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ABSTRACT

Bangladesh is situated at the confluence of GBM basins, with 90% of the basin area locating outside the country. Future climate change will

lead to intense, prolonged, and frequent floods in Bangladesh. An integrated flood risk assessment that transforms flood risks from trans-

boundary river basins to the local administrative level is necessary. A 1D/2D hydrodynamic model is developed for flood vulnerable Arial

Khan River feed by basin-scale hydrologic model for low (RCP2.6) and high (RCP8.5) climate scenarios. An increasing trend in flood depth,

duration, and area is observed from the early (2020s) to the end (2080s) of the century for both scenarios. The difference between both

RCPs is minimal from the 2020s to 2050s but becomes very pronounced in the 2080s. The depth-duration-area with equal weightage provides

better hazard results for the area. Flood risk is assessed using the IPCC AR5 framework incorporating vulnerability and exposure. Some

medium-hazard zones fall into high-risk zones due to high exposure and vulnerability to flooding. The areas along the left reach are found

more hazard-prone, while the areas on the right side are more risk-prone in the 2080s of RCP8.5. The hazard/risk maps will help policymakers

identify priority areas for planning a sustainable flood management strategy.
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HIGHLIGHTS

• Flood risk is transferred from transboundary river basins to local administrative levels using a multi-model hydrological-hydrodynamic-

statistical modelling system.

• High-resolution bias-corrected GCM climate data is used.

• IPCC AR5 climate scenarios and risk framework are considered.

• Future flood hazard and risks are assessed for Arial Khan River Floodplain for the 2020s, 2050s, and 2080s.

• Medium hazard zones might have high flood risk in the future.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Bangladesh is highly susceptible to floods due to its location at the confluence of the world’s three major basins – Ganges-
Brahmaputra-Meghna (GBM) and hydro-meteorological and topographical characteristics of the basins (Shaw et al. 2013).
About 92.5% of the combined basin lies outside of Bangladesh in the neighbouring countries: India, China, Nepal, and
Bhutan (Mirza et al. 2003). Furthermore, about 80% of the annual rainfall occurs in the monsoon (June to September)

across these river basins. Therefore, Bangladesh drains out huge cross-border runoff and internal runoff through a network
of rivers moving towards the final destination – the Bay of Bengal. The volume of generated runoff exceeds the natural
drainage capacity most of the time and causes frequent floods in Bangladesh.

On average, annual floods inundate 20% of the country, reaching as high as about 70% during extreme flood events (Mirza
2002). Increasing GHG emissions, global warming, and climate change will undoubtedly worsen the situation manifold.
IPCC (International Panel on Climate Change) fifth assessment report (AR5) projects an increase in global temperature in

between 0.3 and 4.8 °C for low (RCP – Representative Concentration Pathway 2.6) to high (RCP8.5) emission scenario by
the end of 21st century (IPCC 2013). At the same time, the equatorial Pacific is likely to experience an increase in mean pre-
cipitation under the RCP8.5 scenario (IPCC 2013). Climate variability is also a factor in understanding the hydrologic cycle

response due to global warming. Though changes in mean precipitation and temperature have been studied intensively in
recent years, precipitation variability has gained less attention. However, the detection of spatial and temporal patterns of
climate variability is a challenging issue. One of the most critical factors in choosing the time resolution which can result
in different spatial and temporal patterns (Amiri & Mesgari 2017, 2019; Amiri et al. 2017). Higher inter-annual climate varia-

bility is reported to be increased in the future due to global warming (Pendergrass et al. 2017). Specifically, precipitation
variability will increase 3–4% K�1 globally, and 4–5% K�1 over land and 2–4% K�1 over the ocean by the end of the 21st

century under RCP8.5 (Pendergrass et al. 2017). All these projections indicate a significant change in the hydrological

cycle of the GBM basins. Particularly, glaciers melting in the upper Hindu-Kush Himalayan (HKH) region will increase
the flow in the GBM rivers, enhancing the risk of monsoon floods in Bangladesh. Simultaneously, the monsoon regime
will increase precipitation in some of the places in Bangladesh. As a result, the frequency, intensity, and longevity of
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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floods will increase significantly in the future decades (Mohammed et al. 2018). Hence, a sustainable flood management plan

considering climate change impact is necessary for Bangladesh.
At present, flood risk assessment is recognized as an essential input for formulating flood management plans and policies at

the national, regional, and local levels (ISRBC 2014). Flood hazard and risk studies help planners and policymakers in iden-

tifying the priority areas for planning any future flood management strategies. Basin-scale assessment of climate change
impact plays a vital role in this regard. It’s crucial for Bangladesh since more than 90% of the upstream catchment area of
the river systems of Bangladesh is located outside the country (Mirza et al. 2003). Ignoring the impact of the huge flow
from upstream basins might result in inaccurate flood assessment. Hence, the transformation of floods from the basin

scale to the local scale is inevitable and challenging. Regional-scale hydrologic modelling coupled with local-scale hydrodyn-
amic modelling is a novel approach for incorporating the upstream basin flow inputs in local-scale flood hazard and risk
assessment. Worldwide many such studies have been conducted so far. Dankers & Feyen (2008) studied the climate

change impact in future floods in Europe using regional climate model HIRHAM and flood model LISFLOOD under
IPCC Special Report on Emission Scenarios (SRES) - A2 (high) and B2 (low) emissions scenario. Ahmadisharaf et al.
(2017) incorporated an integrated framework of a hydrologic model, a two-dimensional hydraulic model simulation, and a

GIS-based technique for future flood hazard mapping of the Swannanoa River watershed in the U.S. If we focus on Asian
countries, Shrestha & Lohpaisankrit (2017) assessed the flood hazard of the Yang River of Thailand for RCP 4.5 and
RCP8.5. Gusain et al. (2020) recently studied the impacts of climate change on flood hazards of the Mahanadi River

Basin of India under the RCP8.5 scenario. Though the world’s research on future flood hazard and risk assessment is
quite advanced, it has hardly been investigated in Bangladesh. Recently, Nishat (2017) developed the flood inundation
map of the Brahmaputra River floodplain of Bangladesh for the warmest projection (RCP 8.5) considering the upstream
basin-scale flood input from the Brahmaputra basin. However, it should be investigated for other flood-vulnerable rivers of

the country as well.
Additionally, considering the flood threat of Bangladesh, an integrated flood risk assessment that connects the physical

flood hazard with socio-economic aspects is necessary too. Previously, Das et al. (2018) quantified the future flood hazard

of the Surma-Kushiara river system of Bangladesh, overlooking upstream basin runoff from the Meghna Basin. Brouwer
et al. (2007) studied the socio-economic vulnerability and adaptation aspects of flooding in Bangladesh under climate
change. However, all these studies either account for the hydrological characteristics of flood hazard or socio-economic con-

text. Though few combined hazard and risk studies (Tingsanchali & Karim 2005; Ali et al. 2019) are conducted in the past,
these studies are based on historic hydrologic data assuming stationarity of the climate, i.e., no shift in climate over time. Such
risk assessment might underestimate the long-term impact of climate change (Milly et al. 2008). Hence, an integrated flood
risk assessment for the flood-vulnerable rivers of Bangladesh under future climate emission scenarios is essential.

In this study, the climate change impact of two large upstream basins – Ganges and Brahmaputra (Figure 1(a)) with a com-
bined area of approximately 1.6 million sq. km. has been incorporated in the local river Arial Khan through employing
multiple numerical models to estimate the future flood scenarios at Arial Khan River and its floodplain. It is a river of the

southwest zone of Bangladesh (shown in Figure 1(c)), the upper reach of which is subjected to riverine floods (Tingsanchali
& Karim 2005). The river’s water level was above the danger level (Figure 1(d)) during the big flood events - 1987, 1988, 1998,
2004, 2007, 2010, 2011, etc. of Bangladesh and caused tremendous sufferings to the people dwelling on its floodplain (FFWC

2018). The previous studies on the Arial Khan are centred on either morphological process or river erosion contexts (Winkley
et al. 1994; Mamun 2008; Akter et al. 2013). No study focusing on integrated flood risk of the Arial Khan River is conducted
yet. Considering these facts, the current study is designed to assess the integrated flood risk of the Arial Khan River using the

IPCC AR5 risk framework considering both low and high emission scenarios. To achieve the scope, three specific objectives
are fixed as – (i) to develop a multi-model hydrology-hydrodynamic modelling framework to assess the future flooding scen-
arios of the Arial Khan River (ii) to prepare flood hazard maps for the low (RCP 2.6) and high (RCP 8.5) emission scenarios,
and (iii) to prepare integrated flood risk maps of Arial Khan River floodplain using IPCC AR5 risk framework.

While most of the studies in the past focus on either flood hazard or risk assessment, the novelty of the current research
lies in assessing local-scale flood hazard incorporating upstream basin flows using RCP low and high emission scenarios,
then connecting the physical flood hazard with socio-economic contexts in terms of vulnerability and exposure indices

and finally assessing integrated flood risk using the most recent emission scenarios and climate risk framework proposed
by the IPCC in AR5. Among all the RCP scenarios of Coupled Model Intercomparison Project 5 (CMIP5), the RCP2.6
and RCP8.5 are selected as being optimistic (low concentration) and pessimistic (high concentration) scenarios of the
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf



Figure 1 | Study area (a) Ganges-Brahmaputra-Meghna (GBM) Basins with their outlets in Bangladesh, (b) Brahmaputra-Ganges-Padma River
system connected with the Arial Khan River, (c) Arial Khan River and floodplain and (d) Water level time series of Arial Khan River at d/s
hydrological station (Madaripur SW 5) w.r.t. flood danger level.
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future. The concept and associated definitions of hazard, exposure, vulnerability, and risk used in the present study are
annexed in Supp. Table 1.
2. STUDY AREA

Bangladesh is the greatest deltaic plain at the confluence of the GBM rivers and their tributaries, covering an area of 1.7
million sq. km (Figure 1(a)). Being originated from the Himalayas of China, the Ganges and the Brahmaputra rivers flow
through China and India, and then enter Bangladesh. Flowing some distance in Bangladesh, both the rivers join and form

the Padma River (Figure 1(b)). Bifurcating from the Padma at Goalundo (Figure 1(c)), the Arial Khan River flows through
Faridpur and Madaripur districts before falling into the Tentulia River (BWDB 2011).

The Arial Khan River maintains a meandering channel through its course and is navigable throughout the year. The total
length of this river is 160 km, with an average width of 300 m and a bed slope of 0.00003 (BWDB 2011). The river has two

parts: the Arial KhanUpper (AKU), and the other is called the Arial Khan Lower (AKL). The Arial KhanUpper and its adjacent
floodplains are selected due to its existing problems with monsoon flood inundation (Tingsanchali &Karim 2005) [Figure 1(c)].
The reach length chosen considered in this study is 70 km. The floodplain of this portion of the river consists of eight Upazilas of

four Districts – Madaripur, Shibchar and Rajoir Upazila of Madaripur District; Janjira, and Shariatpur Upazila of Shariatpur
District; Bhanga, and Sadarpur Upazila of Faridpur District; and Maksudpur Upazila of Gopalgonj District. District and Upa-
zila are served as the first- and second-level administrative units, respectively. For detailed analysis, Upazila is considered as the
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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land unit in this study. The total study area is nearly 1,825 km2. The selected reach of theArial KhanRiver is not protected by any

flood embankment or coastal polder.

3. MATERIALS AND METHODS

3.1. Data

To develop the hydrodynamic models, the measured discharge, river cross-section, and water level data are collected from the

BWDB. For the flood modelling, the 90 m SRTM DEM, measured w.r.t. Mean Sea Level (MSL) is used in the model. On the
other hand, the river cross-section and water level are measured in Public Work Datum (PWD). Hence, the DEM has verti-
cally translated from MSL to PWD by adding an elevation of 0.46 m. The Landsat-5 TM image is downloaded from the USGS
website (Supp. Table 2). Exposure and vulnerability statistics are collected from the Population Census 2011 and Agriculture

Census 2008 of the Bangladesh Bureau of Statistics (BBS 2020). These are the most recent demographic and socio-economic
data currently available in Bangladesh. The different datasets used in this study are tabulated in Table 1.

3.2. Climate data

Climate studies are highly dependent on the climatic projections simulated by different Global Climate Models (GCMs) and

Regional Climate Models (RCMs). The coarse resolution (100–200 km) of the GCMs of CMIP5 poses different limitations to
simulate regional-scale climate impact. Though downscaled high-resolution RCMs with detailed spatial information address
this gap, such dynamic downscaling requires another step of computation at a different regional modelling grid with bound-

ary conditions set from lower resolution global scale GCM. Hence, it is computationally expensive and introduces additional
uncertainties from physical parameterizations, boundary conditions, regional model setups, and bias corrections (Koutroulis
et al. 2018). Hence, several studies suggested for GCMs with higher resolution that are able to simulate the observed energy

spectrum of the climate system (Koutroulis et al. 2016; Zhang et al. 2016). To address these gaps, some improved and higher
resolution Atmosphere Global Climate Models (AGCMs) is driven by a subset of CMIP5 GCMs and forced with Sea Surface
Temperature (SST) and Sea Ice Concentration (SIC). ‘EC-EARTH3-HR’ (Hazeleger et al. 2011) is such an AGCM simulated
under the HELIX project. It is bias-corrected data with a high spatial resolution of 0.5° (∼50 km). Mohammed et al. (2018)
checked the quality of the climate data and used it to model future flow scenarios of Brahmaputra and Ganges basins in
SWAT and found satisfactory results for both basins. Hence, this high-resolution and bias-corrected climate data is used in
this study. However, since EC-Earth-HR is performed under the HELIX project for low (RCP2.6) and high (RCP8.5) emission

scenarios only, it’s not possible to explore this research for other RCP scenarios.

3.3. Model selection

A multi-model hydrology-hydrodynamic modelling framework is developed here to estimate future flooding scenarios in this
study. There are many recognized hydrologic models such as HEC-HMS, SWAT, VIC, TOPMODEL, MIKE SHE, etc. The

SWAT model is chosen here as it is a widely recognized open-source model for regional scales hydrological modelling
due to its accuracy and flexibility (Mohammed et al. 2017). Many regional basin-scale hydrological studies have been
Table 1 | Summary of the environmental and socioeconomic datasets used in this study

Data Type Location/Station Name/Station ID Data Source

Daily precipitation and maximum
and minimum temperature

Brahmaputra & Ganges basins Princeton Global
Forcing (version 2)

River bathymetry/cross-section Brahmaputra, Ganges, Padma & Arial Khan River BWDB

Discharge Bahadurabad Transit (SW 46.9 L), Hardinge Bridge (SW 90), Mawa (SW
93.5 L) & Chowdhury Char (SW 4A)

BWDB

Water level Bahadurabad Transit (SW 46.9 L), Hardinge Bridge (SW 90), Gualondu
(SW 91.9R), Mawa (SW 93.5 L), Sureswar (SW 95), Chowdhury Char
(SW 4A) & Madaripur (SW 5)

BWDB

Landsat-5 TM satellite image Arial Khan River floodplain (Path/Row - 137/044) USGS

Population statistics/Demographic
socio-economic statistics

Faridpur, Gopalgonj, Madaripur & Shariatpur BBS

://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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conducted using SWAT since 2007 to date and appreciated for satisfactory results (Abbaspour et al. 2007; Solaymani &

Gosain 2015; Rajib et al. 2020).
Among the hydrodynamic models, HEC-RAS, Delft3D, MIKE 11, LISFLOOD-FP, TU-Flow, etc., are some widely used

numerical models. The hydrodynamic models are selected based on their application, spatial-temporal dimension, time-

space-resource availability, etc. (Betancur-Pérez et al. 2016). 3D models are typically applied in small-scale coastal (Fossati
& Piedra-Cueva 2013) or river modelling (Nicholas & McLelland 2004), fish pass (Gisen et al. 2017; Stamou et al. 2018),
hydraulic structures (Nagata et al. 2005; Yang 2007), vortex analysis (Zhong et al. 1998), salinity (Larson et al. 2005), etc.
Flood inundation mapping is a simple 2D overflow phenomenon. The vertical component is not crucial here. Application

of a 3D model in such cases might cause complexities in the model setup and increase computational time, cost and
space. Hence, large-scale flood inundation analysis is conducted with a 2D (Sutter 2019) or 1D/2D coupling (Rangari
et al. 2019; Costabile et al. 2020). The open-source hydrodynamic model HEC-RAS is a widely used flood model due to

its accuracy in analyzing river systems and recently added feature of 1D/2D river-floodplain coupling (Brunner 2016). The
ability of HEC-RAS to perform combined 1D and 2D modelling within the same model allows 1D modelling in the main
channel and 2D modelling in the floodplains (Brunner et al. 2015). As high-resolution river bathymetry data is practically

non-existent in Bangladesh, the 1D/2D coupling provides a convenient trade-off between spatial accuracy and data require-
ments. Recently, many flood studies were conducted using HEC-RAS 1D/2D coupled model (Patel et al. 2017; Vozinaki et al.
2017; Das et al. 2018) and found satisfactory results.

3.4. Methodology

The primary objective of this study is to prepare flood hazard and risk maps for the Arial Khan River floodplain using a multi-
model hydrology-hydrodynamic modelling framework under future climate change scenarios. A complete research method-
ology is illustrated in Figure 2 and described in the subsequent sections.

3.4.1. Regional hydrological modelling in SWAT

For a robust estimate of the future discharge scenarios, SWAT models of Ganges and Brahmaputra basins, developed

by Mohammed et al. (2018) has been used here. SWAT model follows the basic water balance equation, as shown in
Equation (1).

SWt ¼ SW0 þ
Xt
i¼1

Ri �Qi � ETi � Pi �QRi (1)

where, SWt is the final soil water content, t is time, SW0 is the initial soil water content on day i, Ri is the amount of precipi-
tation on day i, Qi is the amount of the surface runoff on day i, ETi is the amount of the evapotranspiration on day i, Pi is the

amount of the percolation on day i, and QRi is the amount of return flow on the day i.
Figure 2 | Flow diagram showing the research methodology.
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The SWAT model has been developed using 90 m DEM from HydroSHEDS, GlobCover land-use map from ESA, digital

soil-map from FAO, and meteorological data from Princeton Global Forcing. The performance of the model is graphically
shown in Supp. Figure 1 and statistically quantified in Supp. Table 3. More details on the SWAT model development, sensi-
tivity analysis, calibration, and validation are found in Mohammed et al. (2018).

3.4.2. Hydrodynamic modelling in HEC-RAS

The hydrodynamic modelling framework used here is HEC-RAS 5.0.1, developed by the US Army Corps. For 1D unsteady
analysis, HEC-RAS solves 1-D Saint Venant Equation derived from Navier-Stokes Equations for shallow water flow con-
ditions using an Implicit Finite Difference method. For 2D analysis, HEC-RAS uses the Implicit Finite Volume algorithm

and solves either full 2D Saint Venant equations or 2D Diffusion Wave equations as defined in Equations (2)–(4) depending
on the requirement and preference (Brunner 2016; Quiroga et al. 2016).

dz

dt
þ dr

dx
þ dq

dy
¼ 0 (2)

dr

dt
þ d

dx
p2

h

� �
þ d

dy
pq
h

� �
¼ �n2pg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
h2 � gh

dj

dx
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rdx
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(htxy) (3)

dq
dt

þ d

dy
q2

h

� �
þ d

dx
pq
h

� �
¼ �n2qg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
h2 � gh

dj

dy
þ qf þ d

rdy
(htyy)þ d

rdx
(htxy) (4)

where h is the water depth (m), p and q are the specific flow in the x and y-direction (m2s�1), j is the surface elevation (m), g is
the acceleration due to gravity (ms�2), n is the Manning resistance, r is the water density (kg m�3), txx, tyy and txy are the
components of the effective shear stress and f is the Coriolis (s�1).

3.4.2.1. HEC-RAS 1D Model. An HEC-RAS 1D model is developed to simulate the upstream boundary flow to the HEC-
RAS 1D/2D flood model (Supp. Figure 2). This 1D model has been set up for the Ganges, Brahmaputra, and Padma River

system using Bahadurabad Transit and Hardinge Bridge as upstream boundaries and Sureswar as a downstream boundary.
The u/s discharge boundaries and d/s water level boundary used for model calibration and validation are shown in Supp.
Figure 3(a) and 3(b).

3.4.2.2. Statistical Modelling. The Padma is the parent river (only contributor as well) of the Arial Khan. The hydrology
of the Arial Khan River follows almost the same pattern as the Padma River (FFWC 2018). A statistical regression model is

developed between the discharge at Mawa of the Padma River to that of Chowdhury Char of the Arial Khan River. Mawa
station of the Padma River is the closest station (10 km away) to the Chowdhury Char of the Arial Khan River. The other
closest station is nearly 40 km away at Bauria Transit which is also the confluence of two mighty rivers, Brahmaputra and

Ganges, making its flow disturbed. Hence, it is not appropriate for this purpose.

3.4.2.3. HEC-RAS 1D/2D coupled Flood Model. For the 1D river modelling, the bathymetry is set up using HEC-
GeoRAS and HEC-RAS (Supp. Figure 4 (a), (b)). Later, the daily discharge and water level of Chowdhury Char and
Madaripur are used as model boundaries (Supp. Figure 3c and 3d). For the 2D floodplain, a square gridded – mesh is

prepared in HEC-RAS Geometry Editor. Though a smaller mesh size increases the flood accuracy, it increases the
computational time and space in return. After several trials and errors, a square mesh of 150 m is used for this study.
Among six peripheral boundaries (Supp. Figure 4 (c)), two boundaries are added to the left edge to incorporate the flood
impact of the neighbouring Padma River. The rest of the boundaries (with a normal depth of 0.1m) are added to the

lower periphery to remove the stagnant floodwater during the recession period. Lateral structures are set up along the
river banks to create connections between the 1D river and the 2D floodplain.

After the model simulation, three flood parameters – flood depth (m), duration (days), and flood extent (m2) are drawn out

from the model. Flood depth (m) and area (m2) are extracted for their maximum value. The duration is computed when water
depth exceeds a specified threshold flood depth of 0.6 m. The result of the flood modelling is then used as the input in flood
hazard assessment described in section 3.6.
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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3.5. Model performance evaluation

The performance of the hydrodynamic and statistical models is evaluated using statistical indicators – Nash Sutcliffe Effi-
ciency (NSE), Coefficient of Determination (R2), and Normalized Root Mean Square Error (NRMSE). These are the most

widely accepted indices used for evaluating the performance of hydrodynamic models. Threshold values of the statistical indi-
cators are taken from Moriasi et al. (2007).

NSE is a normalized statistic that determines the relative magnitude of the residual variance compared to the observed data
variance. It ranges from 1 to -∞ with 1 as the optimum value. It is defined as:

NSE ¼ 1�

Pn
i¼1

(yobsi � ysimi )
2

Pn
i¼1

(yobsi � yobsmean)
2

2
6664

3
7775 (5)

R2 determines the proportion of the variance in the dependent variable that is predicted from the independent variables. It
ranges from 0 to 1, with 1 as the optimum value. It is defined as:

R2 ¼

Pn
i¼1

(yobsi � yobsmean)(y
sim
i � ysimmean)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
(yobsi � yobsmean)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(ysimi � ysimmean)
2

s
2
66664

3
77775

2

(6)

Normalized Root Mean Square Error (NRMSE) is used in this study to quantify the error between the observed values and
model simulated values using the following equation [Equation (7)]:

NRMSE ¼ 1
n

Xn
i¼1

yobsi � ysimi
yobsi

 !2
2
4

3
5
1=2

(7)

where, yobsi is the ith observed value for the constituent, ysimi is the ith simulated value for the constituent, yobsmean is the mean of
the observed data, ysimmean is the mean of the simulated data, and n is the total number of observations.

3.6. Hazard assessment

One or more parameters, such as flood depth, duration, inundation area, wave velocity, and rate of rising of water level (i.e.,
tide), are usually used to estimate flood hazards (Tingsanchali & Karim 2005). The hazard parameters are selected based on

the characteristics of the area (UN 1991). Arial Khan floodplain is a part of the southwest river system of Bangladesh. This
region is a large floodplain with flat topography (average % rise of SRTM DEM is 1.128; Supp. Figure 5), implying that the
impact of velocity is very low here. Analyzing the historical observed water level data, the average tidal range is found less

than 0.1 m at the model downstream boundary (Madaripur station) during the flood season. Hence, the flood flow velocity,
wave velocity, and tide level are not hazard dominating factors over the study area. Considering the study area characteristics,
three hazard parameters, (a) flood depth, (b) duration, and (c) area, are preliminarily selected for the hazard assessment. A

sensitivity analysis is also conducted, showing how the parameters are influencing the resulting hazard maps.

3.6.1. Hazard index (HI)

The HI is the intensity of flood hazards. Each hazard category of different parameters is given a linear index from 1 to 5. A

larger index means higher hazard, while a smaller hazard index means lower hazard. Among the available flood depth classi-
fications, Agro-ecological Zone Land classification by FAO and Flood classification by National Water Management Plan
(NWMP) are widely used in Bangladesh. Agro-ecological zone land classes are used for agricultural purposes. NWMP classi-

fication is used by the Flood Forecasting and Warning Center (FFWC) of BWDB, which is the officially mandated
government organization of Bangladesh for all kinds of food-related studies. Considering the purpose of this study, the
flood depths are classified following the NWMP guidelines. The hazard classification for the duration of flooding used
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Table 2 | Hazard index for the selected hazard indicators

Depth of Flooding (m) Category HI Duration of Flooding (day) Category HI Area Inundated (%) Category HI

D� 0.3 Very Low 1 T � 3 Short 1 0,A � 20 Very Low 1

0.3,D� 0.9 Low 2 3, T� 7 Medium 2 20,A � 40 Low 2

0.9,D� 1.8 Medium 3 7, T� 25 Long 3 40,A � 60 Medium 3

1.8,D� 3.6 High 4 25 , T Very Long 4 60 ,A � 80 High 4

D. 3.6 Very High 5 80,A � 100 Very High 5
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here has been followed by Tu & Tingsanchali (2010). The % of area inundated is computed as the percentage of the total area
of that Upazila. The hazard index classification followed in this study is given in Table 2.

3.6.2. Mean hazard index (MHI)

The MHI of each land unit (here, Upazila) is calculated, independently, for depth and duration, considering the percentage of

land area under each category as given by Equation (8):

MHI ¼

Pn
i¼1

HIi LA
� �

Pn
i¼1

LA
(8)

where, HIi is the hazard index of land area LAi of hazard category i, and n is the total number of land areas in the land unit.

3.6.3. Hazard factor (HF)

The HF represents the combined flood effect due to flooding depth, duration, and area in a land unit, as shown in Equation (9).

HF ¼ a�MHIdepth þ b�MHIduration þ c�MHIinundation area (9)

where MHIdepth and MHIduration are the weighted average hazard index for flooding depth and duration, respectively, and
MHIinundation area is the arithmetic average hazard index for flooding area. a, b, and c are the weightage factors of the hazard
parameters.

3.7. Exposure and vulnerability assessment

3.7.1. Indicator selection

The Exposure and Vulnerability indices are selected following the concept of IPCC AR5. The selection is based on hazard

type, data availability, expert opinion, local communities, livelihoods, etc. Later, this list has been improved by looking
into recent literature (Kabir et al. 2017; Jahan 2018; Uddin et al. 2019). In total, 3 exposure and 12 vulnerability indicators
are selected. The exposure indicators are – 1. Population Density, 2. No. of Household, and 3. Cropped Land. Among the

vulnerability indicators, there are 4 Sensitivity indicators (1. Disable Population, 2. Dependent Population Ratio,
3. Female to Male Ratio, and 4. Poverty Rate), and 8 Adaptive Capacity indicators (1. Pucca and Semi-Pucca House1, 2. Com-
munication Infrastructure, 3. Crop Productivity, 4. Literacy Rate, 5. Health Centre, 6. Flood Shelter, 7. Growth Centre, and
8. Flood Forecasting &Warning System). The Sensitivity indicators give positive (þ)2 dependency on estimating vulnerability,

while Adaptive capacity provides the negative (-)2 dependency. This approach of quantifying vulnerability in terms of positive
and negative dependence is introduced by Cutter et al. (2003) and later used by Allen et al. (2016) and Jahan (2018) for vul-
nerability assessment.
1 A pucca house is one that has walls and roof made of pucca material such as bricks, stones, cement concrete, timber, etc and Semi -Pucca house: A house that

has fixed walls made up of pucca material but roof is made up of the material other than those used for pucca house
2 A positive (þ) dependency means that an increase in the variable indicates an increase in vulnerability, whereas a negative (–) dependency means that an

increase in the measured variable indicates a decrease in vulnerability.
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3.7.2. Normalization of the indicators

Normalization ensures comparability among the indicators regardless of their units of measurement (Kabir et al. 2017). A
normalized index is established with dimensionless values ranging from 1 (indicating low value) to 100 (indicating high

value) for each indicator of exposure and vulnerability. For each indicator (I), Upazila values (It) are normalized (Inor) to
values in a common range of 1 to 100 using Equations (10) and (11) as used by (Jahan 2018).

Inor ¼ 1þ (It � Imin)(100� 1)
(Imax � Imin)

(10)

Higher value of Inor indicates higher vulnerability (positive dependency).

Inor ¼ 1þ (Imax � It)(100� 1)
(Imax � Imin)

(11)

Higher value of Inor indicates reduced vulnerability (negative dependency).
3.7.3. Weightage of the indicators

The weightage of indicators is provided to ensure that the most significant indicators are given more importance than the

others (Kabir et al. 2017). Equal Weighting (Sarkar et al. 2019), Expert Weighting (Ahsan & Warner 2014), Participatory
Rural Appraisal (PRA) (Younus 2017), Analytical Hierarchy Process (AHP) (Lappas & Kallioras 2019), Principal Component
Analysis (PCA) (Uddin et al. 2019) are widely used weightage methods for socio-economic vulnerability assessment in Ban-

gladesh. Expert weighting, PRA, AHP provide better results for the small-scale weightage selection process (Jahan 2018).
However, none of these approaches satisfactorily quantifies large-scale weight assessment as they highly depend on
human judgment, sample size, and techniques and are computationally expensive. In these particular cases, statistical
methods are considered to be more scientifically defensible, unbiased towards expert opinion and local perception, and

less resource-intensive. PCA is such a statistical method that extracts a smaller and more coherent set of uncorrelated (orthog-
onal) factors from a large number of variables, where the first component accounts for the largest possible amount of
variation in the original variables, and each succeeding component accounts for as much of the remaining variability as poss-

ible (Gbetibouo et al. 2010). Hence, PCA is used to provide Upazila-wise weightage to the indicators. After assigning weights
using PCA, the Exposure and Vulnerability of each of the Upazilas are calculated by using Equations (12) and (13).

Exposure ¼ W1�IEX1 þW2�IEX2 þW3�IEX3 þ : . . . . . . . . . . . . ::Wn�IEXn (12)

Vulnerability ¼ W1�Iv1 þW2�Iv2 þW3�Iv3 þ : . . . . . . . . . . . . ::Wn�Ivn (13)

where W is the weight of the indicator, IEX is the normalized indicator of exposure, and I is the normalized indicator of vul-

nerability. Suffix 1,2…..n are used to represent each item, and n is the total number of items.
3.8. Integrated risk assessment

Finally, flood risk (R) is calculated as the consequence of the physical hazard (H), intersecting with vulnerability (V) and
exposure (E) following the IPCC AR5 risk framework as shown in Equation (14) (IPCC 2014; Allen et al. 2016).

R ¼ H�E�V (14)
3.9. Post-Processing in ArcGIS

Hazard, exposure, vulnerability, and risk indices are normalized and classified into five categories maintaining an equal inter-
val for each case, 0–20, 20.01–40, 40.01–60, 60.01–80, and 80.01–100 for Very Low, Low, Medium, High and Very High
respectively. Finally, the Upazila-wise hazard, exposure, vulnerability, and risk maps are prepared in ArcGIS.
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4. RESULTS AND DISCUSSION

4.1. Calibration and validation of developed models

4.1.1. Calibration & validation of HEC-RAS 1D model

The 1D HEC-RAS model for the Ganges-Brahmaputra-Padma (GBP) river has been calibrated and validated using the
observed flow at the Mawa station for four months from July to October for the year 2016 and 2017, respectively. Flow at

Mawa station is chosen since it is later used for developing statistical regression models between Arial Khan Offtake and
Padma. Here, the model’s sensitivity has been tested by changing Manning’s roughness coefficient n value for the model
and comparing the change in maximum discharge at Mawa station. The relation between Manning’s n value and correspond-

ing maximum discharge at Mawa shows discharge decreases for a higher Manning’s n value (Figure 3(c)). An increase in
Manning’s n value of 0.005 results on average 1,074.31 m3/s decrease in maximum discharge. After checking that the
model is sensitive to Manning’s n, four sets of Manning’s n as (0.015–0.02), (0.02–0.025), (0.025–0.03), and (0.03–0.035)
are adopted to calibrate the model for the main channel and both left and right banks. The comparison of observed and simu-

lated flow at Mawa (SW 93.5 L) station for various Manning’s n and corresponding statistical performance is presented in
Table 3a. The simulated discharge hydrographs for n¼ 0.015–0.02 and n¼ 0.02–0.025 do not match the observed discharge
in the beginning and end of the year, and there are some outliers in the simulated values. The trend and shape of the simulated

and observed hydrograph are almost similar for n as 0.025–0.03 and n as 0.03–0.035. Finally, n as 0.025 for the main channel
and n as 0.03 for the banks have been fixed as it gives the most acceptable values of R2 and NSE. The values of R2 and NSE
have been found to be 0.9168 and 0.9138, respectively, indicating that the simulated value is very close to the observed value

and within the acceptable range. Using the calibrated Manning’s n, validation has been performed for the year 2017.
Figure 3(f) shows the simulated flow hydrograph is in close agreement with the observed flow hydrograph. In this case,
the coefficient of determination R2 and NSE have been found 0.8212 and 0.7424, respectively, which indicates that the vali-

dated value is closer to the observed value (Table 3a).
4.1.2. Performance of regression model

A statistical regression model is developed between the discharge at Mawa of the Padma River to that of Chowdhury Char of
the Arial Khan River. Five different regression models: Linear, Exponential, Logarithm, Polynomial, and Power, are tried
using the observed discharge data for the monsoon period of the year from 1965 to 2017 (Figure 3(a) & Table 4). A two-

tailed Student T-test is conducted at a 5% significance level to check the quality of the data obtained from differential
equations. For T-test,

• The null hypothesis (H0) assumes that the difference between the true (observed) mean (μ) and the comparison (model)

mean (m0) is equal to zero (H0: μ¼m0). i.e., no significant difference in the observed mean and model mean.

• The alternative hypothesis (H1) assumes that the difference between the true mean (μ) and the comparison mean (m0) is
not equal to zero (H1: μ≠m0), i.e., a significant difference exists between the observed mean and model mean.

If the p-value is less than significance level alpha¼ 0.05, we reject the null hypothesis. On the other hand, if the p-value is

greater than alpha¼ 0.05, we accept the null hypothesis. The p-values of Exponential (7.1044E-190), Polynomial
(0.01008314), and Power (1.08119E-06) are less than alpha. Hence, we reject the null hypothesis, i.e., the population
means are different. On the other hand, the p-values of Linear (0.945843311) and Logarithmic (0.986220415) are greater

than alpha 0.05. Hence, we can accept the null hypothesis, i.e., that the population means are the same. The linear Equation
(Equation (15)) is selected for further investigation based on the NSE and R2 values among the Linear and Logarithmic
equations.

QArialKhan ¼ 0:0358�QPadma–281:03 (15)

where QArial Khan and QPadma are the discharge of Chowdhury Char and Mawa.

The 95% confidence and prediction interval are estimated for the selected linear regression equation (Figure 3(b)) to quan-
tify the uncertainty. Here, the confidence interval shows the uncertainty involved in predicting mean response at 95%
confidence interval that means it is 95% confident that the mean discharge of Arial Khan will fall in this range. On the
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf



Figure 3 | Performance evaluation of the developed models (a) different statistical regression models between Arial Khan River and Padma
River, (b) confidence and prediction interval for the selected linear regression model (c) change in discharge due to change in Manning’s n
value of Ganges-Brahmaputra-Padma River HEC-RAS model at the Padma River (d) change in water level due to change in Manning’s n value
of Arial Khan HEC-RAS model (e) calibration and (f) validation of GBP model, (g) calibration and (h) validation of the Arial Khan model.
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Table 4 | Performance of different statistical models developed between Padma and Arial Khan

No.
Regression
model Equation

Two-tailed T test at 5% significance level

NSE R2P value Comment

1 Linear y¼ 0.0358x� 281.03 0.94584 Accept Null Hypothesis, Mean is
same, Acceptable

0.59921 0.59920

2 Exponential y¼ 343.78e3E-05x 7.10E-190 Reject Null Hypothesis, Mean is not
Same, Not Acceptable

�0.56896 0.52940

3 Log y¼ 1663.4ln(x)� 6326 0.98622 Accept Null Hypothesis, Mean is
same, Acceptable

0.55589 0.55590

4 Polynomial y¼ 7E-09x2þ 0.035x � 261.32 1.01E-02 Reject Null Hypothesis, Mean is not
same, Not Acceptable

0.59830 0.59920

5 Power y¼ 0.0014x1.2779 1.08E-06 Reject Null Hypothesis, Mean is not
same, Not Acceptable

0.59421 0.59740

Table 3 | Performance evaluation of the hydrodynamic model HEC-RAS

Model Period
Calibration
Location

Manning’s Roughness
Coefficient (n) Performance Evaluation

Trials
Main
Channel Banks NSE Performance R2 Performance

(a) Ganges-
Brahmaputra-
Padma River
System

Calibration (2016) Padma River
(Mawa-SW
93.5 L)

1 0.015 0.020 0.7327 0.7501
2 0.020 0.025 0.8861 0.8894
3 0.025 0.030 0.9138 very good 0.9168 very good
4 0.030 0.035 0.9136 0.9166

Validation (2017) Padma River
(Mawa-SW
93.5 L)

– 0.025 0.030 0.74 good 0.9974 very good

(b) Arial Khan
River

Calibration (2015) Arial Khan
River
(Chowdhury
Char – SW
4A)

1 0.010 0.015 0.943 0.9974
2 0.015 0.020 0.892 very good 0.9952 very good
3 0.020 0.025 0.775 0.9929
4 0.025 0.030 0.630 0.9908
5 0.030 0.035 0.471 0.9974

Validation (2017) Arial Khan
River
(Chowdhury
Char – SW
4A)

– 0.015 0.020 0.88 very good 0.99 very good

Journal of Water and Climate Change Vol 12 No 7, 3433

Downloaded from http
by guest
on 23 April 2024
other hand, the prediction interval shows the range of uncertainty in predicting a single response at a 95% confidence interval

that means it is 95% confident that any discharge of Arial Khan will fall in this range.

4.1.3. Calibration & validation of HEC-RAS flood model

The 1D model of the Arial Khan flood model has been calibrated using the observed daily water level data at Chowdhury
Char station for twelve months from January to December of 2015. The model’s sensitivity has been tested by changing
the Manning’s n value for the Arial Khan River and comparing the change in maximum water level at Chowdhury Char.

The relation between Manning’s n and corresponding maximum water level at Chowdhury Char shows water level increases
for a higher Manning’s n value (Figure 3(d)). An increase in Manning’s n value of 0.005 results on average 0.38 mPWD
increase in maximum water level. After checking the sensitivity, five sets of Manning’s n as (0.010–0.15), (0.015–0.02),

(0.02–0.025), (0.025–0.03), and (0.03–0.035) are adopted to calibrate the model. Comparison between the observed and simu-
lated stage hydrographs for different sets of Manning’s ‘n’ shows that the trend and shape of the observed and simulated
hydrographs are almost similar (Figure 3(g)). The simulated hydrograph of n as 0.015 for the main channel and n as 0.02
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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for the left and right banks matches more accurately with the observed hydrograph. The simulated water level and observed

water level almost matches in monsoon from June to September. The model overestimates during the dry season from Octo-
ber to May. However, as the main focus of this study is monsoon flood hazard assessment, this discrepancy does not affect the
final results.

Among different sets of roughness values, the R2 and NSE values of n as 0.01–0.015 have been found 0.9974 and 0.943, and
the R2 and NSE values of n as 0.015–0.02 have been found 0.9974 and 0.892. The visual observation shows that 0.015–0.02
more accurately captures the monsoon season flow than 0.01–0.015. Hence, n as 0.015–0.02 has been fixed as Manning’s ‘n’
for all the cross-sections of the Arial Khan River. Using the calibrated Manning’s n, model validation has been performed for

the year 2017. The validation has also shown satisfactory results. Figure 3(h) shows that the simulated stage hydrograph is in
close agreement with the observed hydrograph. There were slight differences in simulated water level and observed water
level in the dry season like calibration. In the validation, the coefficient of determination R2 and NSE have been found

0.989 and 0.882, respectively, which indicates a good correlation between the observed and simulated data and indicates
the model’s accuracy for further analysis.

4.1.3.1. Comparison of 2D Flood Inundation. The 2D flood inundation is validated comparing with the available
satellite images. The simulated flood inundation map on 25 August 2004 is validated by comparing the flood inundation

map derived from the Landsat-5 TM satellite image taken on the same day, as shown in Figure 4. The model flood map
shows a significant flood around the Arial Khan River, which agrees with the Landsat map of that day. Additionally, a
quantitative comparison of the flood inundation area has been made between Landsat and Simulated flood map based on

NDWI (Normalized Difference Water Index). The flood area found from the satellite image, and the simulated model is
550.76 km2 (26% of the study area) and 510.11 km2 (24% of the study area). Upazila-wise, the floods in Janjira, Shibchar,
Madaripur, and Bhanga highly coincide with the satellite image. However, the flood in Sadarpur is slightly overestimated,
and the floods in Shariatpur and Madaripur are somewhat underestimated. The flooding along the main channel was

accurately simulated as the upstream discharge was accurately estimated through the above-mentioned hydrological and
hydrodynamic models. However, since the local rainfall is not dynamically incorporated in the 2D modelling, the model
couldn’t appropriately capture the flood in the peripheral depressions filled by the local rain. Hence, flood in the

periphery of the study area (especially the southwest and southeast zone) was slightly underestimated.

4.2. Climate change projections

The calibrated and validated Ganges-Brahmaputra SWAT model is simulated with the EC-EARTH3-HR data from 1976 to

2100 for RCP2.6 and RCP8.5 scenarios and daily flow hydrographs are extracted. The hydrographs show that the future
flow for RCP2.6 and 8.5 is similar from 1976 to 2040 (Supp. Figure 6). After that, the future flow for the RCP8.5 scenario
is significantly higher than that of RCP2.6 for both of the basins.

From SWAT simulations, three thirty-year long time slices are considered for each of the RCP scenarios – the early (2020s
z; 2006–2035), the mid (2050s: 2036–2065), and the end (2080s: 2066–2095) of the 21st century. The climate data typically
Figure 4 | Qualitative comparison of inundation map prepared using (a) Landsat-5 satellite images and (b) simulated model.
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contains a lot of outliers. So, extreme flood scenarios are assessed by the 90th percentile rather than the mean or maximum of

the dataset (Bonsal et al. 2001). This concept has been used in many climate studies to generate future climate scenarios
(Beniston et al. 2007; Braun et al. 2014). Hence, the 90th percentile daily flow hydrographs for each of the mentioned
time slices under RCP 2.6 and 8.5 scenarios have been extracted, as shown in Figure 5. Later on, these hydrographs have

been used as the future u/s discharge boundaries of the HEC-RAS 1D model.

4.3. Projected changes in floods

The projected flood parameters are extracted, and flood maps for different time periods under RCP2.6 and RCP8.5 are pre-
pared in ArcGIS (Figure 6). An increasing trend in the flood area, depth, and duration are observed from the 2020s to the

2080s for RCP2.6 and RCP8.5 scenarios. The difference between RCP2.6 and RCP8.5 is not significant from the 2020 to
2050 s. However, the difference becomes very prominent after the 2050s. At the end of the 21st century, the total inundated
area is nearly 523 km2 (29% of the total area) under RCP2.6, while it is almost 800 km2 (44% of the total area) under RCP8.5.

In total, 6 Upazilas (Sadarpur, Madaripur, Rajoir, Shibchar, Shariatpur, and Zanjira) out of 8 Upazilas is flooded in the
2020s of RCP2.6 and RCP8.5 (Table 5). The flood in Shariatpur is very insignificant. No flood is found in Bhanga and Mak-
sudpur Upazilas. However, the flooding scenario changes with time, especially it significantly exacerbates after the 2050s. At
Figure 5 | 90th percentile daily flow hydrograph for the 2020s, 2050s, 2080s (a) the Brahmaputra and (b) Ganges for RCP2.6 (c) the Brah-
maputra and (d) Ganges for RCP8.5.
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Figure 6 | Flood depth in (a) 2020s (b) 2050s (c) 2080s under RCP2.6 and in (d) 2020s (e) 2050s (f) 2080s under RCP8.5; Flood duration in (g)
2020s (h) 2050s (i) 2080s under RCP2.6 and in (j) 2020s (k) 2050s (l) 2080s under RCP8.5; Flood extent in (m) 2020s (n) 2050s (o) 2080s under
RCP2.6 and in (p) 2020s (q) 2050s (r) 2080s under RCP8.5.
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the end of the 21st century, the flood-affected areas are 5, 76, 17, 113, 55, 73, 45, and 138 km2 under RCP2.6 and 100, 81, 109,

131, 84, 94, 60 and 139 km2 under RCP8.5. Therefore, it can be inferred that the flood-affected area will increase significantly
in both RCP8.5 due to climate change.

4.4. Sensitivity of flood hazard parameters

The sensitivity analysis of the hazard parameters is important to assess (a) the sensitivity of each of the hazard parameters in the
resulting hazard maps and (b) also their relative importance in the results. To answer these, different combinations of hazard
maps are developed based on individual parameters (depth, duration, and area) as well as a combined parameter (Figure 7).

These figures explain how the different hazard parameters will influence the resulting hazard maps individually and com-
binedly. The sensitivity analysis further shows that the combined hazard map better represents the actual flood scenario for
the study area than the ones prepared on the individual parameter. For example, if only depth or duration is considered, the

Maksudpur is found in a high and very high hazard zone in the 2080s of RCP8.5 (Figure 7f or 7l). But if the flood maps are cri-
tically observed (Figure 6), it is evident that it (Maksudpur) is far from the Arial Khan and Padma River. So, it is usually flooded
only in high floods (Figure 6f, 6l, and 6r). However, as it is a low-lying area (Supp. Figure 7), the flood water remains there for a
long duration. So, depth and duration are found high there, even though the inundation area is minimal. Since only one par-

ameter (either depth or duration) is considered, Maksudpur falls into the High Hazard zone. The inclusion of inundation
area along with depth and duration represents the real flood scenario of Maksudpur. So, all three parameters seem sensitive
for the hazard assessment of the Arial Khan floodplain. So, the combined hazard maps are used for the rest of the paper.

The next question is the relative importance of each of the three selected parameters in the final hazard maps. For this, the
corresponding weightage factors of depth (a of Equation (9)), duration (b of Equation (9)), and area (c of Equation (9)) are
tested by the trial-and-error method. Five trials are given as 1st Trial :(0.333, 0.333, 0.333), 2nd trial: (0.4, 0.3, 0.3), 3rd

Trial: (0.3, 0.4, 0.3), 4th Trial: (0.3, 0.3,0.4) and 5th Trial: (0.35, 0.35, 0.25) (Table 6). No difference between the first and
second trials is found. A very insignificant difference is found in the rest of the trials (marked by grey). Among the total
48 sets, three sets are found different in the 3rd and 4th Trials, and seven sets are found different in the 5th Trial (marked

by grey). Since the difference is not very significant, an equal weightage of 0.333 is adopted for each hazard indicator. How-
ever, these sensitivity results might be useful for planners and policymakers to capture the future hazard characteristics of the
Upazilas under a given set of percentage and weightage conditions. For example, Madaripur might be in either High, or Very
High, or Low or Medium Hazard in the 2020s of RCP8.5, depending on the selection of the hazard parameter. Again, Bhanga

may fall in either Medium or High Hazard zone in the 2050s of RCP 2.6 and RCP 8.5 if higher weightage is given to either
depth (2nd Trial) or duration (3rd Trial). The same happens to Rajoir in the 2020s of RCP 2.6. Given higher weightage to either
depth (2nd trial) or area (4th Trial), Maksudpur may fall in either Medium or High Hazard zone in the 2080s of RCP 2.6, Rajoir

may fall in either Medium or High Hazard zone in 2050s of RCP 2.6 and 2020s of RCP 8.5 and Shariatpur might fall in either
Medium or High range in the 2020s, 2050s of RCP 2.6 and 2020s, 2050s of RCP 8.5.
Table 5 | Upazila-wise flood inundated area (km2) under RCP 2.6 and RCP 8.5

Flood Affected Area (km2)

RCP 2.6 RCP 8.5

Upazila 2020s 2050s 2080s 2020s 2050s 2080s

Bhanga 0 2 5 0 2 100

Sadarpur 51 72 76 52 73 81

Maksudpur 0 7 17 0 7 109

Madaripur 65 94 113 70 104 131

Rajoir 24 38 55 30 48 84

Shibchar 50 64 73 50 69 94

Shariatpur 11 26 45 14 33 60

Zanjira 114 135 138 114 137 139

Total 316 437 523 330 473 798
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Figure 7 | Hazard maps considering individual parameter (depth, duration, area) and combination of the three parameters.

Journal of Water and Climate Change Vol 12 No 7, 3438

Downloaded fr
by guest
on 23 April 202
4.5. Future flood hazard assessment

The Spatio-temporal change of hazard zones for RCP2.6 and RCP8.5 are shown in Figure 7 (s, t, u, v, w, and x). The 2020s of
RCP8.5 is similar to that of RCP2.6 except for Rajoir, which falls in the high hazard zone. Maksudpur, Sadarpur, Bhanga,
Madaripur, and Shibchar have become more hazardous from the 2020s to the 2080s under the RCP8.5 climate scenario.

The percentage area under different hazard zones for both RCP2.6 and 8.5 are summarized in Table 8a. In the 2020s of
RCP2.6, 18, 24, 47, and 11% are found in the very low, medium, high, and very high hazard zones. On the other side,
during the 2020s of RCP8.5, 18, 11, 60, and 11% are found in the very low, medium, high, and very high hazard zones. In

the 2020s, there is only one area under a very high hazard zone. However, it has changed to 11% in the medium, 68% in
the high, and 21% in the very high hazard zone in the 2080s of RCP2.6. In the 2080s of RCP8.5, the scenario is more alarm-
ing. While no area falls in the very low, low, and medium hazard zone, 41 and 59% of the area fall under the high hazard and

very high hazard zone, respectively. So, low and very low hazard zone will be diminishing at the end of the century. On the
contrary, high and very high hazard zone will increase due to climate change impact.

4.6. Exposure and vulnerability assessment

The relative contribution of the normalized indicators of exposure and vulnerability for each of the Upazilas is shown in
Figure 8(a)–8(c). The weightage of the selected indicators was calculated individually in SPSS statistics both for exposure

and vulnerability using PCA, as shown in Table 7. The exposure and vulnerability map of the Arial Khan River floodplain
is shown in Figure 9(a) and 9(b).

Figure 9(a) shows that 28, 27, 0, 21, and 24% are under Very Low, Low, Medium, High, and Very High exposure zones,

respectively. It further shows that the exposure is least in Zanjira and Sadarpur. The reason behind this is the low population
density, household, and cropped land in these two Upazilas (Figure 8(a)). As there are few populations and croplands in these
areas, they are less exposed to floods. On the other hand, the population and cropland are high in Shibchar and Madaripur
(Figure 8(a)). Hence, they are more exposed to flood hazards.

The Upazila-wise vulnerability zones are shown in Figure 9(b). The percentage areas are 11, 22, 0, 37, and 29% under Very
Low, Low, Medium, High, and Very High vulnerability zones. Madaripur is found the least vulnerable among all the Upazilas
due to its low disabled population, dependent population ratio, female to male ratio, and poverty rate (Figure 8(b)). Contrary,

adaptive capacities such as pucca and semi-pucca houses, communication infrastructure, crop productivity, literacy, health
centre, flood shelter, and growth centre are high (Figure 8(c)). Madaripur is highly developed as a district town, i.e., less
flood sensitive and highly adaptive compared to other Upazilas. It is the only Upazila that has a flood forecasting and warning
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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Table 6 | Weightage assignment for the hazard parameters by trial-and-error method

Trials Upazila 2020s_RCP2.6 2050s_RCP2.6 2080s_RCP2.6 2020s_RCP8.5 2050s_RCP8.5 2080s_RCP8.5

1st Trial: 0.33,0.33,0.33 Bhanga Medium Medium Medium Medium Medium Very High
Sadarpur High High Very High High High Very High
Muksudpur Very Low Medium High Very Low High High
Madaripur High High High High High Very High
Rajoir Medium High High High High High
Shibchar High High High High High Very High
Shariatpur High High High High High High
Janjira Very High Very High Very High Very High Very High Very High

2nd Trial: 0.4,0.3,0.3 Bhanga Medium Medium Medium Medium Medium Very High
Sadarpur High High Very High High High Very High
Muksudpur Very Low Medium High Very Low High High
Madaripur High High High High High Very High
Rajoir Medium High High High High High
Shibchar High High High High High Very High
Shariatpur High High High High High High
Janjira Very High Very High Very High Very High Very High Very High

3rd Trial: 0.3, 0.4,0.3 Bhanga Medium High Medium Medium High Very High
Sadarpur High High Very High High High Very High
Muksudpur Very Low Medium High Very Low High High
Madaripur High High High High High Very High
Rajoir High High High High High High
Shibchar High High High High High Very High
Shariatpur High High High High High High
Janjira Very High Very High Very High Very High Very High Very High

4th Trial: 0.3, 0.3,0.4 Bhanga Medium Medium Medium Medium Medium Very High
Sadarpur High High Very High High High Very High
Muksudpur Very Low Medium Medium Very Low High High
Madaripur High High High High High Very High
Rajoir Medium Medium High Medium High High
Shibchar High High High High High Very High
Shariatpur Medium Medium High Medium Medium High
Janjira Very High Very High Very High Very High Very High Very High

5th Trial: 0.35,0.35, 0.25 Bhanga Medium High Medium Medium High Very High
Sadarpur High High Very High High High Very High
Muksudpur Very Low Medium High Very Low High High
Madaripur High High High High High Very High
Rajoir High High High High High High
Shibchar High High High High High Very High
Shariatpur High High High High High High
Janjira Very High Very High Very High Very High Very High Very High
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station. Hence, Madaripur falls in the very low-vulnerable zone. Again, though Zanjira falls into the very low exposed zone, it
has the highest vulnerability. Because the percentage of dependable people and the poverty rate are the highest here. At the

same time, pucca and semi- pucca houses, communication infrastructure, and growth centre numbers are very low.
4.7. Future flood risk assessment

When vulnerability and exposure are combined with hazard, flood risk zones are identified across the floodplains of the Arial
Khan River. Figure 10(a)–10(f) shows the spatio-temporal change of flood risk zones for each of the Upazilas of the study area
under RCP2.6 and RCP8.5. The percentage of areas under different risk zones under RCP2.6 and RCP8.5 are shown in

Table 8(b). In the 2020s under RCP2.6 scenarios, 55, 33, and 11% are under the very low, low, and medium risk zones. It
becomes 37% in the very low-risk zone, 21% in the low-risk zone, 24% in the medium-risk zone, and 18% in the very
high-risk zone in the 2080s under RCP2.6. On the other hand, it is 37, 10, 24, 11, and 18% in the very low, low, medium,
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf



Table 7 | Weightage of exposure and vulnerability indicators from PCA

Component Indicator Weightage Factor

Exposure Population density 0.29
No. of household 0.37
Cropped land 0.34

Vulnerability Sensitivity (-) Disable population 0.1
Dependent population ratio 0.07
Female to male ratio 0.07
Poverty rate 0.08

Adaptive Capacity (þ) Pucca and Semi-pucca house 0.08
Communication infrastructure 0.08
Productivity of crop 0.09
Literacy rate 0.07
Health centre 0.08
Flood shelter 0.07
Growth centre 0.1
Flood forecasting and warning system 0.1

Figure 8 | Relative contribution of normalized (a) exposure indicators, (b) vulnerability indicators (þve dependency), (c) vulnerability Indi-
cators (-ve dependency).
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high, and very high hazard zone, respectively, under RCP8.5. So, it is observed that future climate change will decrease very
low and low-risk zone and increase high and very high-risk zone in the 2080s under RCP8.5.

The integrated risk analysis further shows that the incorporation of vulnerability and exposure along with hazard provides a

wide horizon to the overall assessment. For example, in the 2080s, Zanjira falls in the high hazard zone. However, when the
associated exposure and vulnerability indices are considered, it falls in a low-risk area. Though this Upazila is profoundly
affected by the flood, the exposure and vulnerability are low. Hence, overall flood risk has been decreased. Therefore, despite
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf
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Figure 9 | Upazila-wise (a) exposure and (b) vulnerability map of the study area.

Figure 10 | Flood risk maps in (a) 2020s (b) 2050s (c) 2080s under RCP2.6 and in (d) 2020s (e) 2050s (f) 2080s under RCP8.5.
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its high hazardous categorization, it becomes a very low-risk zone in the 2080s. The opposite happens for Madaripur. If only
the flood hazard factor is considered, it falls in a low hazard zone. However, it falls under the very high-risk area, when vul-

nerability and exposure factors are considered hazard factors. Because both exposure and vulnerability factors are high for
Madaripur. Likewise, the hazard maps change patterns when they are converted to risk maps.

Some medium hazard zones fall into high-risk zones due to their high exposure and vulnerability to flooding. In contrast,
some high hazard zone falls into the low-risk area because of its low exposure and vulnerability. Hence, allocation of

resources or flood management plans should be made based on hazard and risk analysis. For example, a high hazardous
area might be protected with structural measures such as embankment, dredging, river training works, etc. On the other
hand, a highly exposed site to floods might be restricted for cultivating lands and building houses or infrastructures. In

such cases, allocation of resources such as pucca and semi-pucca houses, communication infrastructures, health centres,
flood shelters, growth centres, flood forecasting and warning system will certainly increase the adaptive capacity of the com-
munity, but cannot eliminate its flood risk and damage.
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf



Table 8 | Percentage of the area under different (a) hazard and (b) risk zones for RCP 2.6 and RCP 8.5

Type Scenario Period

Percentage of Area

Very Low Low Medium High Very High

(a) Hazard RCP 2.6 2020s 18 0 24 47 11
2050s 0 0 29 60 11
2080s 0 0 11 68 21

RCP 8.5 2020s 18 0 11 60 11
2050s 0 0 11 78 11
2080s 0 0 0 41 59

(b) Risk RCP 2.6 2020s 55 33 11 0 0
2050s 37 33 11 18 0
2080s 37 21 24 0 18

RCP 8.5 2020s 55 33 11 0 0
2050s 37 21 24 0 18
2080s 37 10 24 11 18
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On the other hand, a low hazardous area with a high socio-economic vulnerable community needs more pucca and semi-
pucca houses, communication infrastructures, flood shelters, health centres, growth centres, flood forecasting and warning
system, and employment opportunity. So, hazard-risk maps make it easier to plan which plan or strategy should be taken
for a certain Upazila and that too staying within a limited budget. Thus, it is very important to consider each of the risk com-

ponents, i.e., hazard, exposure, and vulnerability, and their integrated results for a sustainable flood management plan.
5. DISCUSSION

The observed flood pattern shows that since the riverine flood is caused due to water flowing over the river banks, the Upa-
zilas (Shibchar, Bhanga, and Madaripur) along the river are found with higher flood depth, duration, and area (Figure 6).

Hazard is entirely dependent on these three parameters, so the same pattern has been observed in hazard maps as well
(Figure 9). Janjira and Sadarpur are found in the high hazardous category due to the flood impact of the Padma River. In
brief, the Upazilas along the left reach of the Arial Khan River is found more hazard-prone at the end of the 21st century.
Flood risk is associated with the hazard, exposure, and vulnerability. Hence, the risk zones do not follow the same spatial

distribution/pattern as flood or hazard maps. Instead, the Upazilas on the right side (Bhanga, Maksudpur, and Rajoir) of
the Arial Khan River are found more risk-prone (Figure 10). These three Upazilas are low to medium exposed to flood
(Figure 9(a)). Bhanga is very high hazard-prone (Figure 7(x)), and Maksudpur and Rajoir are high flood vulnerable

(Figure 9(b)). Hence, combining all three components, these are found in high risk-prone zones.
The temporal pattern of the flood maps shows consonance with the IPCC AR5 report. According to this report, CO2 con-

centration, global temperature, northern sea-ice extent, sea-level rise remain almost similar from baseline to 2020s for both

RCP2.6 and RCP8.5 scenario (IPCC 2014). Then the differences between the RCP2.6 and RCP8.5 scenario becomes very
rapid and high after the 2050s. Similar trends are found in the current study. The difference between RCP2.6 and RCP8.5
is found minimal from the 2020 to 2050s but becomes very pronounced in the 2080s (Figure 6). Furthermore, according

to IPCC AR5, the global surface temperature is likely to exceed 1.5 °C at the end of the 21st-century relatives to the base
period (1850 to 1900) for all RCP scenarios except RCP2.6. It is likely to exceed 2 °C under RCP 6.0 and RCP8.5 and
more likely not to exceed 2 °C under RCP 4.5. Moreover, it is also stated that warming will continue beyond 2100 under
all RCP scenarios except under RCP2.6 (IPCC 2014). Hence, inundation depth, duration, and area are found much higher

in RCP8.5 than RCP2.6, and they are the highest in the 2080s of RCP8.5. The results of this study harmonize with the
recent flood studies conducted in the nearby countries considering RCP emission scenarios as well. Shrestha &
Lohpaisankrit (2017) reported that flood depth and area would be the maximum by the end of the 21st century under the

RCP8.5 projection in the Yang Basin of Thailand. The recent studies by Nishat (2017) and Rahman (2019) on the Brahma-
putra and Old Brahmaputra River of Bangladesh also show a significant increase of high to very high hazard and risk zone by
the end of 2100 under RCP8.5.
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The present flood hazard and risk maps are compared with the hazard and risk maps of Tingsanchali & Karim (2005) that

were developed focusing the whole south-west river system of Bangladesh based on stationary hydrologic data and without
considering the upstream basin flow from the Ganges and Brahmaputra rivers. The previous study found higher hazard-prone
areas along with the Arial Khan and Padma River for a 100-year historic flood as found in the present study by the end of the

21st century under RCP 8.5. On the other hand, a significant difference is found in the risk maps. The reasons might be – a) the
current study uses the most recent Population Census 2011 while the previous study used past Population Census, b) the cur-
rent study considers fifteen important vulnerability and exposure indicators and their relative weights while the previous
study considered only one vulnerability input, i.e., the population density, and c) the current study computes integrated

flood risk as to the product of the hazard, exposure, and vulnerability using IPCC risk framework while the previous
study computed flood risk as to the product of hazard and vulnerability. Most importantly, hazard and risk maps are quali-
tative studies focusing on qualitative comparisons of flood threats among the considered study areas. As the areal extent

between the previous study and the current study is not the same and the input parameters and approaches are significantly
different, it’s not possible to precisely compare the findings of these two studies. The present study is focused on the Arial
Khan River and considered many important factors which were completely ignored in the past study. Hence, this study

will provide more reliable flood hazard and risk results for the Arial Khan River under future climate change scenarios.
Overall, flood hazard and risk maps prepared in this study give a qualitative view of the potential flood scenarios for the

eight Upazilas of the Arial Khan River. The hazard and risk maps will be useful in identifying the priority areas for allocating

flood reliefs and planning a long-lasting future flood management strategy along the Arial Khan River. For example, the
hazard and risk maps of the 2020s or 2050s can be incorporated into the short-term or mid-term plans. Additionally, the
maps of the 2080s can be incorporated into any long-term plan, such as a 100-year plan. The recently approved ‘Bangladesh
Delta Plan 2100’ implementation would also benefit from these flood risk maps (BDP 2017). Additionally, different hazard

combinations (Depth, Duration, Area, and DepthþDurationþArea) and weightage trials (0.33,0.33,0.33; 0.4,0.3,0.3;
0.3,0.4,0.3; 0.3,0.3, 0.4; 0.35,0.35, 0.25) are also provided. So, hazard prediction that any Upazila may face in the near (the
2020s), mid (2050s), or end (2080s) future under a given set of parameters and weightage can be made. The planners and

policymakers can take any of these combinations and make a tentative recommendation to decision-makers.
In this study, physics-based traditional numerical models – SWAT and HEC-RAS are used for computing the future flood

hazard of the Arial Khan River floodplain using EC-Earth-HR projected climate data. Such a multi-model hydrology-hydrodyn-

amic modelling system is an appropriate way to incorporate the climate change impact of large basins (Ganges and
Brahmaputra) into a local river (Arial Khan). However, various uncertainties may find in the predictions made by the numerical
models. For example, the SWAT has several parameters and model simplifications that introduce uncertainty in the basin
model. Besides, generated SWAT flow is used as input for the hydrodynamic HEC-RAS models. These numerical models

have been calibrated and validated with satisfactory results and demonstrated adequacy to represent the hydrologic and hydrau-
lic behaviour of the study area. Nevertheless, applying such models for transforming regional flows into local scale flood
prediction might introduce few uncertainties in the result. The major uncertainties resulting from the hydrologic models,

hydraulic models, and regression models are quantified using NRMSE (Table 9). These uncertainties might impact the resulting
hazard maps. However, the uncertainties are found much smaller in the flood season, proving the models’ efficiency in flood
hazard analysis and solidifying the acceptance of this study. Considering the total percentage, nearly 48% of uncertainty might

come from the hydrologic models, 23% from the hydraulic models, and 28% from the statistical regression model. The models’
uncertainties can be estimated using some advanced tools such as variance-based methods (Saltelli et al. 2008; Tate et al. 2015),
Sobol’s method (Saisana et al. 2005), Fourier amplitude sensitivity test (FAST) (Saltelli et al. 1999), etc. in the future study.

The d/s boundary of the flood model is defined by the sea-level-rise (SLR) of 55–82 cm for the RCP2.6 and 8.5 scenarios pro-
vided by the IPCC AR5 report (IPCC 2014) without taking the actual SLR projections at that location. According to Mondal
et al. (2018), increase of peak water level is 72 cm at Chandpur station of the Meghna River for RCP 8.5, which is very
close to our downstream model boundaries (Sureswar – SW95 and Madaripur – SW5). Here, the % of error is nearly (82–

72) *100/82¼ 12%. However, as our downstream model boundary in the Arial Khan River is a little downstream of the Chand-
pur, the increase of peak stage will be slightly higher than 72 cm due to SLR. Thus, comparing with Mondal et al. (2018), the %
of error would be less than ,10%, which can be neglected considering the uncertainties of climate model projections.

In this study, the vulnerability and exposure data are kept constant throughout the end of the century. The incorporation of
Shared Socioeconomic Pathways (SSPs) could be a way to estimate future vulnerability and exposure data and thereby assess
the actual risk scenarios in the future. The climate change research community recently adopted the SSPs framework to
://iwa.silverchair.com/jwcc/article-pdf/12/7/3421/956813/jwc0123421.pdf



Table 9 | Estimation of standard error using NRMSE method for each of the developed model components

Models

Model Flood Season

NRMSE % Error NRMSE % Error

Hydrologic Models SWAT model (Brahmaputra) 0.33 10.76 0.27 13.64
SWAT model (Ganges) 1.39 45.69 0.66 34.14

Statistical Model Linear Regression model 0.56 18.20 0.56 28.59

Hydraulic Models 1D HEC-RAS model 0.12 4.07 0.12 6.39
1D2D HEC-RAS model (1D model) 0.58 18.87 0.26 13.44
1D2D HEC-RAS model (Flood model) 0.07 2.42 0.07 3.80
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facilitate integrated analysis on future climate change, vulnerabilities, adaptation, and mitigation (O’Neill et al. 2014; Van
Vuuren et al. 2014). In SSPs, population, GDP, and urbanization data are provided on a global scale. Later, the country
scale, or sub-national scale, or multi-scale, or participatory scenario approach is quantified applying the global RCP–SSP–

SPA scenario framework (Kebede et al. 2018). However, it is hard to get the future projections of each of the fifteen exposure
and vulnerability indicators used in this study. Hence, SSPs are kept beyond the scope of this study. Nevertheless, it could be
an exciting topic for future studies.

6. CONCLUSION

Climate change impact on potential flood hazard and risk of the Arial Khan River floodplain are evaluated incorporating the
recent RCP climate scenarios and AR5 risk framework. An increasing trend in flood depth, duration, and area is observed

from the early (2020s) to the end (2080s) of the century for both RCP2.6 and 8.5 scenarios. The situation is far worsening
for RCP8.5, as expected. The increase in flood depth, duration, and extent must be considered while designing any hydrau-
lic/stormwater structures or flood measures along the flood plain. The sensitivity analysis of the hazard parameters shows

that the combined parameters (DepthþDurationþArea) with equal weightage (0.33,0.33,0.33) represent the flood scenario
better for the study area. The Upazilas along the left reach of the Arial Khan River is found more hazard-prone, while the
Upazilas on the right side of the Arial Khan River is found more risk-prone in the 2080s of RCP8.5. The Upazila-wise

hazard maps reveal that the high and very high hazard zone will significantly expand in the 2080s of RCP8.5. Similarly,
risk assessment shows that the very low and low-risk zone will decrease, and the high and very high-risk areas will increase
by the end of the 21st century for RCP8.5. The hazard-risk maps further make it easier to plan which plan or strategy should
be taken for a certain Upazila within a limited budget. Thus, it is very important to consider each of the risk components, i.e.,

hazard, exposure, and vulnerability, and their integrated results for a sustainable flood management plan. The results found in
this study are found quite acceptable, comparing the IPCC climate studies and other relevant studies conducted in this region.
Future studies can be extended by introducing the RCP–SSP–SPA scenario framework.

The flood hazard and risk maps provide useful information to policymakers regarding emergency preparedness and relief
operations for high-risk and very high-risk zones in future flood events of Arial Khan. Besides, compared to the wide range of
research conducted in other flood-prone countries, research work in Bangladesh on future flood situations considering trans-

boundary basin flow and recent climate change scenarios is very limited. This study presents a methodology to incorporate
the climate impact of large transboundary basins to a small local river using combined hydrological, hydrodynamic, and stat-
istical models and how to check their regional adequacy for the study area. Hence, it will be helpful for other researchers to

work on the future flood scenarios of Bangladesh considering climate change impact.
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