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ABSTRACT

Potential evapotranspiration (PET) is an important parameter for the operation of irrigation projects and water resources management. The

globally recognized PET estimation model, the FAO-56 Penman–Monteith (FAO-56 PM) model, had been criticized for its requirement of many

detailed meteorological variables, but nevertheless has been accepted as the baseline model in many worldwide studies. The performances

of different PET models can be found to be excellent for a specific location but may not be representative in other regions. The aim of this

study is to select the most suitable PET model to estimate PET in Malaysia. Three radiation-based models and four temperature-based models

were compared with the FAO-56 PM model at seven selected meteorological stations in Peninsular Malaysia. The mean bias error, relative

error (Re) and normalized root-mean-square error (NRMSE) and coefficient of determination (R2) were used to evaluate the performances of

the PET models. The Re values of Turc models were below 0.2 at all stations, while Priestly–Taylor, Thornthwaite, Thornthwaite-corrected and

Blaney–Criddle models were above 0.2. The Makkink and Hargreaves–Samani models were below 0.2 at most of the stations. Thus, the Turc

model was recommended as the best model to estimate PET in Peninsular Malaysia.
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HIGHLIGHTS

• This study applied various empirical potential evapotranspiration (PET) models to estimate the PET.

• Radiation-based models and temperature-based models were compared with the FAO Penman–Monteith model.

• MBE, Re, NRMSE and R2 were used to evaluate the performances of PET models.

• The Turc model was found to give superior performance.

• The outcomes can be used as a reference for water resources-related project design.
INTRODUCTION

Potential evapotranspiration (PET) is an index used to represent the environmental demand for evapotranspiration. The

changes in PET can affect the crop water requirement, water allocation and food production. Hence, knowledge of PET esti-
mation has been extensively used in water resources management, water balance estimation, agricultural water productivity
studies, irrigation studies and agricultural water demand analysis (Tran & Honti 2017; Farzanpour et al. 2019; Pan et al.
2019). Generally, PET can be measured either directly or indirectly. There are various equipment and methods which are

used to measure PET directly, such as lysimeters, Bowen ratio-energy balance system, eddy covariance technique and scin-
tillometers. Considering the high cost and demand for experimental equipment maintenance, indirect methods, such as
empirical models or simply deriving by multiplying a coefficient from standard data on pan evaporation, were instead pro-

posed (Paparrizos et al. 2017; Landeras et al. 2018).
Over the years, a vast number of empirical models have been developed for estimating PET. Empirical models are accord-

ingly sorted into various types, namely temperature-based, radiation-based and combination-based models (Shiri et al. 2019;
Feng & Tian 2020). Allen et al. (1998) suggested that the FAO-56 Penman–Monteith (FAO-56 PM) model can be used as a
reference model in estimating PET. Despite the wide applicability and high acceptance of the FAO-56 PM model, a large
number of detailed meteorological variables are required for estimating PET. The long and complete series of meteorological
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variables, such as solar radiation, relative humidity, air temperature and wind speed, are often found to be insufficient, want-

ing or sparse, especially in developing countries (Lang et al. 2017; Shiri 2017). Several researchers have developed models
that require less intensive data to estimate PET by using other available meteorological variables.

As an alternative to the FAO-56 PMmodel, the temperature-based and radiation-basedmodels are particularly useful, as they

dependmainly on air temperature and solar radiation as the input data (Shiri et al. 2019). The earliest temperature-basedmodel
was the Thornthwaite model, which assumed an exponential connection between mean monthly consumption and mean
monthly temperature (Thornthwaite 1948). Blaney & Criddle (1950) developed the temperature-based Blaney–Criddle
model to estimate PET, which requires only daylight hours and mean monthly temperature as data input. Hargreaves &

Samani (1985) developed the Hargreaves–Samani model for estimating PET, which requires only the highest and the lowest
temperatures along with extraterrestrial radiation as data input. Makkink (1957) established the Makkink model with only
solar radiation as input to estimate PET over a 10-day period under a cool climatic condition in the Netherlands. Turc

(1961) presented the Turc model for PET of a 10-day period under general weather conditions in Western Europe. The Turc
model employed mean temperature, solar radiation and relative humidity to estimate PET. With only net radiation as input,
Priestly & Taylor (1972) proposed the radiation-based Priestly–Taylor model to estimate PET for wet surface area.

Many studies have been carried out to compare the performances of different empirical PET estimation models. To over-
come the issues of missing data and low availability of input data, Maeda et al. (2011) evaluated the suitability of three
temperature-based models, namely the Thornthwaite, Blaney–Criddle and Hargreaves–Samani models at Taita Hills,

Kenya. The results revealed that the Hargreaves model showed superior performance. Meanwhile, Lang et al. (2017) pre-
sented a comparative study of temperature-based, radiation-based PET models and FAO-56 PM model using long-term
data from 90 meteorological stations in Southwest China. They found that the radiation-based models performed better
than the temperature-based models. The radiation-based Makkink model and Hargreaves–Samani model gave the best per-

formances among the selected models. They concluded that radiation-based models were suitable for low latitude, warm and
moist climate. Quej et al. (2019) applied seven temperature-based models to estimate PET and compare their performances
with the FAO-56 PM model in Mexico. The FAO-56 PM exhibited the best performance followed by the Hargreaves–Samani

and Camargo models. They suggested the use of temperature-based models in areas with missing data. Xie & Wang (2020)
compared 10 empirical PET estimation models over 10 River Basins in China. The results revealed that the Hamon version1
outperformed the other models in Pearl River Basin and the Hamon version2 was selected as the best model in Huaihe,

Yangtze and Yellow River Basins. For the remaining basins, the FAO-56 PM model performed the best.
Studies on determining suitable PET models were also conducted in Malaysia. Tukimat et al. (2012) concluded that radi-

ation-based models (Priestley–Taylor model, Makkink model and Turc model) showed superior performance over
temperature-based models (Thornthwaite model and Blaney–Criddle model) in estimating PET. The Turc model was

suggested to estimate PET due to its simplicity and lower requirements for input parameters. The radiation-based models per-
formed similarly to the Penman–Monteith model, while the estimation of evapotranspiration by temperature-based models
had the minimum error throughout the study. Muniandy et al. (2016) assessed the best PET model out of the 26 PET-selected

models in order to determine the crop coefficients of bitter gourd and chili in Kluang, Malaysia. In terms of statistical per-
formance, they concluded that the Penman, McGuinness & Borden, Szasz and the FAO-56 PM models performed better
in PET estimation. Taking it a little further, Muhammad et al. (2019) employed a compromise programming and group

decision-making approach to rank 31 empirical models for Peninsular Malaysia. The statistical results revealed that the
FAO-56 PM model was the most suitable method in PET estimation, followed by radiation-based Priestley and Taylor and
the mass transfer-based Dalton and Meyer methods. However, under limited data availability, it was suggested that the Priest-

ley and Taylor can be used to replace the FAO-56 PM model.
In general, as observed from the studies mentioned above, it is difficult to identify the most suitable PET model due to the

presence of different topographic and climatic conditions in different areas. It should be noted that each empirical model
varies significantly in terms of performance due to different input data requirements and each model was developed specifi-

cally for different climatic regions. The major challenge arises in determining the best PET model because, for obvious
reasons, a specific model may not be representative for all regions. To ensure a reliable result, it is of great importance to
assess and evaluate different PET estimation models at a particular study region to obtain the most suitable PET model. Fol-

lowing this cue in this study, various types of empirical PET models will be applied in Peninsular Malaysia to estimate the
PET on daily, monthly and annual time scales. Following that, statistical analysis was performed to evaluate the performance
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of each PET model. The outcomes of this study are expected to provide a better understanding regarding the selection of suit-

able estimation models and used as a reference for water resources-related project design and irrigation management.

STUDY AREA AND DATA DESCRIPTION

Peninsular Malaysia (latitude 1–7°N and longitude 100–119°E) was chosen as the study area for this study. Peninsular Malaysia is
located near to the equator, and the total area is about 334,671 km2. The climate of Peninsular Malaysia follows the tropical cli-

mate, which is categorized as humid and high temperature throughout the year (Lian et al. 2019). The relative humidity is more
than 68%, and the daily air temperature ranged from 23 to 34 °C (Fisher et al. 2017). This study area has a daylight range of 3.7–
8.7 h per day, with high precipitation throughout the year. The monsoon seasons of Malaysia comprise the Northeast monsoon

(November–February), Inter-monsoon2 (March–April), Southwest monsoon (May–August) and the Inter-monsoon1 (September–
October). During the Northeast monsoon period, the largest amount of rainfall will occur over the east coast region (Ng et al.
2015, 2016, 2019). The highest amount of rainfall recorded reached a value of 965–1,394 mm during this monsoon period
(Pour et al. 2020). It is thus not surprising that states in the east coastal region are susceptible to flooding (Ng et al. 2020). The
temperature of sea surface is higher, which causes the wind speed to be lower due to higher sea surface heat flux during the
Inter-monsoon 2. The climate of Southwest monsoon is warmer and drier due to lower rainfall amounts.

The geographical locations of the selected meteorological stations are illustrated in Figure 1. Table 1 shows the general

information for all the meteorological stations used in the study. Six types of daily meteorological data, namely the relative
humidity, solar duration, wind speed, minimum air temperature, mean air temperature and maximum air temperature, were
collected from Malaysia Meteorological Department (MMD). All the calculated PET values were based on the daily meteor-

ological data.

METHODOLOGY

Data checking and quality control

All the input meteorological data were checked for completeness and quality. A threshold of 10% was adopted for data qual-
ity control. The elimination of observed data with more than 10% missing values was implemented to prevent any possible
source of error that might result in biased estimations of PET. In the present study, a subjective method was used to evaluate

the data quality. For instance, the input variables were checked carried out to ensure that the data consisted of positive values
only, the maximum temperature was not lower than the minimum temperature, the maximum temperature was not less than
21 °C (lowest minimum temperature in Peninsular Malaysia), the maximum temperature was not higher than 36 °C and the
Figure 1 | Geographical location of all the meteorological stations in Peninsular Malaysia used in the study.
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Table 1 | List of meteorological stations used in this study

Station code Station name Record period Duration Latitude (N) Longitude (E)

48601 Bayan Lepas 2009–2018 10 05° 180N 100° 160E

48625 Ipoh 2009–2018 10 04° 340N 101° 060E

48615 Kota Bahru 2009–2018 10 06° 100N 102° 180E

48657 Kuantan 2009–2018 10 03° 460N 103° 130E

48649 Muadzam Shah 2009–2018 10 03° 030N 103° 050E

48600 Pulau Langkawi 2009–2018 10 06° 200N 99° 440E

48647 Subang 2009–2018 10 03° 080N 101° 330E
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relative humidity was not higher than 100%. Besides, several methods were adopted to fill up the detected missing data, as
shown in the following subsection.

Estimation of missing vapor pressure data

The missing vapor pressure data can be obtained from the minimum temperature. Guidelines provided by the FAO-56 PM
stated that the dew point temperature can be used interchangeably with the minimum air temperature for calculating the
actual vapor pressure (Upreti & Ojha 2017). However, this guideline is only applicable for the estimation of missing relative
humidity data. The equation to estimate missing vapor pressure is expressed as follows (Allen et al. 1998):

ea(Tmin) ¼ 0:6108� exp
17:27� Tmin

Tmin þ 237:3

� �
(1)

where ea (Tmin) is the vapor pressure depending on the minimum air temperature (kPa); Tmin is the minimum air temperature

(°C).

Estimation of missing solar radiation data

Solar radiation is one of the climatic parameters that are rarely measured at most of the meteorological stations. The missing

solar radiation data were estimated by using the Angstrom method, which is expressed as follows (Allen et al. 1998):

Rs ¼ aþ b
n
N

� �
Ra (2)

where Ra is the extraterrestrial radiation (MJ m�2 day�1); N is the average of daylight hours in a day (h); n is the actual sun-
shine hours in a day (h); Rs is the solar radiation (MJ m�2 day�1); a and b are the regression coefficients with values of 0.25

and 0.5, respectively, which were recommended by the FAO-56 PM (Allen et al. 1998; Yang et al. 2020).

PET models

Seven PET models comprising three radiation-based models (Makkink, Priestly–Taylor and Turc models) and four tempera-
ture-based models (Thornthwaite, Thornthwaite-corrected, Blaney–Criddle and Hargreaves–Samani models) were chosen.

They were used to estimate PET, and their performances were compared against the reference method, FAO-56 PM model.

FAO Penman–Monteith model

For continuity, the FAO-56 PM model, which is a combination-based model that combines the vapor aerodynamic and fixed

bulked surface resistance, is included here. This model requires more input of meteorological variables than the temperature-
based and radiation-based models. The required data were solar radiation, air temperature, wind speed and relative humidity.
The equation is expressed as follows (Allen et al. 1998):

PET ¼
0:480D(Rn �G)þ g

900
Tmean þ 273

u2 (es � ea)

Dþ g(1þ 0:34 u2 )
(3)
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where Rn is the net radiation of the crop surface (MJ m�2 day�1); Δ is the slope vapor curve (kPa °C�1); Tmean is the daily

mean air temperature at 2 m height (°C); u2 is the wind speed at 2 m height (m s�1); G is the soil heat flux density (MJ m�2

day�1); ea is the actual vapor pressure (kPa); es is the saturation vapor (kPa) and γ is the psychrometric constant (kPa °C�1).
Makkink model

The Makkink model is a simple radiation-based model for estimating PET by using temperature and radiation data. The
equation is expressed as follows (Makkink 1957):

PET ¼ 0:61
D

Dþ g

Rs

l
� 0:12 (4)

where Rs is the solar radiation of the crop surface (MJ m�2 day�1); γ is the psychrometric constant (kPa °C�1); Δ is the slope
vapor curve (kPa °C�1) and λ is the latent heat of vapor (MJ kg�1).
Priestly–Taylor model

The Priestly–Taylor model is a shortened form of the original Penman (1948) equation. Priestly & Taylor (1972) showed that
when the large land area becomes more saturated, the net radiation is the main factor which affects the rate of evapotranspira-
tion. The equation is expressed as follows:

PET ¼ 1:26
D

Dþ g
(Rn �G)

1
l

(5)

where Rn is the net radiation of the crop surface (MJ m�2 day�1); Δ is the slope vapor curve (kPa °C�1); λ is the latent heat of
vapor (MJ kg�1); G is the soil heat flux density (MJ m�2 day�1) and γ is the psychrometric constant (kPa °C�1).
Turc model

The Turc model is one of the radiation-based PET models to estimate PET by using mean temperature, solar radiation and
relative humidity. The equation is expressed as follows (Turc 1961):

For RH, 50%,

PET ¼ 0:013
Tmean

Tmean þ 15

� �
(Rs � 23:8846þ 50) 1þ 50� RH

70

� �
(6)

For RH. 50%,

PET ¼ Tmean

Tmean þ 15

� �
(Rs � 23:8846þ 50) (7)

where Tmean is the daily mean temperature (°C); RH is the relative air humidity (%) and Rs is the solar radiation of the crop
surface (MJ m�2 day�1).
Thornthwaite model and Thornthwaite-corrected model

The most widely used mean air temperature model is the Thornthwaite model, as shown in Equation (8). The Thornthwaite
and Mather (1955) model, as shown in Equation (9), was modified from the original Thornthwaite (1948) model. The
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equations can be expressed as follows:

PET ¼ 16
10Tm

I

� �a

(8)

PET ¼ 16
L
12

� �
N
30

� �
10Tm

I

� �a

(9)

I ¼
X12
i¼1

Tm

5

� �1:514

(10)

a ¼ 6:75� 10�7I3 � 7:71� 10�5I2 þ 1:7912� 10�2I þ 0:49239 (11)

where Tm is mean air temperature (°C),N is the number of days in the month and L is the average number of daylight hour per
day for each month.

Blaney–Criddle model

The Blaney–Criddle model is one of the simplest temperature models used to estimate PET. The model only considers temp-
erature change in a particular region. The equation is expressed as follows (Blaney & Criddle 1950):

PET ¼ p(0:46Tm þ 8:128) (12)

where p is the mean daily percentage of annual daytime hours due to the latitude of region, and Tm is mean air temperature (°C).

Hargreaves–Samani model

The Hargreaves–Samani model requires the only daily maximum and minimum air temperatures that are usually available at
most meteorological stations as input. The equation is expressed as follows (Hargreaves & Samani 1985):

PET ¼ 0:0023(Tm þ 17:8)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Tmax � Tmin)

p
Ra (13)

where Tm is the daily mean temperature (°C), Tmin is the daily minimum temperature (°C), Tmax is the daily maximum temp-
erature (°C) and Ra is the extraterrestrial radiation (MJ m�2 day�1).

Evaluation of PET model performance

Four statistical measures, namely the mean bias error (MBE), relative Error (Re), normalized root-mean-square error
(NRMSE) and coefficient of determination (R2), were used to evaluate the accuracy and capability of different PET

models. The performances of each model were compared with the FAO-56 PM model, which serves as a reference model
for PET estimation.

Normalized root-mean-square error

The NRMSE value is expressed as an absolute value between predicted values and observed values. The predicted values

agree perfectly with observed values when NRMSE is equal to zero. The equation of NRMSE is expressed as follows:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Oi�Pi)
2

N

�O

vuuut
(14)

where Pi is the prediction data; Oi is the observation data; i is the indicated data point; N is the total number of data points
and �O is the average observation data.

Coefficient of determination

The R2 is used to indicate the linear relationship between the PET models and the reference model. R2 is a measurement of
the ability of a model to predict an outcome on the basis of a linear regression approach. In general, a high R2 value indicated
://iwa.silverchair.com/jwcc/article-pdf/12/7/3170/957241/jwc0123170.pdf
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that the prediction model is a good fit for the observation model, and vice versa. The equation is expressed as follows:

R2 ¼

PN
i¼1

(Oi � �O)(Pi � �P)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Oi � �O)
2

� � PN
i¼1

(Pi � �P)2
� �s (15)

where Pi is the prediction data; Oi is the observation data; N is the total number of data points; i is the indicated data point; �O
is the mean of observation data and �P is the mean of prediction data.

Mean bias error

The MBE is used to measure the average magnitude of the error of observed data and predicted data. A low absolute MBE
value indicated the higher accuracy of the prediction models. The equation is expressed as follows:

MBE ¼
XN
i¼1

(Pi �Oi)
N

(16)

where Pi is the prediction data; Oi is the observation data; N is the total number of data points and i is the indicated data
point.

Relative error

The relative error (Re) is one of the statistical measures to measure the variability of measurement. The predicted values are
close to observed values when Re is equal to zero. The equation is expressed as follows:

RE ¼

PN
i¼0

(Pi �Oi)

PN
i¼0

(Oi)
(17)

where Pi is the prediction data; Oi is the observation data; N is the total number of data points and i is the indicated data
point.

RESULTS

Statistical characteristics of PET values

The maximum, minimum and mean PET values estimated by the FAO-56 PM model over daily, monthly and annual time

scales, at all the various meteorological stations, are shown in Table 2. For the daily mean PET estimation, there were five
out of seven stations that had exceeded 4 mm/day except for the Kuantan station and the Muadzam Shah station. Similarly,
Table 2 | Daily, monthly and yearly PET values estimated by the FAO-56 PM at seven stations

Daily PET (mm/day) Monthly PET (mm/month) Annual PET (mm/year)

Station Max. Min. Mean Max. Min. Mean Max. Min. Mean

Bayan Lepas 7.88 0.88 4.29 194.22 102.15 130.70 1,748.2 1,485.3 1,568.4

Ipoh 6.82 1.40 4.11 166.66 94.78 125.03 1,640.4 1,427.2 1,500.3

Kota Bahru 6.71 0.59 4.12 172.19 43.48 125.31 1,639.9 1,407.5 1,503.7

Kuantan 5.91 0.94 3.88 148.48 88.81 118.07 1,485.3 1,346.6 1,416.9

Muadzam Shah 5.45 0.91 3.65 136.55 86.55 111.07 1,362.7 1,297.5 1,332.9

Pulau Langkawi 8.35 1.00 4.32 191.29 99.29 131.57 1,687.3 1,499.8 1,578.8

Subang 8.06 0.97 4.31 166.98 97.74 131.02 1,688.3 1,464.9 1,572.3
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the mean monthly PET values exceeded 120 mm/month for all stations except for the Kuantan station and the Muadzam

Shah station. For annual mean PET values, the Kuantan and Muadzam Shah stations were below 1,400 mm/year, while
the other meteorological stations had exceeded 1,500 mm/year. Figure 2 depicts the annual PET values estimated by using
the temperature-based and radiation-based PET models for the seven meteorological stations. The FAO- 56 PM model was
Figure 2 | Annual PET values computed by PET models at seven meteorological stations: (a) Bayan Lepas station; (b) Ipoh station; (c) Kota
Bahru station; (d) Kuantan station; (e) Muadzam station; (f) Pulau Langkawi station and (g) Subang station.
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used as a reference for the PET estimation. The overestimation of PET occurs when the trend of the PET models was above

the trend of the FAO-56 PM model, and vice versa. As depicted in Figure 2, the values obtained by Priestly–Taylor, Blaney–
Criddle, Thornthwaite, Thornthwaite corrected and Hargreaves–Samani models were all above the FAO-56 PMmodel, which
indicates the overestimation of PET values. On the other hand, the Makkink model was the only PET model that underesti-

mated the PET values, as the trend produced was below that of the FAO-56 PM model. Hence, the Turc model gave the best
performance, as the trend was the closest to the trend of the FAO-56 PM model.

Statistical performances of PET models for daily, monthly and annual series

To understand the relationship between the FAO-56 PM model and the PET models, statistical measures, including Re, MBE,
NRMSE and R2, were applied to the seven PET models at each of the seven meteorological stations. The statistical perform-

ances of PET models for daily, monthly and annual series are displayed in Tables 3–5, respectively.
Table 3 | Statistical performances of the radiation-based and temperature-based PET models (daily series)

Statistical measures PET models

Stations

Bayan Lepas Ipoh Kota Bahru Kuantan Muadzam Shah Pulau Langkawi Subang

Re PETMak 0.196 0.195 0.192 0.153 0.153 0.202 0.198
PETPT 0.322 0.327 0.331 0.397 0.399 0.313 0.32
PETTurc 0.02 0.014 0.011 0.038 0.046 0.026 0.021
PETHS 0.066 0.104 0.031 0.115 0.232 0.079 0.038

MBE PETMak �0.844 �0.801 �0.79 �0.592 �0.559 �0.874 �0.851
PETPT 1.385 1.343 1.365 1.54 1.458 1.353 1.38
PETTurc �0.085 �0.059 �0.044 0.148 0.167 �0.114 �0.092
PETHS �0.282 0.425 �0.129 0.446 0.845 �0.343 0.164

NRMSE PETMak 0.213 0.204 0.208 0.16 0.156 0.227 0.206
PETPT 0.348 0.34 0.387 0.411 0.413 0.35 0.344
PETTurc 0.084 0.059 0.085 0.061 0.053 0.104 0.058
PETHS 0.188 0.163 0.212 0.187 0.263 0.221 0.183

Table 4 | Statistical performance of the radiation-based and temperature-based PET models (monthly series)

Statistical measures PET models

Stations

Bayan Lepas Ipoh Kota Bahru Kuantan Muadzam Shah Pulau Langkawi Subang

Re PETMak 0.196 0.195 0.192 0.153 0.153 0.202 0.198
PETPT 0.322 0.327 0.331 0.397 0.399 0.313 0.32
PETTurc 0.02 0.014 0.011 0.038 0.046 0.026 0.021
PETTho 0.252 0.203 0.191 0.223 0.271 0.288 0.271
PETThoc 0.271 0.221 0.211 0.243 0.291 0.307 0.291
PETBC 0.345 0.385 0.381 0.452 0.534 0.342 0.336
PETHS 0.066 0.104 0.031 0.115 0.232 0.079 0.038

MBE PETMak �25.677 �24.369 �24.057 �18.03 �16.999 �26.607 �25.895
PETPT 42.148 40.876 41.54 46.854 44.359 41.182 41.99
PETTurc �2.581 �1.785 �1.345 4.506 5.098 �3.459 �2.802
PETTho 32.937 25.37 23.954 26.332 30.127 37.895 35.536
PETThoc 35.409 27.69 26.485 28.671 32.283 40.333 38.078
PETBC 45.084 48.195 47.799 53.425 59.336 45.018 44.027
PETHS �8.569 12.945 �3.918 13.579 25.713 �10.43 4.989

NRMSE PETMak 0.203 0.199 0.197 0.157 0.154 0.214 0.201
PETPT 0.33 0.329 0.349 0.398 0.402 0.32 0.325
PETTurc 0.055 0.04 0.046 0.049 0.048 0.074 0.039
PETTho 0.28 0.216 0.236 0.246 0.286 0.308 0.29
PETThoc 0.305 0.239 0.261 0.273 0.308 0.335 0.312
PETBC 0.367 0.396 0.409 0.46 0.54 0.377 0.35
PETHS 0.116 0.114 0.118 0.131 0.238 0.132 0.094
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Table 5 | Statistical performance of the radiation-based and temperature-based PET models (annual series)

Statistical measures PET models

Stations

Bayan Lepas Ipoh Kota Bahru Kuantan Muadzam Shah Pulau Langkawi Subang

Re PETMak 0.196 0.195 0.192 0.153 0.153 0.202 0.198
PETPT 0.322 0.327 0.331 0.397 0.399 0.313 0.32
PETTurc 0.02 0.014 0.011 0.038 0.046 0.026 0.021
PETTho 0.252 0.203 0.191 0.223 0.271 0.288 0.271
PETThoc 0.271 0.221 0.211 0.243 0.291 0.307 0.291
PETBC 0.345 0.385 0.381 0.452 0.534 0.342 0.336
PETHS 0.066 0.104 0.031 0.115 0.232 0.079 0.038

MBE PETMak �308.119 �292.46 �288.685 �216.363 �203.988 �319.279 �310.742
PETPT 505.775 490.515 498.475 562.245 532.303 494.18 503.879
PETTurc �30.972 �21.423 �16.137 54.075 61.17 �41.506 �33.62
PETTho 395.245 304.444 287.453 315.981 361.521 454.736 426.435
PETThoc 424.906 332.284 317.826 344.057 387.396 483.996 456.933
PETBC 541.003 578.334 573.589 641.099 712.028 540.211 528.32
PETHS �102.83 155.343 �47.013 162.943 308.558 �125.161 59.864

NRMSE PETMak 0.197 0.196 0.193 0.153 0.153 0.203 0.198
PETPT 0.325 0.327 0.333 0.397 0.399 0.314 0.322
PETTurc 0.027 0.025 0.023 0.041 0.046 0.031 0.025
PETTho 0.258 0.205 0.197 0.226 0.276 0.29 0.277
PETThoc 0.277 0.223 0.217 0.245 0.295 0.308 0.296
PETBC 0.348 0.387 0.383 0.453 0.534 0.343 0.338
PETHS 0.074 0.106 0.048 0.116 0.232 0.084 0.058
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For daily series (Table 3), the Turc model gave the best performance, as the Re values were relatively low and ranged from
0.011 to 0.046. This indicated that the PET values were close to the FAO-56 PM model. On the contrary, all the Re values of
the Priestly–Taylor model were above 0.2 in every station and this implied that the PET values differed largely as compared to

the FAO-56 PM model. Similar results can be observed where the NRMSE values for the Turc and Priestly–Taylor models
were below and above 0.2, respectively. The results showed that the Turc model performed the best, followed by the Har-
greaves–Samani model, the Makkink model and the Priestly–Taylor model. Besides, the MBE results showed that the
Makkink model underestimated PET values, while the Priestly–Taylor model showed overestimation at every station. This

may due to the average RH being higher than 75% at every station, and reportedly, the Priestly–Taylor models tend to over-
estimate PET values in humid sites (Suleiman & Hoogenboom 2007; Fisher et al. 2011). Although the Turc model mostly
showed underestimation in every station, the MBE results were close to zero. This indicated that the estimated PET

values were near to the values estimated by the FAO-56 PM model. The Hargreaves–Samani model mostly overestimated
the PET values at every station.

For monthly and annual series (Tables 4 and 5), the Re depicted that the PET values estimated with the Turc model at every

station were close to the PET values estimated by the FAO-56 PM model. This indicated the superior performance of the Turc
model as compared with other PET models. On the other hand, the Re values of the Priestly–Taylor, Thornthwaite,
Thornthwaite-corrected and Blaney–Criddle models were above 0.2 at every station, indicating a significant difference

with respect to the PET values estimated by the FAO-56 PM model. The NRMSE results were similar to the results of the
Re. The Turc model performed the best, followed by the Makkink and Hargreaves–Samani models, while the Priestly–
Taylor, Thornthwaite, Thornthwaite-corrected and Blaney–Criddle models gave the worst performances. On the other
hand, the MBE results had it that the Makkink model underestimated PET values at every station, while the Priestly–

Taylor, Thornthwaite, Thornthwaite-corrected and Blaney–Criddle models showed overestimation at every station.
The R2 values for the PET models are presented as scatter plots and are shown in Figures 3–5. The radiation-based models

gave good performances, as there was a significant positive correlation between the PET values of the radiation-based models

and the FAO-56 PMmodel (R2. 0.8100). Although all radiation-based models gave approximately similar R2 values, the Turc
model requires the least number of parameters, and therefore easier to be used. Temperature-based models yielded the R2

value ranging from 0.0097 to 0.5197. This indicated that the temperature-based models and the FAO-56 PM model exhibited
://iwa.silverchair.com/jwcc/article-pdf/12/7/3170/957241/jwc0123170.pdf



Figure 3 | Daily PET values estimated by the FAO-56 PM (PETPM) model versus various PET models: (a) Makkink model (PETMAK); (b) Priestley–
Taylor model (PETPT); (c) Turc model (PETTURC) and (d) Hargreaves–Samani model (PETHS) in the Bayan Lepas station.
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a poor relationship due to the weak positive correlation of the PET values. The results are consistent with those in Tukimat
et al. (2012) who had reported better performances (higher R2) for the radiation-based methods as compared to the tempera-
ture-based methods.

Determination of the best PET estimation models

To determine the best PET method, the statistical performances of each model at every station were ranked from one (best fit)

to seven (least fit). The selection of the best PET models was based on the lowest tested scores acquired by summing up the
scores of each statistical performance. Table 6 presents an overview of ranking score of statistical performance based on the
daily, monthly and annual time scales. For the daily and monthly time scales, it can be observed that the Turc model showed

the best performance at every station. The scores obtained by the Makkink model were close to those of the Hargreaves–
Samani model. The Makkink model obtained the second-lowest score for four out of seven stations and the third-lowest
score for three out of seven stations, while the Hargreaves–Samani model obtained the second-lowest score for three out
of seven stations and the third-lowest score for four out of seven stations. The Thornthwaite model obtained the fourth-

lowest score for all stations, whereas the Priestly–Taylor model obtained the third-highest score for six out of seven stations.
The Thornthwaite-corrected model obtained the second-highest score for six out of seven stations, while the Blaney–Criddle
model obtained the highest score for all stations. Similarly for the annual time scale, it was found that the Turc model gave the

best fit for six out of seven stations. The Makkink model obtained the second-lowest score at five out of seven stations fol-
lowed by the Hargreaves–Samani and Thornthwaite models. The Blaney–Criddle model depicted the least fit for all stations.

DISCUSSION

The overall results revealed that the radiation-based PET models gave better performances compared to the temperature-
based models. The findings are consistent with those of Tukimat et al. (2012), Muniandy et al. (2016) and Muhammad
et al. (2019) who found that the radiation-based models outperformed the temperature-based models in Peninsular Malaysia.

Most of the PET models overestimated the PET values. However, the Makkink model obtained a lower PET value than the
FAO-56 PM model. Based on the trend analysis pattern and the ranking score for statistical performances, it is evident that
the Turc model was the best model for estimating PET values and thus is the best alternative to the FAO-56 PM model. This
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3170/957241/jwc0123170.pdf
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Figure 4 | Scatter plot of monthly PET estimated by the FAO-56 PM (PETPM) model versus various PET models: (a) Makkink model (PETMAK); (b)
Priestley–Taylor model (PETPT); (c) Turc model (PETTURC); (d) Thornwaite model (PETTHO); (e) Thornwaite-corrected model (PETTHO CORRECTED); (f)
Blaney–Criddle model (PETBC) and (g) Hargreaves–Samani model (PETHS) in the Bayan Lepas station.
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can be explained by the dominant role of relative humidity, solar radiation and temperature used in the Turc model. Accord-
ing to Jensen et al. (1990), the Turc model was suitable to estimate PET, especially under humid regions. This is probably one

of the reasons why the Turc model is suited for regions with abundant rainfall in this study area. According to relevant studies
and literature, Tukimat et al. (2012) and Birara et al. (2021) pointed out that the Turc model provided the best performance in
estimating PET values under subhumid and humid regions.

Among the temperature-based models, the Hargreaves–Samani model obtained a comparable score with the radiation-
based Makkink model at most of the stations. This is because the solar radiation is the most sensitive meteorological par-
ameter for PET estimation, followed by air temperature, relative humidity and wind speed. The Hargreaves–Samani model

included extraterrestrial solar radiation as input, while other temperature-based models require air temperature and relative
://iwa.silverchair.com/jwcc/article-pdf/12/7/3170/957241/jwc0123170.pdf



Figure 5 | Scatter plot of Annual PET estimated by the FAO-56 PM (PETPM) model versus various PET models: (a) Makkink model (PETMAK); (b)
Priestley–Taylor model (PETPT); (c) Turc model (PETTURC); (d) Thornwaite model (PETTHO); (e) Thornwaite-corrected model (PETTHO CORRECTED); (f)
Blaney–Criddle model (PETBC) and (g) Hargreaves–Samani model (PETHS) in the Bayan Lepas station.
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humidity only (Sentelhas et al. 2010). This led to a better performance of the Hargreaves–Samani model. On the other hand,
the Blaney–Criddle model demonstrated high discrepancies and provided the least fit at all stations. This can be explained by
the fact that the model was established in a humid area and it was always found to overestimate the PET values. The over-

estimation was due to the high humidity with low wind speeds that force the ratio of the aerodynamic to energy terms below
0.26 (Lee et al. 2004).
CONCLUSION

In summary, PET estimation using various estimation models for Peninsular Malaysia was carried out. Three radiation-

based and four temperature-based PET models were compared with reference to the FAO-56 PM model based on different
time scales at seven meteorological stations across Peninsular Malaysia. All the derived PET values were fitted into four
different statistical measures, namely the MBE, Re, NRMSE and R2. The statistical performances of each model at each
om http://iwa.silverchair.com/jwcc/article-pdf/12/7/3170/957241/jwc0123170.pdf
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Table 6 | Ranking score of statistical performance based on daily, monthly and annual time scales

Stations PET models

Time Scale

Daily Monthly Annual
Re MBE NRMSE R2 Score Re MBE NRMSE R2 Score Re MBE NRMSE R2 Score

Bayan Lepas PET Mak 3 3 3 2 11 3 3 3 1 10 3 3 3 2 11
PET PT 4 4 4 2 14 6 6 6 3 21 6 6 6 2 20
PET Turc 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
PETTho - - - - - 4 4 4 5 17 4 4 4 7 19
PETThoc - - - - - 5 5 5 6 21 5 5 5 6 21
PETBC - - - - - 7 7 7 7 28 7 7 7 5 26
PET HS 2 2 2 4 10 2 2 2 4 10 2 2 2 4 10

Ipoh PET Mak 3 3 3 2 11 3 3 3 3 12 3 3 3 6 15
PET PT 4 4 4 2 14 6 6 6 2 20 6 6 6 6 24
PET Turc 1 1 1 1 4 1 1 1 1 4 1 1 1 5 8
PETTho - - - - - 4 4 4 5 17 4 4 4 3 15
PETThoc - - - - - 5 5 5 6 21 5 5 5 2 17
PETBC - - - - - 7 7 7 7 28 7 7 7 4 25
PET HS 2 2 2 4 10 2 2 2 4 10 2 2 2 1 7

Kota Bahru PET Mak 3 3 2 2 10 4 4 3 2 13 4 4 3 2 13
PET PT 4 4 4 2 14 6 6 6 2 20 6 6 6 2 20
PET Turc 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
PETTho - - - - - 3 3 4 5 15 3 3 4 6 16
PETThoc - - - - - 5 5 5 6 21 5 5 5 5 20
PETBC - - - - - 7 7 7 7 28 7 7 7 4 25
PET HS 2 2 3 4 11 2 2 2 4 10 2 2 2 7 13

Kuantan PET Mak 3 3 2 2 10 3 3 3 3 12 3 3 3 1 10
PET PT 4 4 4 2 14 6 6 6 2 20 6 6 6 3 21
PET Turc 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
PETTho - - - - - 4 4 4 5 17 4 4 4 6 18
PETThoc - - - - - 5 5 5 6 21 5 5 5 5 20
PETBC - - - - - 7 7 7 7 28 7 7 7 7 28
PET HS 2 2 3 4 11 2 2 2 4 10 2 2 2 4 10

Muadzam Shah PET Mak 2 2 2 2 8 2 3 2 1 8 2 2 2 2 8
PET PT 4 4 4 2 14 6 6 6 1 19 6 6 6 2 20
PET Turc 1 1 1 1 4 1 1 1 3 6 1 1 1 1 4
PETTho - - - - - 4 4 4 6 18 4 4 4 6 18
PETThoc - - - - - 5 5 5 5 20 5 5 5 5 20
PETBC - - - - - 7 7 7 7 28 7 7 7 7 28
PET HS 3 3 3 4 13 3 2 3 4 12 3 3 3 4 13

(Continued.)
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Table 6 | Continued

Stations PET models

Time Scale

Daily Monthly Annual
Re MBE NRMSE R2 Score Re MBE NRMSE R2 Score Re MBE NRMSE R2 Score

Pulau Langkawi PET Mak 3 3 3 2 11 3 3 3 1 10 3 3 3 2 11
PET PT 4 4 4 2 14 6 6 5 2 19 6 6 6 2 20
PET Turc 1 1 1 1 4 1 1 1 3 6 1 1 1 1 4
PETTho - - - - - 4 4 4 5 17 4 4 4 6 18
PETThoc - - - - - 5 5 6 6 22 5 5 5 5 20
PETBC - - - - - 7 7 7 7 28 7 7 7 4 25
PET HS 2 2 2 4 10 2 2 2 4 10 2 2 2 7 13

Subang PET Mak 3 3 3 2 11 3 3 3 2 11 3 3 3 2 11
PET PT 4 4 4 2 14 6 6 6 2 20 6 6 6 2 20
PET Turc 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
PETTho - - - - - 4 4 4 5 17 4 4 4 6 18
PETThoc - - - - - 5 5 5 4 19 5 5 5 5 20
PETBC - - - - - 7 7 7 7 28 7 7 7 4 25
PET HS 2 2 2 4 10 2 2 2 6 12 2 2 2 7 13
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station were ranked from the best fit to the least fit. Finally, the best PET model was selected based on the lowest tested

scores acquired by summing up the scores of each statistical performance. The statistical results demonstrated that the
Turc model gave the best overall performance, whereas the Blaney–Criddle model performed the worst. In general, the
assessment of PET estimation models plays a crucial role in defining the water budget and physical processes in tropics.

This study is essential for understanding the adaptability of PET models in Peninsular Malaysia and is able to provide gui-
dance when selecting the most appropriate PET models for estimating PET based on the accessibility of meteorological
information.

In addition, the assessment of PET models in this study was carried out using only temperature-based and radiation-based

PET models, and thus it should be noted that a comprehensive exploration of various other PET estimation approaches may
be performed to enhance the use of highly precise models.
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