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ABSTRACT

Due to the spatial heterogeneity, the hydrological model calibration results only at the total outlet of the basin may not represent the whole

basin. To more accurately simulate the historical streamflow process within the Qujiang River Basin, we set up three calibration strategies

(single-site, S1; multisite simultaneous, S2; and multisite sequential, S3) for four hydrological stations based on the SWAT (Soil and Water

Assessment Tool) model driven by CMADS (China Meteorological Assimilation Driving Datasets for the SWAT model). In addition, the impli-

cations of these calibration issues are extended to future streamflow projections using multimodel ensemble data in CMIP6 (Coupled Model

Intercomparison Project Phase 6). In the model calibration phase, the SWAT model achieved very satisfactory results in the study area. Com-

pared with S1 and S2, S3 can effectively improve the accuracy of streamflow simulation of stations within the basin and reduce the simulation

deviation. Especially at the daily scale, the average NSE values of the four stations with S3 increased by 0.26 and 0.07, and the overall devi-

ation decreased by 0.25 and 6.43%, respectively. Parameter sensitivity analysis also shows that spatial heterogeneity can be more adequately

considered when using S3 to calibrate the model. As for the results of future streamflow projection, when using the S3, the average annual

streamflow of four stations in the three climate scenarios from 2021 to 2050 is about 44.21, 130.00, 321.55 and 713.24 m3/s, respectively.

Correspondingly, the use of S1 and S2 would bring certain risks to future water resource management.
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HIGHLIGHTS

• Set up single-site (S1), multisite simultaneous (S2) and multisite sequential (S3) calibration strategies to explore the discrepancy of stream-

flow simulation of four stations.

• The SWAT model is driven by CMADS data input.

• The impact of three strategies on future streamflow projection is discussed with CMIP6.

• Parameter sensitivity analysis shows that spatial heterogeneity can be more adequately considered using S3 to calibrate the model.
1. INTRODUCTION

As an important tool to analyze the hydrological process of a river basin, the hydrological models have shown very strong
capabilities in solving many problems such as water resource planning, flood control and disaster reduction, and nonpoint
source pollution in recent decades (Boufala et al. 2019; Wang et al. 2019; Mahmoodi et al. 2020; Rudra et al. 2020). Accord-
ing to the different physical perfection of model structure and parameters, hydrological models can be divided into lumped

conceptual models and distributed models based on physical mechanism. The conceptual models mainly include the Stanford
model (Crawford & Linsley 1966), Tank model (Sugawara et al. 1974) and Sacramento model (Burnash & Larry Ferra 1979).
The distributed models mainly include MIKE SHE (MIKE System Hydrological European model) (Abbott et al. 1986), VIC
(Variable Infiltration Capacity) model (Liang et al. 1994) and SWAT (Soil and Water Assessment Tool) model (Arnold et al.
1998).

SWAT has proven to be an effective and fruitful distributed hydrological model in many areas, including water resources

management (Lerat et al. 2012; Khatun et al. 2018; Pandey et al. 2020; Abunada et al. 2021). Although the SWAT model can
divide the basin into different units by the underlying surface attributes for simulation, considering that each sub-basin in a
large basin has different hydrological characteristics, the heterogeneity for the spatial attributes of the basin should be
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considered in the process of the model, thereby reducing the uncertainty of the model and increasing the credibility of the

simulation and prediction (Nkiaka et al. 2018). To improve the simulation accuracy of the model, multisite calibration of
the basin is an important developmental direction of current hydrological simulation research (Jiang et al. 2015; Shrestha
et al. 2016; Desai et al. 2021).

Many studies have discussed differences in simulation effects between multisite and single-site calibrations. In most of the
studies, multisite calibration can effectively improve the performance of the SWAT model (Chiang et al. 2014; Shrestha
et al. 2016; Nkiaka et al. 2018; Dong et al. 2019). Chiang et al. (2014) indicated that the hydrological process in SWAT
would be better understood with multisite calibration, which could provide sounder model performance at sub-basins of differ-

ent sizes. Similarly, Dong et al. (2019) argued that multisite calibration can adequately consider the spatiotemporal
heterogeneity within the basin and provide greater predictive capacity compared with single-site calibration strategy. However,
several studies have reported that multisite calibration results have almost the same performance as single-site calibration, with

no significant improvement (Lerat et al. 2012). Moreover, the multisite calibration can be divided into simultaneous calibration
and sequential calibration, and the comparison between them is inconclusive. Hasan & Pradhanang (2017) have shown that
multisite simultaneous calibration is more effective for estimating the water quantity, while Wi et al. (2015) have the opposite

conclusion. Although many applications have been implemented, it remains difficult to draw definite conclusions about the
comparison of different calibration strategies considering the geographical properties of different basins and the relative
positions of selected stations (Arab Amiri & Conoscenti 2017; Arab Amiri et al. 2017; Arab Amiri & Mesgari 2018).

In addition, studies on different calibration strategies focus on historical periods, and there rarely are the implications of these
issues under future climate change (Wi et al. 2015), which is still an important issue all over the world (Simpkins 2017; Chen
et al. 2019). Since different calibration strategies affect the capacity of hydrological models, exploring their differences under
climate change will help to improve the accuracy of basin hydrological process prediction and better cope with the risks associ-

ated with climate change. The current related research tends to combine climate model data in the CMIP (Coupled Model
Intercomparison Project Phase) with hydrological models (Jha et al. 2015; Wang & Kalin 2018; Sonkoué et al. 2019; Gao
et al. 2021). At present, the CMIP has developed to the sixth phase (CMIP6), including 23 MIPs (Model Intercomparison Pro-

jects) and more than 100 climate models (https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings), which
employed a new set of concentrations, emissions and land-use scenarios (Eyring et al. 2016; Pascoe et al. 2020). Among the
23 MIPs included in CMIP6, ScenarioMIP provides for comprehensive research in different fields to better understand the

impact of different scenarios on the physical process of the climate system and society (O’Neill et al. 2016; Zhao et al.
2021). To reduce the uncertainty of future prediction, multimodel ensemble data in ScenarioMIP was selected in this research
instead of single-model data to project streamflow with the hydrological model (Ehsan et al. 2019).

Qujiang River is the link connecting Sichuan, Chongqing and other cities in southern China and plays a vital role in the

development of the Yangtze River economic belt. However, the Qujiang River Basin has been suffering from frequent
floods, and the frequency of extreme disastrous weather tends to increase in recent years, so it is more significant to analyze
its hydrological process more accurately. CMADS (China Meteorological Assimilation Driving Datasets for the SWAT

model), a high-resolution reanalysis of meteorological data, has proven to be effective in reproducing hydrological processes
in the Qujiang River Basin (Song et al. 2020). CMADS shows stronger precipitation detection ability than the Tropical Rain-
fall Measuring Mission (TRMM) and the Integrated Multi-satellite Retrievals for GPM (IMERG) in the basin and can

reproduce the gauged precipitation more accurately. Furthermore, the hydrological simulation accuracy of CMADS com-
bined with the SWAT model is also higher than that of TRMM and IMERG, and the overall simulation performance is
better than the gauged precipitation station data due to its high spatial resolution.

Due to the large spatial heterogeneity of the underlying surface in the Qujiang River Basin, the hydrological simulation only
at the total outlet of the basin may not meet the accuracy requirements of water disaster prevention and control. Discussions
on the application of different multisite calibration strategies to improve the capacity of hydrological simulation in this basin
have been lacking in the past. Moreover, the implications of different calibration strategies on streamflow projections in the

context of climate change have been rarely mentioned in multisite calibration studies of distributed hydrological models,
especially using CMIP6 data.

Therefore, based on the CMADS-driven SWAT model, the study attempts to explore two aspects: (1) performance discre-

pancy of single-site calibration and multisite calibration strategies in simulating the hydrological process of Qujiang River
Basin and (2) the influence of different strategies on future streamflow prediction with multimodel ensemble data in
CMIP6. The first aspect of the work is to discuss the influence of different calibration strategies on the simulation results
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of hydrological processes in the Qujiang River Basin for the first time. The second aspect is to extend the research of multisite

calibration strategy to the future period and use the latest updated CMIP6 data, which can provide a certain reference for the
contents of related fields.

2. DATA AND METHODS

2.1. Study area

The Qujiang River Basin, part of Sichuan Basin in China, lies in between 106°160 and 109° east longitude and 29°590 and 32°460

north latitude, covering an area of 38,900 km2 (Figure 1). The basin has the characteristics of large topographic span, and the
underlying surface attributes have obvious spatial heterogeneity. The terrain varies from the high-altitude mountain in the north
(maximum 2,669 m) to the low-altitude plains in the south (minimum 187 m). The distribution of soil and land use can refer to

Song et al. (2020). The mountainous area located in the upstream is mostly grassland and forest, while the plain area in the
downstream is mostly agricultural land. The basin is a typical subtropical humid region, where precipitation mainly concentrates
from May to September, and the annual average temperature is around 16.6 °C. To take the spatial heterogeneity of the whole

basin into consideration as far as possible, four hydrological stations were selected from upstream to downstream of the basin,
namely Bixi (BX) station, Qilituo (QLT) station, Fengtan (FT) station and Luoduxi (LDX) station. The streamflow data of the
four stations are derived from the hydrological yearbook from 2008 to 2015, with a daily time resolution.

2.2. CMADS data

CMADS is a public dataset developed by Xianyong Meng from China Agricultural University using various reanalysis fields in

the world and atmospheric assimilation system technology. This dataset covers East Asia, including precipitation, air temp-
erature, air pressure, humidity and wind velocity data, which can be directly used for establishing SWAT models without any
Figure 1 | Geographical location and distribution of hydrological stations and CMADS meteorological stations in Qujiang River Basin.
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format conversion (Meng & Wang 2017). The v1.0 version of the dataset was used in this study, with a spatial resolution of

1/3° and a time span of 2008–2016. Considering the limited length of streamflow data obtained, the data of 110 sites from
2008 to 2015 were finally selected. The average annual precipitations of the four sub-basins were 1,254.78, 1,170.26,
1,177.27 and 1,134.46 mm, respectively, of which the upstream precipitation was slightly higher than that of the downstream.
2.3. Climate model data

For scenario MIP, we select three sets of available climate model data with high spatial resolution, namely BCC-CSM2-MR
(Wu et al. 2019), EC-Earth3 (Massonnet et al. 2019) and MPI-ESM1-2-HR (Gutjahr et al. 2019), the basic information of
which is shown in Table 1. Since the second aspect of this study is mainly to compare the differences of the three calibration

strategies in streamflow prediction, the daily scale precipitation, minimum and maximum temperatures of the three climate
models for 2021–2050 are analyzed. And three new future pathways of societal development called Shared Socioeconomic
Pathways (SSPs) are considered: SSP1-2.6 (low-forcing scenario), SSP2-4.5 (medium-forcing scenario) and SSP5-8.5 (high-

forcing scenario). Note that the three forcing scenarios are similar to the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively,
in CMIP5 models (Riahi et al. 2017).
2.4. SWAT and SWAT-CUP

The SWAT model is a semi-distributed model, which can divide the study area into Hydrologic Research Units (HRUs)

according to land use, soil and slope. Hydrological elements in the model will be calculated separately on each HRU, and
then the results will be given separately at each sub-basin outlet. Finally, the total calculation amount of the whole basin
can be obtained at the total outlet (Arnold 2012). Based on the river network generated based on the Digital Elevation

Model (DEM), four hydrological stations (BX, QLT, FT and LDX) were manually added as the outlet, and finally, the Qujiang
River Basin was divided into 28 sub-basins, and 733 HRUs were divided in combination with the classification of land use,
soil and slope. The locations of the four sub-basins with four stations as outlets are shown in Figure 2. After loading meteor-

ological data, SWAT models with daily and monthly scales were established, with 2008 as the warm-up period, 2009–2012 as
the calibration period and 2013–2015 as the validation period.

SWAT-CUP is a semi-automatic calibration software, through which users can set key parameters and their ranges in the

SWAT model according to their requirements and can be calibrated separately or simultaneously for different sub-basins
(Abbaspour 2012). Based on this, the model calibration method used in this study is the SUFI-2 algorithm in SWAT-CUP
(Abbaspour et al. 2004). The SWAT-CUP software can directly give the results of some evaluation indexes, among which
R2 (coefficient of determination), NSE (Nash–Sutcliffe efficiency) and PBIAS (percentage bias) are the most widely used

to evaluate the results of the model (Song et al. 2020).
R2 can well reflect the consistency between the observed value and the simulated value, which ranges from 0 to 1. The

higher the value, the closer the result is to the best-fit line (Ghoraba 2015). NSE is a normalized processing method to reflect

the relative quantity between observed values and simulated values, and it is a good objective function to reflect the overall
fitting degree of hydrological process lines, with an optimal value of 1 (Van Liew et al. 2007). PBIAS measures the average
trend of the simulated value relative to the observed value to judge the overestimation or underestimation of the model aver-

age, with low absolute values indicating accurate model simulation (Gupta et al. 1999). The good R2 and NSE indicate that
the model might capture the pattern of flow but do not always prove the model to be performing well, so PBIAS should be
combined to understand the magnitude of deviation of the simulated streamflow from the observed. Moriasi et al. (2007)
pointed out that for the SWAT model, when NSE .0.5 and PBIAS +25%, the simulation results could be considered

satisfactory.
Table 1 | Basic information of climate models used in this study

Model name Institute Country Resolution (lon.� lat.)

BCC-CSM2-MR Beijing Climate Center China 1.1°� 1.1°

EC-Earth3 EC Earth Consortium Europe 0.7°� 0.7°

MPI-ESM1-2-HR Max Planck Institute for Meteorology Germany 0.9°� 0.9°
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2.5. Model calibration strategies

Among the four stations selected in this study, BX, FT and LDX stations are all located on the mainstream of Qujiang River.

The BX station is located in the mountainous area of the upper reaches and only controls the No. 1 sub-basin; the FT station is
located in the transitional zone between the mountainous area and the plain in the middle reaches; the LDX station is located
in the downstream plain area close to the total water outlet of the basin. The QLT station is also located in the middle reaches

of the basin, close to the FT station, but it is located in the tributary and relatively independent of the BX station. Both QLT
and BX sub-basins are nested in the FT sub-basin and further nested in the LDX sub-basin. The selection of station location in
this way can comprehensively consider the spatial heterogeneity of the underlying surface of the basin, and the QLT station

can be used to discuss the influence of a multi-station calibration strategy under different hydraulic connections. For the cali-
bration of the four sub-basins in the SWAT model constructed in the Qujiang River Basin, three calibration strategies are set
up by selecting different calibration stations with the help of SWAT-CUP software. The initial ranges of parameters of the

three strategies are the same.

(1) Single-site calibration strategy (S1). In this strategy, only the LDX station is selected for model calibration and validation,
and a set of optimal model parameter values representing the total outlet of the basin are obtained. Then, the optimal
parameter values are substituted into the other three stations in the basin to simulate their streamflow from 2009 to

2012 so as to compare with the results of the other two calibration strategies.
(2) Multisite simultaneous calibration strategy (S2). All four hydrological stations are calibrated and validated with the same

set of parameter values. Finally, a set of optimal parameter values that can make the simulation results of the four stations
achieve the good performance simultaneously are obtained.

(3) Multisite sequential calibration strategy (S3). To fully consider the spatial heterogeneity within the basin, this strategy sep-
arately calibrates and validates the streamflow of hydrological stations from upstream to downstream and obtains four
sets of parameter values corresponding to four hydrological stations. Because the basic conditions of the model

remain unchanged, the streamflow simulation results of the three calibration strategies are only related to the parameter
values, so the differences of the three calibration strategies are mainly reflected in the optimal parameter values and the
corresponding streamflow results of the four stations.
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3. RESULTS AND DISCUSSION

3.1. Daily and monthly streamflow results

The evaluation index can judge the fitting degree between the model result and the observed value overall, while the stream-

flow hydrograph can reflect the difference in the time series more intuitively. Therefore, the evaluation of SWATmodel results
was mainly carried out in these two aspects. Table 2 lists all the evaluation index values of three strategies in the calibration
period.

It is obvious from the daily scale simulation results that S3 performs better than the other two strategies. The simulated and
observed values of the four stations of S3 all have a high degree of fittings, with R2 and NSE between 0.65 and 0.72. In con-
trast, the R2 of S2 are in the range of 0.56–0.7, and NSE are in the range of 0.52–0.69. Since the LDX sub-basin was calibrated

independently in both S1 and S3, the results of this sub-basin are consistent under the two strategies. However, the results of
the three sub-basins in the middle and upper reaches of the basin are not satisfactory under S1, with a low degree of fitting
with the measured values, and R2 and NSE are all below 0.5. Meanwhile, comparing S1 with S2, it can be found that when

the four sub-basins are calibrated simultaneously, the results of the LDX sub-basin become worse, but the results of the other
three sub-basins are improved. This indicated that in the calibration process of S2, the model would adjust the parameters
according to the results of the four sub-basins at the same time and consider the hydraulic connection between the four
stations so as to reduce the weight of LDX stations and correspondingly strengthen the weight of the other three stations.

In terms of simulation deviation, the three strategies have different degrees of overestimation on the whole. Among them,
the deviations of four stations of S3 are the least obvious, with PBIAS between 2.5 and 11.35%, which are nearly half of
those of S2.

The SWAT model has obtained very satisfactory results at the monthly scale in the study area. As shown in Table 2, R2 and
NSE of three strategies are above 0.93 and 0.92, respectively, and PBIAS values are also within a relatively small range. The
performance differences of the three strategies in the four sub-basins are consistent with the daily scale. S3 can achieve the

highest R2 and NSE and the lowest PBIAS. Meanwhile, S2 has a slight improvement in all three stations except LDX com-
paring with S1. However, due to very good simulation results at the monthly scale, the discrepancies between the three
strategies are not as obvious as those at the daily scale.

In terms of streamflow hydrograph (Figures 3 and 5), streamflow and precipitation keep a high consistency, and three strat-

egies can basically capture the hydrological process. The differences are mainly reflected in the gap between simulated and
observed values. Since the measured data from 2009 to 2012 were used to verify the model at FT, QLT and BX stations in S1
strategy, there are no streamflow simulation results of S1 in the validation period (2013–2015) of hydrological process line,

and only the results of S2 and S3 are displayed.
It can be seen from Figure 3 that in daily scale simulation, regardless of the calibration and validation periods, the SWAT

model has insufficient simulation ability when using three calibration strategies in the peak part. The result of S3 is closer to
Table 2 | Evaluation of streamflow simulation in the calibration period of daily and monthly scales

S1 S2 S3

R2 NSE PBIAS (%) R2 NSE PBIAS (%) R2 NSE PBIAS (%)

Daily

LDX 0.66 0.65 11.50 0.56 0.52 19.50 0.66 0.65 11.50

FT 0.43 0.32 14.60 0.68 0.66 19.50 0.72 0.72 10.70

QLT 0.43 0.40 9.40 0.65 0.57 13.40 0.67 0.66 7.80

BX 0.50 0.34 2.00 0.70 0.69 5.80 0.71 0.70 2.50

Monthly

LDX 0.96 0.96 7.40 0.96 0.92 19.60 0.96 0.96 7.40

FT 0.97 0.96 10.60 0.98 0.96 18.30 0.98 0.98 2.50

QLT 0.94 0.94 4.10 0.95 0.92 12.60 0.95 0.95 3.80

BX 0.93 0.93 �0.60 0.94 0.94 4.40 0.95 0.95 0.40
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Figure 3 | Hydrograph of the daily streamflow and precipitation in the calibration and validation periods: (a)–(d) calibration period; (e)–(h)
validation period. (continued.)

Journal of Water and Climate Change Vol 12 No 7, 3270

Downloaded from http://iwa.silverchair.com/jwcc/article-pdf/12/7/3264/957116/jwc0123264.pdf
by guest
on 23 April 2024



Figure 3 | Continued

Journal of Water and Climate Change Vol 12 No 7, 3271

Downloaded from http
by guest
on 23 April 2024
the observation value than that of S2, but there are still obvious disparities. Although S1 obtained an unsatisfactory evaluation
index value, the recurrence of S1 on the peak part at BX, QLT and FT stations is surprisingly good in 2009–2012. The reason

for this phenomenon may be that when the parameter values obtained only in the calibration of LDX stations are applied to
the other three stations, the parameter values are more conducive to enhancing the response of streamflow to extreme pre-
cipitation due to the differences in hydrological characteristics among sub-basins.
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Because of the large disparity between the maximum and minimum streamflow at each station, the daily streamflow hydro-

graphs are not convenient to compare other parts except the peak, so we divide the streamflow results into low-flow, high-
flow and middle-flow parts according to the observed values, which are lower than 25th and higher than 75th and 25th–
75th percentiles of daily streamflow. The comparison of annual streamflow in different parts using the three strategies is

shown in Figure 4. It can be clearly seen that in the middle- and low-flow parts, all the three strategies have overestimated
the streamflow, which is consistent with PBIAS values. In the low-flow part, the simulation results with three strategies
are close at the BX station, while the streamflow results of S3 are between those of S1 and S2; in the other three stations,
the overestimation of S2 is the most obvious, and the simulated value of S3 is closer to the observed value, and the results

of S1 are between those of S2 and S3 at QLT and FT stations. In the middle-flow part, the performances of the three strategies
are similar to those of the low-flow part.

The results of S3 are still closer to the observed value, but its gap with those of S2 has been narrowed. In the high-flow part, both

overestimation and underestimation coexist in the three strategies. The results of S3 are slightly higher than those of the other two
strategies, and its simulated values are closest to the observed value at the LDX station. According to the results of the three parts,
the performance of S3 is the most stable in the whole process; in other words, it can have the best simulation effect in the middle

and low-flow parts and also performs well in the high-flow part. However, S2 performs well only in the high-flow part, while the
other parts show obvious overestimation phenomenon; although S1 is stronger than S3 in the simulation peak flow, it is not as
good as S3 on the whole. The results of this part are consistent with the results of PBIAS. It can be seen that S3 can not only

improve the index value of the model at the daily scale but also reduce the deviation in the whole flow process.
As the evaluation index of the SWAT model at the monthly scale has achieved very satisfactory results, the monthly stream-

flow hydrographs show a high fitting degree between the simulated value and the measured value, and the simulation
Figure 4 | Comparison of annual streamflow in low-flow, middle-flow and high-flow parts using the three strategies.
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performances on the peak part are much better than those at the daily scale (Figure 5). During calibration and validation

periods, the gaps between the simulated values and the observed values in the four stations of S3 both are the smallest,
which not only have good performance in the peak part but also can more accurately restore the base flow. The results of
S2 are most significantly underestimated in the peak part, while they are generally overestimated in the base flow part.

According to the above results of streamflow simulation in the Qujiang River Basin, the performance of the multisite
sequential calibration strategy is significantly superior to that of the single-site calibration and the multisite simultaneous
Figure 5 | Hydrograph of the monthly streamflow and precipitation in the calibration and validation periods: (a)–(d) calibration period; (e)–(h)
validation period. (continued.)
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calibration strategies, especially at the daily scale, which is consistent with the views of most of the multisite calibration
studies (Dong et al. 2019; Franco et al. 2020). S3 strategy can not only improve the degree of fit between the simulation results

and the measured values but also effectively reduce the deviation of the simulation results. Although multisite sequential cali-
bration will cause the variation of the parameters on the basin level in the process of progressive calibration from upstream to
downstream (Migliaccio & Chaubey 2007), S3 strategy calibrated each station and obtained the most optimal parameter
values so as to more accurately restore the streamflow process of the corresponding sub-basin.

For the single-site calibration strategy which only calibrates the model at the total outlet of the basin, its performance differs
greatly from that of the multisite calibration strategies at the daily and monthly scales. At the daily scale, the simulation perform-
ances of the three stations within the Qujiang River Basin of S1 strategy are far lower than those of S2 and S3 strategies, which

do not reach a satisfactory level. At the monthly scale, simulation performance at some stations when using S1 strategy is better
than when using S2 strategy. The reason for this phenomenon may be the differences of hydrological elements between the four
sub-basins at the daily scale, which are more obvious than those at the monthly scale, and the requirements for the accuracy of
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model parameters are higher during daily scale simulation, which makes it more difficult for the calibration parameters at the

LDX station to meet the requirements of daily scale streamflow simulation in the internal sub-basins.
In monthly streamflow simulation, the hydrological elements are processed on a monthly average basis, which reduces the

differences between the four sub-basins. Coupled with the high accuracy of meteorological data, the single-site calibration

strategy can also achieve a good simulation effect within the basin, so the improvement brought by the multisite calibration
strategy is relatively insignificant. This suggests that although the single-site calibration strategy can meet the requirements of
hydrological process simulation in the basin in some cases, further validation is required for stations within the basin.

The simulation performances of the multisite simultaneous calibration strategy at all four stations are slightly worse than

those of the multisite sequential calibration strategy, but the difference between the single-site calibration strategies varies by
time scale as mentioned above. In the monthly streamflow simulation, the results of LDX and QLT stations both show a
decrease in fitting degree when using S2 strategy, which is shown that the NSE values of the two stations are lower than

those of the single-site calibration strategy, and this phenomenon is also reflected in the study of Nkiaka et al. (2018).
Owing to the multisite simultaneous calibration strategy which will take the average NSE of the four stations as the objective
function and increase the weight of the internal sub-basin, the result of the LDX station is worse than that of the single-site

calibration strategy. Moreover, the relative deviation of S2 simulation results is the largest among the three strategies,
especially for the low-flow part at the daily scale (Figure 4). While some studies pointed out that the multisite simultaneous
calibration strategy can take into consideration the basin spatial heterogeneity and effectively enhance the ability of simulat-

ing the SWAT model (Wi et al. 2015; Hasan & Pradhanang 2017), the results of this study and Nkiaka et al. (2018) show that
because of the difference of the study area, the improvement of the strategy in monthly scale streamflow simulation still has
some limitations.

Although the multisite sequential calibration strategy can achieve the best simulation performance in the Qujiang River

Basin and reduce the risk of water disasters caused by model deviation to the basin, the need to calibrate each station succes-
sively increases the time cost of simulation. In view of the fact that the multisite simultaneous calibration strategy can
calibrate multiple stations at the same time, the hydraulic connection and information exchange between the stations are

also considered. Therefore, for the practical application, appropriate model calibration strategy should be selected according
to the actual situation and management measures of the basin.

3.2. Parameter sensitivity

The performance of the model is determined by the value of the parameter set. The difference between three calibration strat-

egies is mainly reflected in the selection of parameters, which in this study are the different optimal values of the same
parameter. In the model calibration process, SWAT-CUP can not only give the optimal value of parameters but also evaluate
the sensitivity of the results to different parameters. In this paper, the differences among the parameters of three strategies are

discussed by taking the parameter results of the monthly scale as an example (Table 3).
Table 3 | Parameter values and sensitivity rank when using the three strategies

Parameter

S2 S3-BX S3-QLT S3-FT S3(S1)-LDX

Value Rank Value Rank Value Rank Value Rank Value Rank

CN2 0.18 2 �0.73 1 0.12 4 0.02 1 0.10 4

ALPHA_BF 0.94 1 0.26 9 0.94 1 0.68 2 0.76 1

SOL_AWC 0.28 9 0.46 7 0.42 8 0.29 7 0.16 8

SOL_K 1.01 4 1.86 6 2.18 6 1.11 9 2.26 9

ESCO 0.58 10 0.79 5 0.87 7 0.43 8 0.66 10

GW_REVAP 0.17 7 0.05 4 0.12 9 0.19 10 0.19 6

SFTMP 2.52 5 �9.80 2 �4.68 3 6.04 4 �3.40 5

SMTMP 4.97 8 �0.36 3 �11.48 5 1.96 5 �0.28 7

CH_K2 17.38 3 46.75 10 0.44 2 43.65 3 28.55 3

CH_N2 0.26 6 0.30 8 0.29 10 0.20 6 0.11 2

://iwa.silverchair.com/jwcc/article-pdf/12/7/3264/957116/jwc0123264.pdf
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Focus on the results of S3, CN2 (initial SCS runoff curve number for moisture condition II), one of the important parameters

in the process of model streamflow generation, is the most sensitive parameter in the BX and FT sub-basins, but only ranks
fourth in the QLT and LDX sub-basins. Similarly, ALPHA_BF is highly sensitive and has a high value in QLT, FT and LDX
sub-basins, which illustrates the rapid response of groundwater flow to recharge. Therefore, the groundwater has a strong

impact on the streamflow generation in the midstream and downstream of the basin. In BX sub-basins with higher altitude,
the sensitivity of SFTMP and SMTMP ranked second and third, respectively, indicating that snowfall is an important factor
in the streamflow yield of this basin. Although the average elevation of the QLT sub-basin is relatively low, the high sensitivity
of SFTMP also reflects the importance of snowfall in this basin. In the S1 and S2 strategies, the parameters with high sensitivity

are mainly related to groundwater, which reduces the important level of snowfall on the streamflow of BX and QLT sub-basins.
The difference of parameter sensitivity and value between four sub-basins also explains the necessity of separate parameteriza-
tion for each sub-basin, and the same set of parameter values cannot represent the whole basin.

3.3. Future climate and streamflow projection

Due to the different resolutions of the three climate models, precipitation, minimum and maximum temperature data under

three forcing scenarios were extracted according to their respective resolutions, and then the three meteorological elements of
the four sub-basins were calculated by using the Thiessen polygon method, respectively. The average value of the three cli-
mate models in 2021–2050 was taken as the future climate characteristics of the four sub-basins, as shown in Table 4. The
comparisons of projection results among the three forcing scenarios in the four sub-basins are consistent; that is, the precipi-

tation and temperature of SSP5-8.5 are higher than those of the other two, followed by SSP1-2.6, which is about 30 mm higher
than that of SSP2-4.5, and the air temperature is about 0.11 °C higher. For the comparisons of the four sub-basins, the BX sub-
basin has the highest precipitation and the LDX sub-basin has the highest temperature, while the precipitation and tempera-

ture of the QLT and FT sub-basins are both very close to each other and lower than those of the other two sub-basins.
After extracting precipitation, minimum and maximum temperature data from different climate models, we loaded them

into the SWAT model and projected future (2021–2050) streamflow with parameter values obtained from three calibration

strategies (S1, S2 and S3), respectively. In addition, underlying surface properties of the sub-basins remain unchanged. To
make the results as reliable as possible, we chose the monthly scale SWAT model with very satisfactory simulation results
in the historical period, and the annual projection results are shown in Figure 6. Although the precipitation and temperature

in the three forcing scenarios have the same law, the differences of streamflow projection results in the four sub-basins still
exist apparently due to the unique underlying surface properties of each sub-basin. However, in general, the lower limit of
streamflow results of SSP1-2.6 during 2021–2050 is basically consistent with that of the other two forcing scenarios, and
the upper limit is obviously higher, indicating that the study area will have the most abundant water resources under this for-

cing scenario.
By comparing the streamflow projection results of the three calibration strategies, it can be found that the discrepancies

among the three strategies are alike under three forcing scenarios in the same station, while there are diverse comparison

relationships in four stations. The similarity phenomenon shown in the four stations is that the streamflow projection
result by using S2 is the smallest among the three strategies, and the relative discrepancy between S2 and S1 is basically
unchanged. This is because the discrepancies are only related to parameter values, and the same set of parameter values

in the four sub-basins were adopted in S1 and S2. Because of S3 taking different parameter set values in different sub-
basins, the discrepancies between S3 and the other two strategies vary across the four stations. At the BX station, the highest
Table 4 | The annual mean precipitation, maximum and minimum temperatures of four sub-basins in 2021–2050 under the scenarios of
SSP1-2.6, SSP2-4.5 and SSP5-8.5

Precipitation (mm) Tmax (°C) Tmin (°C)

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5

BX 1,106.88 1,074.39 1,117.25 18.42 18.33 18.56 9.62 9.56 9.90

QLT 1,030.03 1,000.71 1,057.22 18.23 18.12 18.32 9.32 9.22 9.58

FT 1,038.28 1,007.05 1,059.48 18.14 18.04 18.24 8.81 9.11 9.45

LDX 1,047.17 1,018.62 1,056.11 18.74 18.61 18.85 9.92 9.80 10.18

om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3264/957116/jwc0123264.pdf
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Figure 6 | Annual average streamflow projection results using the three strategies (S1, S2 and S3) in 2021–2050 under SSP1-2.6, SSP2-4.5
and SSP5-8.5. The solid circle represents the mean value, the middle line in the box represents the median value and each box ranges from
the lower (25th) to upper quartile (75th).
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and average values of S3 are higher than those of S1; at the QLT station, the results of the two strategies are basically the

same; at FT stations, the results are opposite to those of the BX station, which means that the maximum and average
values of S1 are slightly higher than those of S3; at the LDX station, for S1 and S3 having the same parameter values, the
streamflow projection results are completely consistent.

In addition, Figure 7 shows the projected monthly streamflow results in 2021–2050 under three forcing scenarios using the
three strategies. For the same forcing scenario, the annual distributions of the four stations are very similar. Under SSP1-2.6
and SSP2-4.5 scenarios, the streamflow mainly concentrated from May to August, and the average streamflow in May is
higher than that in other months. Under the SSP1-2.6 scenario, the maximum streamflow value in May increases suddenly

compared with that in April and then decreases month by month. Meanwhile, the minimum streamflow value in May is also
significantly higher than that in other months. Under the SSP2-4.5 scenario, the minimum streamflow value in May is also
significantly higher than that in other months, but the maximum streamflow occurs in July. Under the SSP5-8.5 scenario,

the streamflow is mainly concentrated from May to September, and the average streamflow in these months is basically
the same, while the maximum and minimum streamflow vary with different stations.

As with annual mean streamflow, the discrepancies among the three calibration strategies are consistent under different

forcing scenarios. As can be seen from the above, the annual average streamflow projection results by using S2 are the smal-
lest. In terms of monthly average streamflow, this phenomenon is reflected in that the monthly average streamflow from April
to October is slightly lower than that using S1 and S3, and the same is true for the maximum and minimum streamflow values.

At the BX station, the differences within the year between S1 and S3 are mainly reflected from June to September, indicating
that the streamflow of the former is slightly lower than that of the latter, while the streamflow in other months is basically flat.
At the QLT station, when S1 and S3 are used, the monthly average streamflow is basically the same, which is consistent with
the annual average streamflow. At FT and LDX stations, the months in which the streamflow using S1 is greater than that

using S3 are mainly from April to August, while the streamflow in other months is basically flat.
Different calibration strategies will lead to obvious disparities in the future streamflow prediction of the Qunjiang River

Basin. On account of S3 having the strongest simulation ability in the historical period, it is deemed that it can most accu-

rately project the future streamflow of four sub-basins. Therefore, under the meteorological conditions of the three climate
models, S2 will underestimate the water resources in the Qujiang River Basin, and the distinctions between S1 and S3
also reflect that S1 will affect the correct estimation of future water resources in the basin. Because the average values of
://iwa.silverchair.com/jwcc/article-pdf/12/7/3264/957116/jwc0123264.pdf



Figure 7 | Monthly average streamflow projection results using the three strategies (S1, S2 and S3) in 2021–2050 under SSP1-2.6, SSP2-4.5
and SSP5-8.5. The error bars represent the streamflow ranges resulting from 2021 to 2050.
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three climate model data are selected as future climate data input to the model, the same climate variables are kept when
using different calibration strategies to project streamflow, so the differences in results mainly come from the different

input values of parameters of the three calibration strategies. In other words, different calibration strategies in the historical
period will bring certain risks to the hydrological analysis in the future. Therefore, it is necessary to be cautious when select-
ing calibration strategy for streamflow projection under future climate conditions.
4. CONCLUSION

Based on the SWAT model driven by CMADS, in this study, we set up single-site calibration, multisite simultaneous cali-

bration and multisite sequential calibration strategies using four hydrological stations in the Qujiang River Basin. The
objective is to investigate the discrepancies of the three calibration strategies in streamflow simulation and their effects on
streamflow projection in the future period. When using S3, R2 and NSE of the four stations at the daily scale calibration

period can reach 0.65–0.72, while PBIAS is between 2.50 and 11.50%; the R2 and NSE values at the monthly scale calibration
period can reach 0.95–0.98, while PBIAS is between 0.40 and 7.4%. Based on the calibration results of three strategies at the
daily scale and the monthly scale, it is suggested that using the S3 can fully consider the spatial heterogeneity of the basin and
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3264/957116/jwc0123264.pdf
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more accurately figure out the hydrological process of each sub-basin. Although the hydraulic connections between all

stations are considered when using S2, the overall performance still lags that of S3 to some extent. S1 takes the downstream
station as the highest priority, which cannot fully represent the hydrological process of the internal sub-basins, especially at
the daily scale. The parameter sensitivity analysis at the monthly scale also found that the important level of the parameters

varied between different sub-basins, while S1 and S2 both ignored this difference. Therefore, it is necessary to conduct sep-
arate calibration for different sub-basins to obtain the most accurate hydrological response relationship.

Under the meteorological conditions of the three climate models (BCC-CSM2-MR, EC-Earth3 and MPI-ESM1-2-HR), the
distinctions between streamflow projection results of three strategies at four stations are mainly related to the selection of

parameter values. This study shows that S2 will underestimate the future water resources in the study area compared with
the other two strategies, especially from April to October, and caution is needed when using S1 for streamflow projections.
Given the best performance of S3 in the historical period, the use of S3 to project streamflow of sub-basins under climate

change conditions may be the least risky.
Although there are still some deficiencies in this study, the comparison of the results is not detailed enough, it can provide a

reference for the comparative study of multisite calibration strategies and the improvement of streamflow simulation and pro-

jection accuracy of the hydrological model in the basin with complex terrain. Since only three sets of climate model data were
used in this study and meteorological data were directly extracted without downscaling, more sets of climate model data
should be used for projection analysis in future work and downscaling and correction processing should be carried out to

obtain more accurate results.
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