in precipitation estimates during the same periods. However, the beginning of summer and the end of monsoon
periods experience severe scarcity in water, which causes a decreasing trend in streamflow in February and November.

July is the beginning of the monsoon season in the region, resulting in increased water availability for crop growth, and,
thus, makes a positive trend in ET. However, the kharif crop growing season is June–September and October is the
harvesting period. Henceforth, the magnitude of ET is lower during the period and shows a decreasing trend
(Supplementary Figure S2(b)). However, increased water availability and the presence of vegetation in the croplands

contribute to a significant positive trend of ET in July and November.
The result for the BF (Supplementary Figure S2(c)) shows positive trends in July, August and September during the peak

monsoon period. Conversely, a negative trend is estimated in June due to a delayed monsoon onset rainfall in the study area.

The BF shows a decreasing trend in the remaining period, but is statistically insignificant. Furthermore, it is evident from Sup-
plementary Figures S2(d) and S2(e) that SAR and DAR follow a similar pattern of temporal trends, i.e., positive trends in July
and September (Supplementary Table S5).
://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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3.2.1.2. Seasonal analysis. Similar to monthly analysis, all fluxes are analysed on a seasonal basis as per IMD classification –

pre-monsoon (MAM), monsoon (JJAS), post-monsoon (OND) and winter (JF) – for the study period 1985–2013. Table 1
illustrates the results of the trend analysis of different fluxes for seasonal average. For instance, the discharge decreases in
all four seasons, which can be due to the overall decrease in the precipitation in the region. However, the trend is

statistically significant in the winter, monsoon and post-monsoon periods (Supplementary Figure S3(a)). The ET and BF
show negative trends in all seasons but are statistically insignificant (Supplementary Figures S3(b) and S3(c)). Relatively
low rainfall causes unsaturated soil, which provides a lower BF contribution to groundwater and, thus, exhibits a negative
trend throughout the analysis period. The presence of forest land significantly affects the BF and ET dynamics in a

catchment. As the study area includes more than 60% of land under forest cover, the increased ET dynamics is well
reflected in the model results. Additionally, the presence of forest land favours increased infiltration capacity, promoting
an increased BF to the catchment. Henceforth, the land-use characteristics are well reflected in the model simulations.

On the other hand, SAR and DAR follow a similar trend (Supplementary Figures S3(d) and S3(e)). The trend observed is
positive in monsoon, but negative in the other seasons. This suggests that the maximum amount of groundwater recharge
takes place only during the monsoon season for both aquifers in the study area. However, all trends for both fluxes are stat-

istically insignificant (Table 1).
3.2.1.3. Annual analysis. Table 1 and Supplementary Figure S4 illustrate the results of annual average data and they show
that the trend for different hydrological fluxes is negative for the study period. Nevertheless, the Q flux is found to be

statistically significant. The remaining fluxes, i.e., ET, BF, SAR and DAR, also show decreasing trends but are statistically
insignificant. The decreasing trend of Q is likely to intensify further in the form of reduced water availability, which will
adversely affect agricultural activities during the non-monsoon periods. Due to alternative dry spells and flash flood–
induced instantaneous inundation in the monsoon season, crops are likely to experience severe moisture stress. The

substantial increase in ET during the lean periods necessitates frequent irrigation. The contribution of BF is highly
warranted to maintain environmental flow in a river, particularly during lean seasons. It is also evident from the analysis
that both SAR and DAR are declining, which can lead to a plausible drought condition in the lean periods. Therefore, the

construction of an artificial recharge site is very important to enhance both SAR and DAR. The model simulations show
that the study area is susceptible to reduced shallow and DAR in future. Therefore, there is a need to adopt some
structural measures for enhancing the groundwater recharge, such as the construction of artificial recharge there.

3.2.2. Future RCP climate change scenarios

3.2.2.1. Monthly analysis. All five hydrological fluxes were analysed in monthly time step for the period 2021–2099 and their
trends are presented in Supplementary Tables S6(a)–S6(e). For the Q flux, maximum months with a decreasing trend are
found with RCP 2.6 of GCM5 and RCP 6.0 of GCM1 during the study period (Supplementary Table S6(a)). On the other

hand, increasing trends are estimated for RCP 8.5 in both GCM2 and GCM5 but RCP 6.0 of GCM5 in all months. Six-
month positive and negative trends are observed in RCP 8.5 for GCM1 and RCP 6.0 for GCM2. The minimum months
that show a decreasing trend are found for the scenario RCP 2.6 of GCM1 and RCPs 4.5 and 6.0 of GCM4. For ET, June–
September months show high positive trends (Supplementary Table S6(b)) for all GCMs and RCP scenarios due to the
Table 1 | Trend statistics of annual average, winter, pre-monsoon, monsoon and post-monsoon for different hydrological fluxes during the
hindcast period

Hydrological fluxes Annual average

Season

Winter Pre-monsoon Monsoon Post-monsoon

Q (m3s�1/year) �1.437+1.393 �0.394+0.353 �2.023+2.946 �1.467+1.453 �1.495+1.412

ET (mm/year) �1.542+1.958 �0.101+0.164 �0.212+0.400 �0.113+0.338 �0.083+0.111

BF (mm/year) �1.007+3.278 �0.042+0.096 �0.102+0.219 �0.006+0.544 �0.198+0.455

SAR (mm/year) �1.146+3.017 �0.051+0.092 �0.140+0.326 0.020+0.504 �0.235+0.336

DAR (mm/year) �0.057+0.151 �0.003+0.005 �0.007+0.016 0.001+0.025 �0.012+0.017

The bold entries indicate that the trend is statistically significant at the 5% level.

om http://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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influence of monsoon rainfall. The highest decreasing trends with all GCMs are estimated for May and December, whereas

other GCMs show mixed results, i.e., both positive and negative trends.
The results for BF (Supplementary Table S6(c)) show positive trends in all months for the RCP 8.5 scenario in both GCM2

and GCM5. Nevertheless, January, February, March, April, September and December show decreasing trends in most scen-

arios, while June and October show increasing trends in most GCMs and the RCP scenarios. In addition, RCP 6.0 of GCM1,
RCP 8.5 of GCM3 and RCP 2.6 of GCM5 are observed to have a greater number of months with decreasing trends and follow
similar trends. Furthermore, it is evident from Supplementary Tables S6(d) and S6(e) that SAR and DAR follow a similar pat-
tern of trends, i.e., increasing trends in June, July and August for most RCPs and GCMs. In addition, RCP 8.5 of GCM2 and

GCM5 show a positive trend in all months. However, RCP 6.0 of GCM1, RCP 8.5 of GCM3 and RCP 2.6 of GCM5 show a
negative trend in most months. On the other hand, some RCP scenarios in a few GCMs show a zero trend in January, Feb-
ruary and December, suggesting that the recharge is equal to discharge during that period. Vegetation is one of the

fundamental components in the hydrological cycle that can alter the fluxes through ET. However, our study focused on
the future projections here and assumed that the land-use characteristics and the crop calendar will remain constant in
the analysis period. In addition, being a mountainous catchment, the study area is subjected to minimal alteration in land

use. The crop calendar and its respective management practices are simulated with the crop management module of
SWAT and are updated accordingly for different crop growing seasons.
3.2.2.2. Seasonal analysis. Supplementary Tables S7(a)–S7(e) illustrate the results of the trend analyses of different fluxes for
each season. The GCMs show decreasing trends during the winter, pre-monsoon and post-monsoon seasons for streamflow in

most RCP scenarios. However, during the monsoon season, very few RCP scenarios are found to be negative (Supplementary
Figure S5(a)), indicating floods during the season. On the other hand, all RCP scenarios show positive trends during the
monsoon season (Supplementary Figure S5(b)) for ET, which suggests an increase in temperature during this season.

Conversely, the highest negative trend of ET is observed during the post-monsoon (Supplementary Table S7(b)) and
winter seasons due to infrequent rainfall in these periods. The BF shows the highest negative trend in different RCPs
during the pre-monsoon season, followed by winter and post-monsoon seasons (Supplementary Table S7(c)) because of

the high amount of water from the ground absorbed by plants and less moisture within the soil. The highest positive
trends are estimated in the monsoon season as it receives more rainfall compared to that in other seasons (Supplementary
Figure S5(c)). SAR and DAR follow a similar trend (Supplementary Figures S5(d) and S5(e)). That is, the RCP scenarios

show positive trends mostly for the monsoon and negative for other seasons. This indicates that peak groundwater
recharge takes place only during the monsoon season for both aquifers. In addition, all trend values in DAR are smaller
than those in SAR (Supplementary Table S7(e)).
3.2.2.3. Annual Analysis. Figure 5 and Supplementary Table S8 illustrate the results of annual analysis using different

GCMs and RCP scenarios for the period 2021–2099. It is revealed that all five hydrological fluxes exhibit a positive trend
in GCM4 (Supplementary Figure S6(d)) for all RCP scenarios. On the other hand, in GCM1, two of the RCPs show a
positive trend, i.e., RCP 2.6 and RCP 4.5, whereas RCP 6.0 shows a negative trend (Supplementary Figure S6(a)). The ET

in RCP 8.5 of GCM1 (Supplementary Table S8) shows an increasing trend, but the rest of the fluxes show decreasing
trends. In the case of GCM2, only the Q flux in RCP 6.0 shows a negative trend, whereas positive trends are estimated for
other fluxes in the remaining RCPs. Similar to GCM2, a reverse scenario is observed in GCM5 of RCP 2.6, where the ET

flux is positive and the rest of the fluxes are negative. Furthermore, three fluxes related to groundwater flow, i.e., BF, SAR
and DAR, show a decreasing trend in RCP 8.5 of GCM3 (Supplementary Table S8), but increasing trends are found for
the remaining fluxes and other RCPs.

4. DISCUSSION AND CONCLUSION

The findings of multi-temporal trend analysis used here reveal that the magnitude and direction of trends are highly dependent
on the length of data and the position of sub-series within the time series. A streamflow trend analysis by Birsan et al. (2005) in
the mountainous regions of Switzerland for the period 1931–2000 showed that mountainous basins are more vulnerable to
environmental alteration and, thus, to climate change. This is consistent with the findings by Beniston (2003), in which the
importance and necessity of more research and policy formulation on environmental change in global mountainous river
://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf



Figure 5 | Annual trends for different hydrological fluxes for different RCP scenarios over the study area. The names of all five GCMs are also
shown in the figure.

Journal of Water and Climate Change Vol 13 No 4, 1786

Downloaded fr
by guest
on 10 April 202
basins are emphasized. In general, two aspects of catchment differ significantly in the mountain regions: the BF and precipi-
tation characteristics. The BF contribution in mountainous regions is very high, which results in more discharge. To deal
with this situation, the calibration of BF is performed more carefully with respect to the observed BF, leading to more realistic

estimates of streamflow. Furthermore, the mountainous regions are susceptible to orographic precipitation and its magnitude
also changes with different elevations of the terrain. This has been conceptualized in the SWAT model by means of elevation
bands, by which the dynamics of hillslope can be accommodated in the model with reasonable accuracy.

The simulated annual, seasonal and annual maximum streamflow of the Brahmaputra River Basin is projected to increase
in the future for 18 diversified climate change scenarios (Alam et al. 2021). The SWAT model used in a mountainous water-
shed of Nepal to evaluate its potential in hydrological application found that the ‘ALPHA_BF’ (BF recession α-factor) was the
most sensitive model parameter in streamflow simulation, as found in our study for the MDRB (e.g., Dhami et al. 2018). Fur-
thermore, Immerzeel et al. (2013) used the results of an ensemble of climate model simulations and a glacio-hydrological
model simulation to examine the influence of climate change on the hydrology of two Himalayan watersheds, i.e., the Baltoro
(Indus) and Langtang (Ganges), and showed an increase in streamflow in both watersheds for future scenarios, as for MDRB.

The uncertainty in the future streamflow projections was due to changes in the precipitation simulations by the models. A
study for the Zagros Mountain of Iran by Masih et al. (2010) showed increasing and decreasing trends of streamflow
during the post-monsoon and lean periods, respectively, which is in accordance with the findings of our study.

We used a common approach to quantify the implications of climate change on streamflow in the MDRB by utilizing bias-
corrected multiple GCM results and the SWAT model. Therefore, the evaluations can be enhanced further by considering the
effects of changes in land use. In addition, there may be uncertainties associated with the model simulations and the bias-cor-

rection method, which can be improved in future simulations and analyses. The following conclusions are drawn from the
analyses.
(i) The model performed relatively better in monthly time steps over daily time steps. The streamflow shows a decreasing

trend for all months with statistically significant trends in February and November. An insignificant increase in ET is
noticed for July and November. A positive trend is estimated for Q during the monsoon period. DAR and SAR also
exhibit positive trends during July and September.

(ii) The streamflow exhibits a decreasing trend in all seasons. However, the trend is significant only for the post-monsoon
period. ET and BF also exhibit a decreasing trend in all seasons. Insignificant positive trends are found for both SAR
and DAR in the monsoon season.
om http://iwa.silverchair.com/jwcc/article-pdf/13/4/1776/1042885/jwc0131776.pdf
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(iii) For future projections, the months January, February and March show the highest decreasing trends in all GCMs, but

the highest increasing trend is in September for streamflow. For ET, the June–September period shows the highest posi-
tive trends, but the peak negative trend is in May and December for GCMs and RCP scenarios. Since it is difficult to
accurately predict the future evolution of vegetation and LULC in the study region, the projected changes in hydrolo-

gical fluxes by the models will have an uncertainty based on this. Therefore, care must also be taken when interpreting
future projections.

In summary, the declining trend of streamflow may trigger water scarcity in the region, which will adversely affect drinking
water and agriculture activities during the non-monsoon periods. Since crops are projected to experience moisture stress due
to prolonged dry spells, irrigation is essential during the non-monsoon periods. Therefore, water resources management is
highly warranted for ensuring sustainable crop production in order to meet the food demands of a growing population.

This systematic multi-temporal analysis for the MDRB will provide a better planning framework for river basin management
in mountainous regions and for policy formulation.
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