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Performance comparison of filtering methods on

modelling and forecasting the total precipitation amount:

a case study for Muğla in Turkey

Serdar Neslihanoglu, Ecem Ünal and Ceylan Yozgatlıgil
ABSTRACT
Condensed water vapor in the atmosphere is observed as precipitation whenever moist air rises

sufficiently enough to produce saturation, condensation, and the growth of precipitation particles.

It is hard to measure the amount and concentration of total precipitation over time due to the

changes in the amount of precipitation and the variability of climate. As a result of these, the

modelling and forecasting of precipitation amount is challenging. For this reason, this study

compares forecasting performances of different methods on monthly precipitation series with

covariates including the temperature, relative humidity, and cloudiness of Muğla region, Turkey. To

accomplish this, the performance of multiple linear regression, the state space model (SSM) via

Kalman Filter, a hybrid model integrating the logistic regression and SSM models, the seasonal

autoregressive integrated moving average (SARIMA), exponential smoothing with state space model

(ETS), exponential smoothing state space model with Box-Cox transformation-ARMA errors-trend

and seasonal components (TBATS), feed-forward neural network (NNETAR) and Prophet models are

all compared. This comparison has yet to be undertaken in the literature. The empirical findings

overwhelmingly support the SSM when modelling and forecasting the monthly total precipitation

amount of the Muğla region, encouraging the time-varying coefficients extensions of the

precipitation model.
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HIGHLIGHTS

• The modelling and forecasting of precipitation amount are difficult because of its highly

parametrized and varied nature.

• The performances of filtering methods, namely the multiple linear regression, the state space

model (SSM), hybrid, SARIMA, ETS, TBATS, NNETAR and Prophet models on monthly total

precipitation amount are investigated.

• The results support SSM when modelling and forecasting the total precipitation amount.
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INTRODUCTION
One of the most common problems in the world is the

remarkable changes observed in climate. The effects of

these changes on Earth and human beings cannot be

ignored if we want to create a more habitable future.

There are many parameters listed which change everyday

climate. One of the most known is global warming, which

has a direct effect on climate. This has caused an imbalance

in the world’s climate. The seasons are shorter or longer

than in previous years, relatively speaking. Accordingly, it

does not make sense to expect normal seasonal weather

anymore. There may be no solutions to this change in

temperature, but if the amount of precipitation can be pre-

dicted, that will help make lives easier and the world more

liveable. Planning for these types of future events is crucial

during this tumultuous time. Making predictions about

such unseasonable and changeable factors affecting the

Earth requires some scrutiny and investigation.

Especially, when global warming has combined with the

variability of nature itself, predicting the amount of precipi-

tation in its various forms will be a tough process. Making

such a predictive device will have untold benefits for the

people and animals living on Earth. To be able to predict

the amount of precipitation with all of its effective par-

ameters, it is necessary to make some changes to

agricultural activities, to plan engineering processes, or to

be prepared for the conditions caused by a severe amount

of precipitation. For example, having a good prediction

model would enable farmers to predict the amount of pre-

cipitation for their area, thereby enabling them to make

innovations on, for example, their existing irrigation sys-

tems. According to the updated information of

precipitation, the updated irrigation systems plans would

be able to improve seeding and cropping mechanisms,

thereby allowing farmers to make a profit in terms of time

and manpower costs when compared to previous seeding

systems. Keefer () mentioned that knowledge of the

amount of precipitation also enables the selection of the

correct agricultural equipment for the purpose of better

handling severe precipitation types. Indeed, the importance

of predicting and forecasting the amount of precipitation for

agricultural activities is related to the power of production.
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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As a result, having a perfect model of prediction translates

to a strong agricultural system which improves the econom-

ies of countries in every respect. For instance, the

significance of predicting the amount of precipitation also

shows itself in the energy area. The most popular field of

energy associated with precipitation is hydroelectric

power, which is a source of electricity. The generation of

this type of electricity is processed by large dams (Harting

). Thus, precipitation zones are taken into consideration

whilst selecting the correct fertile areas for the construction

of plants for the purpose of producing energy by hydroelec-

trical means. Large dams should be constructed in regions

which receive sufficient precipitation so that maximal

energy is reached. These plants are not only constructed in

precipitation zones but also in drainage basins. There also

exists a relationship between the amount of precipitation

and the basins in such a way that river basins are prioritized

in those regions known to receive more precipitation than

others. Constructing these basins in these regions also pre-

vents freshet cases, which result from severe amounts of

precipitation. As a result, by predicting the correct amount

of precipitation, proper drainage basins are then set up and,

with the source of water which is gained from the river, com-

pounded by the amount of precipitation which occurs

naturally, hydroelectrical energy is then produced. At this

point, it should not be ignored that a good model for predict-

ing precipitation potentially lends itself to preventing huge

natural disasters. People can take proper precautions against

such disasters if they have prior knowledge of possible

amounts of extreme precipitation. Predicting precipitation

amounts can also aid tourism. Good predictions regarding

precipitation are beneficial for travelers wishing to better

manage their holidays. It also directly affects countries’

economies. As a result, a good mechanism for predicting pre-

cipitation has comprehensive effects on daily life and the

long-run planning of countries’ economies.

Range, intermittency, concentration, and temporal and

spatial distribution type problems create massive variety

and complexity in precipitation variables which do not

allow easy descriptions, modelling and prediction. This diffi-

culty can be explained by the association between the
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changing amount of precipitation and the variability in the

climate, with both its causes and consequences (Ezenwaji

et al. ). In addition to the effects of climatological varia-

bility on the total amount of precipitation, some natural

causes can be listed as factors which have effects on the

total precipitation. Those factors can be considered as differ-

ent parameters of nature which, in turn, can both be results

of climate change and effects on the total precipitation

amount over varying periods of time. According to this

nature, the observed amount of precipitation changes.

Furthermore, different mechanisms, such as the rate of

humidity, observed temperature, and cloudiness may affect

the time, duration, or intensity of the precipitation. As a

result, an accurate and precise modelling of total precipi-

tation series is difficult to achieve because of its being

highly parametrized, not to mention the highly varied

nature of the data. While modelling total precipitation, it is

important to take the maximum and minimum values of

those parameters into account in order to obtain the most

efficient structures for the model. To exert dominance on

the different factors which affect the total precipitation

makes it easy for one to understand that the structure of

the data is important in order to generate a model with fore-

casts which are good enough.

Although numerous studies on modelling and predicting

precipitation amounts exist (e.g. Sigrist et al. ;

Abdul-Aziz et al. ; Kotowski & Kazmierczak ;

Yozgatlıgil & Türkes ̧ ; Esteves et al. ), research con-

ducted regarding modelling and predicting precipitation

methods with the help of temperature, relative humidity

and cloudiness variables is very recent in the literature.

When different studies conducted in the Mediterranean

region are considered, it is seen that there are several studies

on modelling precipitation data. For instance, Toth et al.

() and Brath et al. () used autoregressive integrated

moving average (ARIMA), artificial neural network (ANN)

and k-nearest neighbour approaches to forecast rainfall

and flooding in Italy and they showed that time series analy-

sis offers an improvement in flood forecasting accuracy.

Guldal & Tongal () predicted a lake level by ARIMA

and neural network models. Bahadır () used ARIMA

models to forecast mean temperatures and total precipi-

tation amounts in Afyonkarahisar using annual data until

2025, and their best MSE value for precipitation train
://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
series is 3,629.23. They did not use cross-validation to

observe the forecasting performance of models. Soltani

et al. () suggested the use of a seasonal

ARIMA(0,0,1)(0,1,1)12 model for Isfahan station and used

different seasonal ARIMA models for different areas to cap-

ture the periodicity and temporal characteristics of rainfall

generating mechanisms in Iran. They only used R2 for the

accuracy measure which cannot capture the actual differ-

ence between the observed and predicted values. Sun

et al. () used only a univariate precipitation series and

applied neural networks. The obtained best mean absolute

error (MAE) was 31.25. The model performance of Liu &

Shi () is the Nash–Sutcliffe coefficient of efficiency

(NSCE). Ji et al. () used Bayesian model averaging

using 1–15-day and 24-h accumulated precipitation series

over East Asia based on the ensemble prediction system

(EPS) outputs of ECMWF, NCEP, and UKMO from the

TIGGE datasets. Their minimum MAE value is around

2.5 mm. The research of Pan et al. () uses convolutional

neural networks and they compared their study by linear

regression, nearest neighbour and random forest. Their

root mean square error (RMSE) values, which were better

than the performance of other methods they compared,

were around 6 mm for the 3-hour precipitation series.

Kumar et al. () used recurrent neural networks to pre-

dict and forecast monthly precipitation series and their

RMSE and MAE values were around 400–500 and 200–

300 mm, respectively. Around the world there are many

studies using deep learning techniques to predict and fore-

cast precipitation amount series. Sadeghi et al. ()

developed the PERSIANN-CNN algorithm to forecast satel-

lite data using convolutional neural networks. The smallest

MAE and RMSE scores they obtained were 0.12 and 0.88,

respectively. The study of Parviz () used the hybrid

of ARIMA and support vector machines, and hybrid of

seasonal ARIMA (SARIMA) and ANN on the monthly

precipitation series of two stations in northern Iran. The

best MAE value that Parviz obtained was 18.02. Nourani

et al. () used an ANN-type model to forecast precipi-

tation in the Northern Cyprus region, and the best

normalized RMSE value they observed was 0.111. Wei

et al. () examined the Zhengzhou, China region. They

used a wavelet and hybrid model of the complementary

ensemble empirical mode decomposition, recurrent neural
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networks and ARIMA models on an annual precipitation

series. They found the average relative error of the forecast-

ing in 2013–2017 was 14.1%.

The most-well known filtering method is the Kalman

Filter algorithm (Kalman ), which is a commonly used

estimator for linear systems in many different areas, includ-

ing engineering (Hun et al. ; Deep et al. ) and

economics (Grewal ; Neslihanoglu & Date ). Pro-

vided that the conditional densities are Gaussian and that

the Kalman filter is used as a closed-form solution, the

Kalman filter is seen as being the most satisfactory model

for these purposes. It is rare to find instances in the literature

of using this filtering method for the purpose of predicting

precipitation amounts. For example, Asemota et al. ()

conducted a study modelling the seasonal behaviour of rain-

fall in North Nigeria. They used monthly rainfall data

collected from 1981 to 2013 in order to pave the way for

new agricultural planning in North Nigeria. They accom-

plished this by utilizing the state space model (SSM) via

the Kalman filter. Zulfi et al. () also published a study

on the development of a rainfall forecasting device using

the Kalman filter. In their study, the ARIMA and Kalman

filter methods were compared in terms of performance

with relation to forecasting rainfall. The in-sample data col-

lected from 2005 to 2015 was divided into clusters using a

k-means algorithm, with the Kalman filter algorithm being

applied for modelling and forecasting in each cluster. At

the end, the study concluded that the performance attained

by the Kalman filter was better than that attained by the

ARIMA model for forecasting rainfall. Mas ̧azade et al.

(), on the other hand, focused on the amount of rainfall

estimated by the Kalman filter with radar reflectivity

measurements. The amount of rainfall obtained from the

automatic weather observation stations was assumed to be

the unknown state vector, with the radar reflectivity values

also being used in the measurement model. The aim for

applying the Kalman filter in that study was to model for

true rainfall amounts. To sum up, although the number of

studies examining the effect of different filtering methods

on the ability to predict rainfall totals is relatively limited

in the literature thus far, based on the studies which have

examined it, the Kalman filter is thought to be one of the

most preferred methods for predicting precipitations due

to the accuracy of the results which it yields.
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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The main motivation for this study was to develop a

high-performance precipitation prediction model for

Turkey. Due to high variation within the precipitation

amount series, many time series models cannot capture

the true nature of the series. To the best of the author’s

knowledge, the Kalman filter approach has not been used

to predict precipitation series. Hence, in this study, the mod-

elling and forecasting performances of different types of

filtering methods on monthly total precipitation series of

the Muğla region, with covariates including temperature,

relative humidity, and cloudiness, are compared. For this

purpose, the performance of multiple linear regression,

SSM via the Kalman filter algorithm, a hybrid model

which integrates the logistic regression and SSM models,

the seasonal ARIMA, exponential smoothing with state

space model (ETS), TBATS (exponential smoothing state

space model with Box–Cox transformation, ARMA errors,

trend and seasonal components), feed-forward neural net-

work with one hidden layer (NNETAR) and Prophet

developed by Facebook are compared while conducting a

modelling and 12- and 24-month rolling window forecasting

procedure. This comparison has yet to be undertaken in the

literature. The performance of the aforementioned models is

evaluated using MAE and mean square error (MSE). The

methods were applied using forecast, TSA and prophet R

packages. For SSM via Kalman filter, the codes were devel-

oped in R software (R Core Team ).

The remainder of this paper is organized as follows.

Data description and methodology sections outline the sev-

eral characteristics of the data and the compared models’

algorithms; and the results and discussions section presents

the model evaluation results from the compared models in

modelling and forecasting procedures and provides details

about the best model. The final section presents a con-

clusion based on the results obtained.
DATA DESCRIPTION AND METHODOLOGY

Data description

The monthly series of total precipitation amounts, including

three covariates (average temperature, relative humidity,

and cloudiness), recorded from the weather stations at
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Muğla and which were obtained from the Turkish Meteorol-

ogy Services between 1950 and 2010, are analyzed here.

There were several missing values in both precipitation

and other covariates series. Although for the Kalman filter

algorithm imputation is not necessary, to be able to use

other forecasting tools we need to impute the missing

values. Missing monthly values were imputed by the expec-

tation maximization (EM)–Markov Chain Monte Carlo

(MCMC) multiple imputation method as suggested by Yoz-

gatligil et al. (). The EM algorithm, developed by Little

& Rubin (), is a method of finding the maximum likeli-

hood estimates of parameters from a certain probability

density function when the data are missing. These estimates

are used as a starting value for beginning the MCMC pro-

cess. The parameters of the joint posterior distribution of
Table 1 | Descriptive statistics for Muğla

Precipitation
(mm)

Temperature
(oC)

Relative
humidity (%) Cloudiness

Minimum 0.00 2.50 29.10 0.10

1st quartile 11.10 7.90 51.38 1.50

Median 55.85 14.10 64.80 3.50

Mean 96.72 14.97 62.47 3.39

3rd quartile 143.40 22.20 73.83 5.00

Maximum 645.30 29.00 89.40 7.90

Figure 1 | The time series plot of monthly total precipitation.

://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
the incomplete values are estimated by simulation in two

steps: the imputation step (I-step) and the posterior step

(P-step). In step I, missing values with the estimated mean

vector and covariance matrix are simulated, and in step P,

the posterior population mean vector and covariance

matrix from the complete sample estimates are simulated.

These two steps are iterated enough times to obtain reliable

results (Schafer ). Yozgatligil et al. () suggested

inputting missing values using this method when at most

50% of the data is not observed.

Due to the fact that Muğla is receiving precipitation on

average the whole year round, compared to the rest of the

regions in Turkey, the dataset was used as one of the appli-

cation stations. The descriptive statistics belonging to the

research data are shown in Table 1. Furthermore, the time

series plot of monthly total precipitation amounts is dis-

played in Figure 1.

The various descriptive statistics are given in Table 1. The

minimum observation for precipitation in Muğla is 0 mm as,

on days without any precipitation, the amount of precipi-

tation remains at 0. The mean amount of precipitation is

96.72 mm, which is characterized as a moderate value

taking into consideration the dataset’s minimums and maxi-

mums. The temperature never drops below 0 �C and never

exceeds 29 �C. The average temperature during the time

period under study is 14.97 �C. This indicates a moderate
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zone in terms of weather conditions. This moderateness may

be due to Muğla’s location as its capital city is by the sea. Fur-

thermore, it could be said that the region has a maritime

climate given its humidity. The minimum and maximum rela-

tive humidity values are observed as 29.10 and 89.40%. These

figures reflect the fact that the region is mostly bordered by

the Aegean Sea. Although the average value of relative

humidity is approximately 65%, the cloudiness observed in

the city of Muğla remains mostly at low levels.

As seen from Figure 1, there are no conclusive patterns or

trends in precipitation. After deciding about trend, periodicity

and variation are taken into consideration. Variation derives

from the peaks and troughs of the data presented. It can

clearly be seen that the times series precipitation data rises

and falls across the span of the studied 62 years. The regular

peaks and troughs which occur every 12 months are due to

seasonality. To be able to observe the forecast performance

of models, the series is divided into a train (in-sample) and

test set (out-of sample). First, only the last year of the series

is taken as a test set because ARIMA type stochastic

models converge to its process mean and cannot be used

for long-run forecasting. Performance measures are calcu-

lated both for train and test sets, then, to see the effect of

the forecast horizon the last two years are used as the test

set and accuracy calculations are just given for the test set.
Methodology

The precipitation models in the form of a multiple linear

regression (MLR) model, SSM, a hybrid model, the

ARIMA (Ünal ), ETS, TBATS, NNETAR and Prophet

models are discussed below.

Multiple linear regression

The precipitation model in the form of the multiple linear

regression model is defined as follows:

Precipitationt ¼ κþβ1(Temperature)t
þβ2(RelativeHumidity)t þβ3(Cloudiness)tþεt, εt ∼ N(0, H)

(1)

where κ is the regression intercept and β1, β2 and β2 are

unknown coefficients. εt (t¼ 1,…,T ), are normally distributed
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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errors with mean 0 and constant varianceH. The unknown β

values given in Equation (1) are estimated via ordinary least

squares (OLS), where β̂ is written as follows:

β̂ ¼ argmin
β

kPrecipitationt � ðκ þ β1(Temperature)t

þ β2(Relative HumidityÞt þ β3 Cloudinessð ÞtÞk22 (2)

where

jjPrecipitationt � (κ þ β1(Temperature)t
þ β2(Relative Humidity)t þ β3(Cloudiness)t)jj22
¼
Xn
t¼1

(Precipitationt � (κ þ β1(Temperature)t

þ β2(Relative Humidity)t þ β3(Cloudiness)t))
2

State space model and Kalman filter

The extension of the regression model given in Equation (1)

allows time-varying coefficients, βi (i¼ 1,2,3), into the mean

reverting specification of the SSM using the Kalman filter

algorithm present in Equation (3):

Precipitationt ¼ κ þ β1t(Temperature)t
þ β2t(Relative Humidity)t þ β3t(Cloudiness)t
þ εt, εt ∼ N(0, H): (3)
The state equations given in Equation (3) can be written

as follows:

β1t ¼ �β1 þ φ1(β1 t�1 � �β1)þw1t, w1t ∼ N(0, Q1), (4)

β2t ¼ �β2 þ φ2(β2 t�1 � �β2)þw2t, w2t ∼ N(0, Q2),

β3t ¼ �β3 þ φ3(β3 t�1 � �β3)þw3t, w3t ∼ N(0, Q3),

with prior distributions for the parameters:

β10 ∼ N(μβ1 , Σβ1 ), β20 ∼ N(μβ2 , Σβ2 ), β30 ∼ N(μβ3 , Σβ3 ):

Here, the initial estimates of μβ10 , μβ20 and μβ30 and Σβ10 ,

Σβ20 and Σβ30 are obtained from the data as part of the esti-

mation and βi ¼ 1=T
XT

t¼1
βit (i ¼ 1, . . . , 3). The error

terms for observation (εt) and state equations (wit) are

assumed to be mutually independent of each other and inde-

pendent in time t (t¼ 1,…,T ) and normally distributed with
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0 mean and variances H and Qi, respectively. Also, φi quan-

tifies the temporal autocorrelation in βit in precipitation.

A Kalman filter can be used anywhere uncertain infor-

mation exists about some dynamic system. The aim of the

Kalman filter is to obtain as much information from the uncer-

tain measurements as possible. A Kalman filter is an optimal

estimator that infers parameters of interest from indirect,

inaccurate and uncertain observations. It deals with the

uncertainty associated with the system by adding some new

uncertainty after every prediction step. It combines a predic-

tion of the true data with the new measurement, using a

weighted average that is an estimate lying between the predic-

tion and the measurement. Hence, it has a better estimated

uncertainty. This process is repeated at every time step, with

the new estimate informing the prediction used in the preced-

ing iteration. The relative certainty of the measurements and

current estimate yields the Kalman filter gain which is the rela-

tive weight given to the measurements and current state

estimate, and can be ‘tuned’ to achieve particular performance.

Because the uncertainty is too much in the precipitation series,

this method handles this well. For example, Weeks () pro-

posed the Kalman filter, which is also particularly suitable for

missing data in time series due to its recursive algorithm.

During the Kalman filtering and smoothing process,

three types of problems are defined as follows: if t> n, this

is a prediction problem, if t¼ n, this is a filtering problem,

and if t< n, this is a smoothing problem. The flow chart of

general state space model via Kalman filtering (forward

step (t¼ 1,…n)) and smoothing (backward step (t¼ n, n� 1,

…, 1)) algorithm are given in Figure 2. In this process, the par-

ameters of Equations (3) and (4) are modified as follows:

Yt ¼ Precipitationt, α0
0 ¼ (μκ0 , μβ10 , μβ20, μβ30 )

0

At ¼ (1, Temperaturet, Relative Humidityt, Cloudinesst)

P0
0 ¼

Σκ0 0 0 0
0 Σβ10 0 0
0 0 Σβ20 0
0 0 0 Σβ30

0BB@
1CCA, Φ ¼

0 0
0 φ1

0 0
0 0

0 0
0 0

φ2 0
0 φ3

0BB@
1CCA

Q ¼
0 0
0 Q1

0 0
0 0

0 0
0 0

Q2 0
0 Q3

0BB@
1CCA, H ¼ H
://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
Note that the whole mechanism for the application of the

Kalman filter is based on this procedure. This model is used

for the application to obtain the smoothed values for precipi-

tation in Equations (3) and (4). As a result of the estimation,

some of the values are predicted as negative values that are

very close to 0. To overcome this, logarithmic transformation

was considered, but this did not solve the problem. At that

point, it was decided to count those negative values as zero

because they were already very close to zero. This means

that there is no expectation for precipitation on that day.

This model is called an SSM throughout this research.

Hybrid model

The hybrid data is created from the actual data to handle

negative predictions observed in the smoothing part by

using the logistic regression method. The steps listed below

are followed for generating the hybrid model:

Step 1: The precipitation amount series are arranged as

0 if the amount is 0; otherwise, it is recorded as 1;

Step 2: A logistic regression model is fitted by using

explanatory variables. The logistic regression model is

defined as follows:

P(x)
1� P(x)

¼ eβ
0x (5)

Step 3: After classifying observations as rain and no rain

cases, the estimated 0’s (no-rain cases) fixed as 0 and the

estimated 1’s (rain cases) are put in the Kalman filter algor-

ithm as precipitation amounts;

Step 4: The accuracy measures and forecasts for future

observations are then obtained by using the state space

model via the Kalman filter algorithm.

This approach is called a hybrid model throughout this

research.

ARIMA model

The SARIMA model is defined as follows:

Φ(Bs)φ(B)(1� B)d(1� Bs)DPrecipitationt

¼ Θ(Bs)θ(B)εt (6)



Figure 2 | The flow chart of the algorithm used in Kalman filtering and smoothing.
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Here, it is denoted by ARIMA( p, d, q)x(P, D, Q)s where

the seasonality is represented by s (Box & Jenkins ). Φ

and Θ are the polynomials with orders P and Q, respectively,

each containing no roots inside the unit circle and B
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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represents the back-shift operator, Bjyt ¼ yt�j. Given the sea-

sonality observed in Figure 1 and autocorrelation and partial

autocorrelation plots of the series, the SARIMA model was

fitted by using the arima function in R software (R Core
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Team ). The SARIMA model is fitted as SARIMA(1, 0,

1) × (1, 1, 0)12 based on the Bayesian information criteria

(BIC). This approach is called the ARIMA model through-

out this research.
Exponential smoothing with state space model (ETS)

Exponential smoothing is a deterministic forecasting

method which was developed in the late 1950s by the

works of Holt (), Brown () and Winters ().

This model is an exponential smoothing model with an

underlying state space model consisting of a level com-

ponent, a trend component (T), a seasonal component (S),

and an error term (E). Forecasts are weighted averages of

past observations where weights decrease exponentially.

This method is widely used in forecasting due to its simpli-

city, computational efficiency and accurate forecast

performance. Types of the exponential smoothing method

vary based on the characteristics of the time series. The addi-

tive model is given in Equation (7):

Precipitationt ¼ ‘t�1 þ bt�1 þ st�m þ εt (7)

‘t ¼ ‘t�1 þ bt�1 þ αεt

bt ¼ bt�1 þ βεt

st ¼ st�m þ γεt

where ‘t denotes an estimate of the level of the series at time

t and bt denotes an estimate of the trend of the series at time

t, st denotes the seasonality with weight coefficients α, β and

γ and εt ∼ NID(0, σ2). In the multiplicative model the sum-

mation sign is replaced by a multiplication sign. Different

combinations of this model are given in Hyndman et al.

().
TBATS

To be able to handle more than one seasonal pattern, time

series, Livera et al. () developed a model which is the

combination of exponential smoothing and ARIMA

models including the trigonometric representation of the

seasonal component on a Box–Cox transformation. The

mathematical formulation of the TBATS model is expressed
://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
by the following equations:

Percipitation(w)
t ¼

Percipitation(w)
t � 1

w
, w ≠ 0

logPrecipitation, w ≠ 0

8<: (8)

Percipitation(w)
t ¼ ‘t�1 þ ϕbt�1 þ

XT
i¼1

s(i)t�mi
þ dt

‘t ¼ ‘t�1 þ ϕbt�1 þ adt

bt ¼ ϕbt�1 þ βdt

dt ¼
Xp
i¼1

φidt�i þ
Xq
i¼1

θiεt�i þ εt

s(i)t ¼
Xki

j¼1

s(i)j,t where s(i)j,t ¼ s(i)j,t�1 cos λ
(i)
j þ s�(i)j,t�1 sin λ(i)j þ γ(i)1 dt

s�(i)j,t ¼ �s(i)j,t�1 sin λ(i)j þ s�(i)j,t�1 cos λ
(i)
j þ γ(i)2 dt

where mi denotes the seasonal periods, ‘t and bt represent

the level and trend components of the series at time t,

respectively, s(i)j,t represents the ith seasonal component at

time t with λ(i)j ¼ 2πj=mi, dt denotes an ARMA(p, q) process

and εt is a Gaussian white noise process with zero mean and

constant variance. The smoothing parameters are given by

α, β, γi for i¼ 1, …, T, is the dampening parameter.
Feed-forward neural network (NNETAR)

ANN is a mathematical model imitating human neural

biology to solve nonlinear problems. One of its significant

properties is containing non-linearity in its structure. Also,

the ANN models can be described as universal approxima-

tors that can approximate the generating mechanism of

the data accurately (Zhang ). They do not require any

modelling assumptions. However, since they require a

high level of modelling complexity, ANN models suffer

from being time-consuming (Theodosiou ). The algor-

ithm is supervised learning where input and output series

need to be provided. At the first step, the given input vari-

ables are multiplied by weights which is then learned by

the algorithm using the back-propagation. Next, these

weighted inputs are summed. Then, a bias term is added
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to adjust the threshold. At the final step, the summation of

the weighted inputs and bias are transformed into the final

output by the activation function to catch the complex struc-

ture of the series. One of the common activation functions

that is used for time series is the sigmoid function. The math-

ematical formulation of this process is given as follows:

Precipitationt ¼ f
Xm
i¼0

wi,txi,t þ b

 !
(9)

where xi,t is the input in discrete time t where i¼ 1, …, m,

wi,t is the weight value at time t, b is bias, f is an activation

function, and Precipitationt is the output value at time t.

To update the weights to minimize the loss function like

MSE, back-propagation which is based on the chain rule is

used. In feed-forward neural network, the procedure is one

directional from the input variables to the output variable.

For the network to capture the nonlinear structure of the

data, hidden layers are added between the input layer and

the output layer. In the structure of feed-forward there

exists a network with interconnections, but these intercon-

nections do not form any loops (Krenker et al. ). In the

application of the algorithm, five regular lags and four seaso-

nal lags are given as input variables. The average of 20

networks, each of which is a 9-40-1 network with 441

weights, are used. The algorithm is named NNETAR.
Prophet

The Prophet model ws introduced by Facebook in 2017

(Taylor & Letham ). It can capture the trend and

strong multiple seasonality at day, week, year level etc. with

the time series. It uses a decomposable time series model

with three main model components: trend, seasonality, and

holidays. They are combined in the following equation:

Precipitation(t) ¼ g(t)þ s(t)þ h(t)þ εt (10)

where g(t) is the piecewise linear or logistic growth curve for

modelling non-periodic changes in time series; s(t) is the per-

iodic change (e.g. weekly/yearly seasonality); h(t) is the effect

of holidays (user provided) with irregular schedules; εt is the

error term accounting for any unusual changes not accom-

modated by the model.
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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The model can be implemented for user defined change

points or irregular holidays. To fit and forecast the effects of

seasonality, the model is based on Fourier series. It uses a

Bayesian framework to estimate the unknown parameters of

the model but the application is very user-friendly. The algor-

ithm obtained the predicted values automatically. In the

application of the algorithm, some parameters are tuned to

get better results which is known as hyperparameter tuning.

SARIMA, TBATS and NNETAR models are also run

including the temperature, humidity and cloudiness covari-

ates. The results of these models are given as ARIMAX,

TBATSX and NNETARX.

The performance of fitted models in the in-sample mod-

elling (out-of-sample forecasting) procedure are evaluated in

terms of the MAE and MSE criteria and are shown as fol-

lows:

MAE ¼
XT
t¼1

j dPrecipitationt � Precipitationtj
T

(11)

MSE ¼
XT
t¼1

d(Precipitationt � Precipitationt)
2

T
(12)

The lowest values of modelling (forecast) evaluation cri-

teria mean that the in-sample modelling procedure (out-of-

sample forecasting) has been estimated properly and that

the model constructed at the end is a significant model.
RESULTS AND DISCUSSION

This section presents a comparison of the in-sample (train

set) model fit and out-of-sample (test set) forecasting per-

formance for the MLR, SSM, hybrid, SARIMA, ETS,

TBATS, NNETAR and Prophet models and the same

models applied with the covariates during the given time

period. A model performance comparison is conducted in

terms of the MAE (Equation (11)) and MSE (Equation

(12)), respectively. Those results are presented in Table 2.

As seen in Table 2, the state space model (SSM) has the

lowest MAE and MSE values. This means that it outper-

forms other methods. The performance of the SSM is

57.88% (92.38%) better than that of the hybrid model in

terms of MSE (MAE). When the in-sample modelling per-

formance of other models is considered, it is seen that



Table 2 | MAE and MSE of in-sample modelling and out-of-sample forecasting

Period

Train: In-sample modelling
Test: Out-of-sample forecasting
(12 months forecast)

Test: Out-of-sample forecasting
(24 months forecast)

Model MAE MSE MAE MSE MAE MSE

MLR 52.4912 5,177.2840 50.3077 4,172.013 45.9838 3,620.9360

SSM 0.1872 0.1744 0.0130 0.00030 0.0088 0.00012

Hybrid 0.4444 2.2887 0.0152 0.00035 0.0094 0.00013

SARIMA 49.8064 5,620.1560 51.2716 5,126.8750 50.2222 5,616.3184

SARIMAX 42.1393 3,813.8159 51.6351 5,291.5440 49.8555 5,425.2063

ETS 49.1069 5,613.7406 49.2087 4,969.4604 44.3153 4,384.5322

TBATS 49.1069 5,605.4720 54.2269 5,545.6617 48.6871 4,924.1938

TBATSX 49.1069 5,605.4720 54.2269 5,545.6617 48.6871 4,924.1938

NNETAR 14.6143 491.9524 51.9587 6,305.0111 73.6834 11,557.8196

NNETARX 7.07677 104.9068 47.8245 5,727.0537 61.0232 7,619.3171

PROPHET 49.9683 5,625.9000 48.9492 5,087.0274 43.8493 4,355.7228
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although the values are very close to each other, the per-

formance of the Prophet model is better than the others.

Taking the covariates into account improves the results

slightly. To sum up, the SSM is the preferable model for

the precipitation amount using the train set considering

MAE and MSE measures.

In the out-of-sample forecasting procedure, a rolling

window technique with one month ahead forward predic-

tion is used for evaluating the predictive performance of

these models. The length of the prediction period is

chosen as 12 months over the period from January 2010

to December 2010 and 24 months over the period from Jan-

uary 2009 to December 2010. The MAE and MSE values

between the predicted and actual returns on the precipi-

tation amounts are calculated over 12 and 24 values

during that time period and are given in Table 2.

As seen in Table 2, it is apparent that the performance of

the SSM outperforms the others. It also improves on the

hybrid model by 14.48% (14.29%) for 12 months precipi-

tation values and by 6.78% (7.69%) for 24 months

precipitation values while in the out-of-sample forecasting

procedure in terms of MAE (MSE). When the out-of-

sample forecasting performance of other models is con-

sidered, it is seen that although the values are very close

to each other, the performance of the Prophet model is

slightly better than the others. The in-sample performance

of NNETAR models is good but the out-of-sample results
://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
are very high which is an indication of overfitting. A com-

parative forecast plot of all methods is given in Figure 3.

SSM forecasted values are almost the same as the original

observed values. Moreover, SARIMA forecasts are closer

to the original values compared to the forecasts of the

other methods. The performances of the other methods

are similar to each other and do not quite explain the behav-

ior of the original series. Overall, the SSM via the Kalman

filter is the preferable model for predicting precipitation

amounts while forecasting out-of-sample during the given

time period. For the sake of brevity, the SSM via Kalman

filter forecasts and actual total precipitation amounts for

the 12 months are provided in Table 3.

As seen from Table 3, it is apparent that the difference

between the actual precipitation values and the forecast pre-

cipitation values from the SSM via Kalman filter is too low.

This means that the variation of the precipitation amount

has been captured successfully in the model.
Best model fit and forecast

In terms of a comparison of the results between the afore-

mentioned model while modelling and forecasting during

these time periods, the SSM via Kalman filter exhibits the

best performance. The parameter estimates of SSM in the

in-sample model fit procedure are shown in Table 4.



Figure 3 | Forecast plot of all methods compared to the original series.

Table 3 | Forecasts of SSM and actual total precipitation amount for 12 months

Forecast Actual Residual

237.0015 237.0 0.0015

336.5844 336.6 –0.0156

21.6244 21.6 0.0244

17.4138 17.4 0.0138

58.2010 58.2 0.0010

36.1162 36.1 0.0161

9.0436 9.0 0.0436

0.0066 0.0 0.0066

9.2087 9.2 0.0087

98.7082 98.7 0.0082

37.4147 37.4 0.0147

172.8015 172.8 0.0015

Table 4 | The precipitation model in the state space form via Kalman filter parameter

estimates

Parameter Value Parameter Value

Ĥ 7.8870 α̂ –19.798

(4.5257) (22.7454)cQ1 1.08 × 10–23 b�β1 0.2636

(0.0000) (0.0878)cQ2 4.26 × 10–43 b�β2 0.0859

(0.0000) (0.0106)cQ3 287.983 b�β3 27.5361

(15.5027) (4.4127)cφ1 0.0015

(0.0252) Loglikelihood –3,821.285cφ2 0.2754 AIC 7,664.570

(0.1132) BIC 7,715.124cφ3 0.3016 R2 0.999986

(0.0183) Adj R2 0.999986
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Overall, the 99% variability in the in-sample model fit of

the precipitation values can be explained by the indepen-

dent variables of temperature, relative humidity, and

cloudiness for the hybrid model. This is actually a very

extreme value of accuracy and can therefore be counted as

proof of the Kalman filter’s power of modelling precipi-

tation. The estimated values of Ĥ are higher than cQ1, cQ2

except for cQ3 during the given time period. This means

that the observation variance captures the volatility of the

precipitaiton values more than the state (including the par-

ameters of temperature, relative humidity). Additionally,

the estimated cQ3 value is higher than the cQ1 and cQ2

values, which means that the cloudiness state variance
om http://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
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captures the volatility of the various covariates. In addition,

the temporal autocorrelation (captured by cφ1, cφ2 and cφ3) is

close for relative humidity and cloudiness, but that of temp-

erature is far from the relative humidity and cloudiness

state parameters, seeing as they are closer to 0 than they

are to 1. This suggests that the time-varying state parameters

changed rapidly due to low autocorrelation. It is worth noting

that the average regression intercept, α, is negative. This

result indicates that the actual precipitation amount is

lower than the expected precipitation amount during the
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given time period. Moreover, the mean value of the time-vary-

ing b�β3 of cloudiness is greater than that of temperature and

relative humidity during the time period. This result indicates

that cloudiness is more volatile than the other two

parameters.
CONCLUSIONS

The issue of predicting precipitation is a challenging process

since there are various natural parameters which are

involved in the procedure which directly affect precipitation.

The parameters which are taught as deterministic factors for

the amount of precipitation chosen include temperature,

relative humidity, and cloudiness. The modelling and fore-

casting performance of the monthly total precipitation

amount with these determined factors in Muğla compare

the multiple linear regression, state space model via the

Kalman filter algorithm, the hybrid model (which integrates

the logistic regression and SSM models), and the SARIMA.

It was determined that the performance of the state

space model is better than that of the hybrid model and all

other models considered in this study. This suggests that

the Kalman filter is preferable to that of using the integration

of the logistic regression and the Kalman filter. The Kalman

filter outperforms the MLR via OLS, SARIMA, ETS, TBATS

(having the worst prediction and forecasting performance),

NNETAR and Prophet models in modelling and forecasting

the amount of precipitation. It is concluded that having too

many zeros (no-rain situations) in the data itself, as at the

Muğla weather stations, does not affect the performance of

the Kalman filter at all. Also, changing the forecast horizon

does not have any influence on the forecasting performance

of this model.

Our model considers the relationship between the

precipitation amount and several other variables via

SARIMA, SSM, ETS, TBATS, NNETAR and Prophet fore-

casting approaches. Hence, it uses more information

related to the nature of the series. It is observed that state

space modeling via Kalman filtering outperforms the well-

known ARIMA and other forecasting models. The MSE

value obtained from the Kalman filter method is 0.1744

and the MAE value is 0.1872, which are significantly

lower than the performances of the other studies. It is
://iwa.silverchair.com/jwcc/article-pdf/12/4/1071/896568/jwc0121071.pdf
believed that this model performance can also be obtained

in different regions of the world.

To sum up, light was shed on the necessity for time-vary-

ing coefficients extensions of the precipitation model and

filtering methods and applying the method to high frequency

data such as daily and hourly. That type of study would be

significant in terms of being a guide for a large number of

interdisciplinary applications, such as agricultural, engineer-

ing, and preventative (e.g. with regards to natural disasters,

such as floods and droughts) applications. Moreover, with

the help of Kalman filtering, simulation of the actual precipi-

tation series is also possible with a small error which allows

the theoretical studies on the precipitation studies such as

the performance of homogeneity test on precipitation

series. Imitating the series with the estimated coefficients

is not possible with machine learning algorithms and

ANN type approaches because a mathematical form of the

model cannot be written with them.
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