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Application of MEEMD-ARIMA combining model for annual

runoff prediction in the Lower Yellow River

Xianqi Zhang, Wei Tuo and Chao Song
ABSTRACT
The prediction of annual runoff in the Lower Yellow River can provide an important theoretical basis

for effective reservoir management, flood control and disaster reduction, river and beach

management, rational utilization of regional water and sediment resources. To solve this problem

and improve the prediction accuracy, permutation entropy (PE) was used to extract the pseudo-

components of modified ensemble empirical mode decomposition (MEEMD) to decompose time

series to reduce the non-stationarity of time series. However, the pseudo-component was

disordered and difficult to predict, therefore, the pseudo-component was decomposed by ensemble

empirical mode decomposition (EEMD). Then, intrinsic mode functions (IMFs) and trend were

predicted by autoregressive integrated moving average (ARIMA) which has strong ability of

approximation to stationary series. A new coupling model based on MEEMD-ARIMA was constructed

and applied to runoff prediction in the Lower Yellow River. The results showed that the model had

higher accuracy and was superior to the CEEMD-ARIMA model or EEMD-ARIMA model. Therefore, it

can provide a new idea and method for annual runoff prediction.
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INTRODUCTION
One of the important tasks of hydrologists and water

resource engineers is to assess and predict the quantity

of water available in a basin over longer periods, for

example, months and years, and manage the resource

for practical applications involving conservation, environ-

mental disposal, and efficient water supply (Wang et al.

). The prediction of annual runoff in the Lower

Yellow River can provide an important theoretical basis

for flood control and disaster reduction, river and beach

management, rational utilization of regional water and

sediment resources. To the best of our knowledge, the

runoff has changed greatly in the Lower Yellow River

with the influence of climate change and human activities

(Li et al. ; Zhao et al. ). The evolution of runoff is

a complex system, with randomness, ambiguity, and

uncertainty. All this makes it very difficult to predict
runoff in the Lower Yellow River. In recent years, some

scholars have done a great deal of research on runoff

prediction and achieved fruitful results. Since hydrologi-

cal models require a great deal of data input, many

parameters need to be determined, and parameter cali-

bration is difficult. Hydrological models should be

specifically analyzed in different regional conditions,

which may be feasible in one region and need to be con-

sidered in another region. Relevant western research has

mainly focused on mathematical models to predict river

or regional runoff: for example, Sedki et al. () used

a neural network based on a real coding genetic algorithm

to predict daily runoff in the semi-arid climate catchment

area of Morocco; Coulibaly et al. () used a circular

neural network based on low-frequency climate change

index and predicted the annual runoff in the northern
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province of Quebec; Mahabir et al. () used fuzzy logic

to predict seasonal runoff in rocky and middle stream

basins; Alizadeh et al. () used wavelet neural network

to predict rainfall and runoff in the Nettolt river basin for

the following two months. However, research on runoff

prediction in the Yellow River has mainly taken place in

China. Pan et al. () used the GM(1.1) model to predict

annual runoff and precipitation in the Lower Yellow

River; Zhang et al. () used the life cycle–Markov com-

bination model to predict the annual runoff of Longmen

hydrographic station in the Yellow River; Zhao et al.

() used the Fletcher-Reeves method to improve the

backpropagation algorithm and predicted the runoff of

Huayuankou and Lijin hydrological stations in the

Lower Yellow River; Tu et al. () used PSO-KELM to

predict the annual runoff of Lanzhou station and the

Jingou River. The above research mainly focuses on the

traditional statistical models such as neural networks,

etc. The traditional mathematical statistics model cannot

predict the high frequency mutation data well; a neural

network has the defect of training transition, which

makes the network deviate too far from training data.

Hydrological time series prediction is one of the most

important applications in modern hydrology. The estab-

lishment of coupling a prediction model by reducing the

non-stationarity of runoff series is a new way to improve

the runoff prediction accuracy in the Lower Yellow

River. The complementary ensemble empirical mode

decomposition (CEEMD) can decompose the non-

stationary time series and reduce the non-stationarity of

the series, but there are also defects of pseudo-

components. Using the PE to improve the CEEMD

method, proposed modified ensemble empirical mode

decomposition (MEEMD), the pseudo-components of

IMF were extracted. Because the pseudo-component is

very unstable, it cannot achieve a good prediction effect.

Therefore, the pseudo-component is decomposed by

ensemble empirical mode decomposition (EEMD), and

the series after decomposition presents good stationarity.

Combined with ARIMA for stationarity the series has a

strong ability of approximation, and the MEEMD-

ARIMA model for annual runoff prediction in the

Lower Yellow River is constructed, so as to provide new

ways for runoff prediction.
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
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METHODOLOGY

CEEMD

Yeh & Shieh () proposed CEEMD on the basis of

EEMD (Wu ). The CEEMD method mainly adds two

opposite white noise signals to the signal to be analyzed

and the empirical mode decomposition (EMD) decompo-

sition, respectively. The reconstruction error caused by

white noise is reduced under the condition that the effect

of EEMD decomposition is equal to that of EEMD

decomposition. Although CEEMD solves the problem of

poor completeness of EEMD, signal decomposition relies

on the selection of noise amplitude and integration times,

and pseudo-components (components that do not have

physical significance) will appear (Zheng et al. ). There-

fore, the PE is proposed to improve it and extract the IMF

pseudo-component of CEEMD decomposition.
Permutation entropy algorithm

To improve the CEEMD, the crucial step is to detect the

randomness of the signal (that is, extract the pseudo-com-

ponent of the IMF component). There are many existing

detection methods (Borgnat et al. ; Terrien et al.

), but they all have deficiencies in extracting pseudo-

components.

The PE algorithm was proposed by Bandt & Pompe

(). It is a theory based on physical mechanism and

reflecting the inherent law of system evolution. Good robust-

ness (Cao et al. ) is demonstrated in the detection of

randomness and mutation of non-linear time series. This

point has inherent advantages for the detection of signal ran-

domness and the extraction of pseudo-components. The

calculation of the permutation entropy is as follows (Bandt

& Pompe ; Yan & Gao ):

1. Phase space reconstruction was carried out for time

series of length {x(i), i ¼ 1, 2, . . . :N}, and the following

series can be obtained:

X(1) ¼ {x(1), x(1þ λ), ::, x(1þ (m� 1)λ)
X(2) ¼ {x(2), x(2þ λ), ::, x(2þ (m� 1)λ)
. . . . . . :
X(K) ¼ {x(K), x(K þ λ), ::, x(K þ (m� 1)λ)

2
664

3
775 (1)
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2. Regard each row in the matrix as a refactoring com-

ponent, m and λ represent the embedding dimension

and time delay, where K ¼ (m� 1)λ.

3. Arrange each component in order from small to large:

X(i) ¼ {x(iþ (j1 � 1)λ) � x(iþ (j2 � 1)λ)

� . . . x(iþ (jm � 1)λ)} (2)

4. If x(iþ (ji1 � 1)λ) ¼ x(iþ (ji2 � 1)λ), it can be arranged in

order of j from small to large. If ji1 < ji2, take

x(iþ (ji1 � 1)λ) ¼ x(iþ (ji2 � 1)λ), then, for any vector-

X(i), the following series of symbols can exist:
S(k) ¼ [j1, j2, j3 . . . jm] (3)

where, k ¼ 1, 2, 3 . . . l, l � m!. Because [j1, j2, j3 . . . jm] has m!

permutations, there are m! series of symbols. Suppose the

probability of each series of symbols is Pi and
Pl
i¼1

Pi ¼ 1.

According to Shannon’s definitionof information entropy,

the permutation entropy of series {x(i), i ¼ 1, 2, . . . :N} can be

defined below:

HPE(m) ¼ �
Xl

i¼1

PiInPi (4)

HPE(m) gets the maximum In(m!) when Pi ¼ 1
m
, then,

the standardized form of permutation entropy HPE(m) can

be defined as:

HPE ¼ HPE(m)=In(m!) (5)

where 0 � HPE � 1, HPE reflects the randomness of the time

series; the greater the randomness of the series, the greater

the catastrophe probability; on the contrary, the less

random the sequence, the less chance of mutation.

According to Bandt’s recommendation, the range of

embedded dimension m is 3–7. If m is too small, the recon-

struction vector will contain less information, and the

algorithm is meaningless. If m is too large, the reconstruc-

tion of phase space will homogenize the time series, the

change in the sequence is smaller, so m ¼ 5. λ plays a

small role in the PE algorithm, so λ ¼ 1.
://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
MEEMD

The steps of the MEEMD algorithm based on PE are as

follows:

1. Add white noise signals Ci(t) and �Ci(t) in the original

signal x(t), where the mean values are zero.

xþi (t) ¼ x(t)þ biCi(t)

x�i (t) ¼ x(t)� biCi(t)
(6)

where Ci(t) is the added white noise signal, bi is the

amplitude of noise signal (i ¼ 1, 2, 3 . . . ::Ne, Ne is the

number of adding white noise).

2. Use EMD to decompose xþi (t) and x�i (t), and based on

this, the first-order IMF components {Iþi1(t)} and {I�i1(t)}

series can be obtained.

3. Take the mean value of step (2):

I1(t) ¼ 1
2Ne

XNe

i¼1

[Iþi1(t)þ I�i1(t)] (7)

4. Use the permutation entropy algorithm to detect whether

I1(t) is an abnormal signal. If the permutation entropy

value of the IMF component is greater than the threshold

value θ0, then this component is the abnormal com-

ponent; otherwise, the IMF component is a nearly

stationary signal.

5. If I1(t) is an abnormal component, repeat steps (1)–(4),

until the IMF Ip(t) component is not an abnormal

component.

6. Extract the first n� 1 decomposed components out of the

original signal, that is:

r(t) ¼ x(t)�
Xn�1

i¼1

Ii(t) (8)

EEMD

EEMD is an improved algorithm of EMD. Compared with

EMD, EEMD adds Gaussian white noise to the signal and

compensates for the loss of IMF components with its uni-

form distribution characteristics. Through the separation of

the frequency scales, the occurrence of mode mixing can
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be reduced. The biggest characteristic of EEMD is that it can

extract the components and changing trends of signals in the

high frequency and low frequency domains, so as to reduce

the non-stationarity of series.

Based on the properties of the above EMD method, the

procedure of EEMD can be shown as:

1. Add a white noise series to the original data.

2. Decompose the original data with white noise into IMF

components.

3. Add different white noise series with equal root mean

square every time; repeat steps (1) and (2) to get a

group of different IMF components and residuals.

4. Take the corresponding IMFs’ mean as the final IMF

group.

ARIMA

Basic principles

Box et al. () proposed the ARIMA model in the 1970s.

The model was widely used in time series analysis. By study-

ing the probability distribution of noise, the data can be

processed smoothly and normally, thus solving the problem

of random disturbance of series.

In modeling ideas of ARIMA, the predicted object is

regarded as a set of random series, which are approximately

described by a certain mathematical model. Once the model

is identified, the past and present values of the series can be

used to predict the future values.

In the ARIMA (p, d, q) model, AR is the autoregressive

component (Zhao & Chen ); I is difference; MA is the

moving average component; p is the order of the autoregres-

sive component; d is the differential times; and q is the order

of the moving average component.

The ARIMA model is defined below as:

yt ¼ ϕ1yt�1 þ ϕ2yt�2 þ . . .þ ϕpyt�p � θ1ξt�1 � θ2ξt�2

� . . .� θqξt�q þ ξt (9)

where y is time series, ϕ1, ϕ2 . . . ϕp is autoregressive coeffi-

cient, θ1, θ2 . . . θq is moving average coefficient, ξt is error

series, p is autoregressive order number (p> 0 and as an

integer), and q is autoregressive order number (q> 0, and
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
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as an integer). If the differential order is represented by d,

the model can be written as ARIMA (p, d, q).
Modeling steps

The steps of ARIMA modeling are as follows:

• The stationarity of the series is identified according to the

scatter diagram of the series and the autocorrelation and

partial autocorrelation function (PACF) graph.

• If the series is not stable, use difference or moving aver-

age to smooth the data.

• The corresponding model was established according to

the autocorrelation function (ACF) and PACF. If ACF

censoring and PACF trailing, the MA (q) model was

adopted. If ACF trailing and PACF censoring, the

AR(p) model was adopted. If ACF trailing and PACF

trailing, the ARIMA (p, d, q) model was adopted.

MEEMD-ARIMA model

The non-stationarity of series can be reduced by MEEMD

decomposition of runoff; however, the pseudo-component

is extremely unstable and cannot achieve a good prediction

effect, so the pseudo-component is decomposed by EEMD.

The decomposition of MEEMD and EEMD provides a sta-

tionarity premise for the prediction of the ARIMA model.

The specific steps of the MEEMD-ARIMA model are as

follows:

1. Use MEEMD to decompose annual runoff to obtain IMF

components, trend, and pseudo-component of annual

runoff.

2. Apply EEMD decomposition to the pseudo-component

and obtain the IMF components and trend.

3. Verify whether the IMF components, trend, and the sub-

component of the pseudo-component are stationary

series. If stationary, d¼ 0; otherwise, d is determined by

the difference order, then, p and q are determined by

the ACF and PACF figures

4. Use the ARIMA model to fit and predict IMF com-

ponents and trend.

5. Add up the prediction value of IMF components, trend,

and pseudo-component, that is, the predicted value of

the annual runoff.
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For more information about the implementation steps

for the MEEMD-ARIMA model, please see Figure 1.
CASE STUDY

The data source

The Yellow River originates in the Bayan Kera mountains

in Qinghai province, China, passes through Lanzhou,
Figure 1 | Runoff prediction technical route.

Figure 2 | Distribution map of the main hydrological stations in the Lower Yellow River.

://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
Zhengzhou, and Jinan, and flows into the Bohai Sea

near Dongying city, Shandong province. Huayuankou

hydrological station is located in the Lower Yellow River.

It is 770 km away from the estuary and the catchment

area covers 730,000 km2. The annual runoff data covering

1960–2014 were provided by the hydrographic station.

According to the runoff time series from 1960 to 2014, the

maximum annual runoff is 5.60 billion m3 and occurred

in 1961; the minimum annual runoff is 1.42 billion m3

and occurred in 1997; and the average annual runoff is

3.53 billion m3. The location of Huayuankou station is

shown in Figure 2.

It can be seen from Figure 3 that the annual runoff at

Huayuankou station shows an irregular fluctuation trend

of rising and falling. The series shows large randomness,

and the runoff value before 1990 is slightly larger than

that after 1990. This trend of change can be attributed

mainly to the following aspects.
1. The impact of human activities: With the development of

industry, agriculture, and the social economy, the

demand for water has increased, and which has caused

the Lower Yellow River to enter a continuous period of

dry water. After 1990, the demands on the Yellow River

water reached more than 60% of the natural runoff and

increased year by year (Peng ). Meanwhile, the

water storage of Longyangxia reservoir also effectively

reduced the runoff of the downstream main stations

(Ding & Pan ).



Figure 3 | Changes of annual runoff of Huayuankou from 1960 to 2014.
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2. Influence of precipitation: The precipitation shows a

downward trend year by year, and the influence on the

change of runoff is also declining year by year. Precipi-

tation contributed 84% to the change of runoff in the

Lower Yellow River from 1980 to 1992. It was 25%

from 1993 to 2002, and only 10% after 2003 (Pan et al.

). The runoff will decrease without reducing water

demand of the Yellow River.

3. Influence of evapotranspiration: The temperature of the

Lower Yellow River area increased 1.4 �C from 1960 to

2010. During this period, the evaporation capacity of

the downstream was 40 mm due to the enhancement of

temperature in the basin. As a result, the runoff generated

by precipitation decreased and the runoff of the basin

decreased.

In addition, there is the influence of water and sediment

regulation of Xiaolangdi reservoir. After 2002, the runoff

series showed a significant upward trend. It can be seen that

the runoff evolution of Huayuankou station is greatly influ-

enced by human activities, and the randomness of the series

is relatively large, thus can be approximately regarded as a

non-stationary series. Therefore, it is reasonable for this study

to choose MEEMD and EEMD to decompose the runoff.

Decomposition of annual runoff

The runoff series are decomposed into sub-signals of differ-

ent frequencies, which are IMF components, trend, and

pseudo-component, respectively. The complex runoff
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
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prediction is equal to the sum of the predicted values of

different frequency subcomponents. By calculating the rela-

tive error of the sub-signal, the contribution rate of each sub-

signal to the runoff series can be analyzed, and explain

whether the relative error of a sub-signal influences the rela-

tive error of the runoff.

After repeated testing, when the noise logarithmic is

100, the noise amplitude is 0.2, the embedding dimension

is 5, the maximum decomposition is 6, the PE threshold is

0.56, and the time delay is 1, MEEMD has the best

decomposition effect on runoff, as shown in Figure 4.

As can be seen from Figure 4, the runoff series is decom-

posed into three IMF components, one trend, and one pseudo-

component. Among them, the IMF1 component has the

lowest stationarity, which manifests as larger volatility, higher

frequency, and shorter wavelength. The amplitude and fre-

quency of the other IMF components gradually decreased and

the wavelength gradually increased. In addition, the change

amplitude of the IMF components is significantly lower than

the original series. It can be seen that the volatility and tendency

of the series are greatly reduced by MEEMD decomposition.

The pseudo-component shows great non-stationarity

and randomness, and it is studied separately by using the

EEMD method.

Pseudo-component decomposition

The MEEMD, CEEMD, and EEMD methods can be used to

decompose pseudo-components. If MEEMD is used for

quadratic decomposition, it will fall into the infinite loop



Figure 4 | MEEEMD decomposition of annual runoff at Huayuankou station.
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of pseudo-component extraction. If CEEMD is selected, it

has four setting parameters, the determination of these par-

ameters have no specific criteria and are difficult to
://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
determine. Furthermore, the calculation is twice as much

as EMMD (Zheng et al. ). Therefore, EEMD was deter-

mined to decompose the pseudo-component. The EEMD

decomposition results are as shown in Figure 5.

As can be seen from Figure 5, the pseudo-component is

decomposed into four IMF components and one trend. After

the pseudo-component is decomposed again, the subcompo-

nents of the pseudo-component become stable. Among them,

the IMF1 component has the lowest stationarity, which is man-

ifested as larger volatility, higher frequency, and shorter

wavelength. The amplitude and frequency of the other IMF

components gradually decreased and thewavelength gradually

increased. In addition, the variation amplitude of IMF com-

ponents was significantly lower than the original series.

Runoff prediction

The research emphasis of this study is that the pseudo-com-

ponent of IMF is extracted, decomposing the unstable

pseudo-component again, and using ARIMA to predict all

the obtained stationary sequences. The runoff predicted

value of the MEEMD-ARIMA model is equal to the sum

of each stationary component, that is IMF components,

trend, and pseudo-component, respectively.

Prediction of IMF components and trend

Prediction values of IMF components and trend are shown

in Table 1.

It can be seen from Table 1 that the prediction errors of

IMF1 and IMF2 are relatively high; and the prediction error

of IMF3 and trend are relatively small. The reason can be

explained by IMF3 and trend are relatively stable, but the

stability of IMF1 and IMF2 are relatively poor. Although

the prediction error of IMF1 and IMF2 are relatively high,

the IMF1 and IMF2 from 2010 to 2014 account for a small

proportion in the runoff sequence, so they would not influ-

ence the runoff prediction error.

Prediction of pseudo-component

The pseudo-component was decomposed into four IMF

components and one trend, and the overall prediction

error of the pseudo-component is shown in Table 2.



Figure 5 | Pseudo-component decomposition.

Table 1 | Prediction values of IMF components and trend

IMF component Time (year) True value Prediction value Relative error (%) ARIMA (p, d, q) R2

IMF1 2010 �15.10 �22.65 50.04 (6,0,2) 0.84
2011 16.67 12.63 �24.23 (6,0,2) 0.85
2012 36.49 33.03 �9.47 (6,0,2) 0.81
2013 28.00 29.35 4.84 (6,0,2) 0.85
2014 2.16 �0.45 �120.81 (6,0,2) 0.87

IMF2 2010 �1.99 �2.55 28.26 (10,0,3) 0.96
2011 0.48 1.96 309.81 (10,0,3) 0.96
2012 2.13 2.80 31.66 (10,0,3) 0.95
2013 1.24 2.07 66.46 (10,0,3) 0.92
2014 �2.28 �2.49 9.00 (10,0,3) 0.90

IMF3 2010 70.79 70.58 �0.30 (16,0,2) 1.00
2011 75.12 74.90 �0.30 (16,0,2) 1.00
2012 76.79 76.60 �0.25 (16,0,2) 1.00
2013 76.08 75.59 �0.64 (16,0,2) 1.00
2014 73.61 73.03 �0.79 (16,0,2) 1.00

Trend 2010 218.94 219.14 0.09 (15,0,1) 0.97
2011 217.50 217.83 0.15 (15,0,1) 0.98
2012 216.40 216.62 0.10 (15,0,1) 0.97
2013 215.64 215.66 0.01 (15,0,1) 0.97
2014 215.20 215.21 0.01 (13,0,1) 0.97
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MEEMD-ARIMA prediction

The prediction value of runoff is equal to the prediction

value of three IMF components, trend, and pseudo-com-

ponent. The prediction effect of runoff at Huayuankou

station is shown in Figure 6.
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
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The runoff prediction value and error of MEEMD-

ARIMA model at Huayuankou station are shown in Table 3.

It can be seen from Figure 6 and Table 3, the prediction

effect of MEEMD-ARIMA model was feasible, and the rela-

tive error �± 13%. It can be seen that even if the

Huayuankou station was influenced by human activities



Table 2 | Parameters and predicted values of pseudo-component

IMF component Time (year) True value Prediction value Relative error (%) ARIMA (p, d, q) R2

IMF1 2010 12.83 5.02 �60.86 (3,0,2) 0.39
2011 �13.99 �3.37 �75.91 (3,0,2) 0.37
2012 27.53 20.61 �25.14 (3,0,2) 0.33
2013 �11.40 �5.12 �55.09 (3,0,0) 0.38
2014 �25.31 �6.73 �73.41 (3,0,0) 0.29

IMF2 2010 �6.08 0.28 �104.61 (3,0,2) 0.71
2011 �2.88 2.06 �171.53 (2,0,2) 0.56
2012 31.44 12.33 �60.78 (2,0,2) 0.76
2013 20.20 26.48 31.12 (1,0,2) 0.60
2014 �29.40 �15.75 �46.43 (3,0,4) 0.74

IMF3 2010 �5.57 �5.68 2.00 (3,0,2) 0.70
2011 �5.17 �4.90 �5.19 (3,0,2) 0.92
2012 �4.95 �4.88 �1.45 (3,0,2) 0.91
2013 �5.08 �4.90 �3.59 (3,0,2) 0.86
2014 �5.72 �5.39 �5.82 (3,0,2) 0.84

IMF4 2010 �11.16 �11.16 0.01 (3,0,2) 0.31
2011 �11.36 �11.36 0.00 (3,0,2) 0.70
2012 �11.55 �11.55 �0.02 (3,0,2) 0.78
2013 �11.73 �11.73 0.03 (3,0,2) 0.90
2014 �11.87 �11.87 �0.03 (3,0,2) 0.88

Trend 2010 13.54 13.53 �0.06 (3,0,2) �1.02
2011 13.86 13.85 �0.07 (3,0,2) �0.99
2012 14.19 14.18 �0.07 (3,0,2) 0.38
2013 14.53 14.52 �0.06 (3,0,2) �0.41
2014 14.88 14.87 �0.04 (3,0,2) �1.41

Figure 6 | The prediction effect of annual runoff at Huayuankou station.
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and climate condition, the MEEMD-ARIMA model still had

good effect on short-term runoff prediction.
DISCUSSION

To the best of our knowledge, MEEMD, CEEMD, and

EEMD can be used for signal decomposition. The
://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
decomposition effect of the three methods are different

under the same parameter setting. In this paper, only

IMF1–IMF3 components with a little low stationarity and

trend renderings with a large proportion are achieved, as

shown in Figure 7.

MEEMD-ARIMA, CEEMD-ARIMA, and EEMA-

ARIMA can be used to predict runoff. Comparison of the

prediction results of the three models are shown in Table 4.



Table 3 | Prediction error of annual runoff of Huayuankou station

Time
(year)

True value
(108 m3)

Prediction
value (108 m3)

Absolute
error (108 m3)

Relative error of
prediction (%)

2010 276.30 270.16 6.14 �2.22

2011 287.10 280.93 6.17 �2.15

2012 388.00 415.94 �27.94 7.20

2013 327.50 348.47 �20.97 6.40

2014 231.00 202.74 28.26 �12.23

Figure 7 | Decomposition effect of IMF1–IMF3 and trend in three models.
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It can be seen from Figure 7, in terms of the volatility

and magnitude of the IMF components, that the decompo-

sition effect of MEEMD is slightly better than CEEMD

and EEMD. In the decomposition process, the PE is used

to extract the pseudo-component of IMF, which is also the

reason why the decomposition effect of MEEMD is better

than CEEMD and EEMD. In addition, it can be seen from

Table 4 that the prediction error of the MEEMD-ARIMA

model is smaller and superior to the other two models.

From the perspective of MEEMD decomposition, the

stability of IMF components and trend are different, and

the contribution rate of runoff is also different. The trend

accounts for a large proportion in the runoff series; once

the trend prediction effect is poor, the prediction effect of

the runoff series is definitely poor. Therefore, the trend con-

tributes more to runoff series. However, the IMF1 accounts

for a small proportion in the runoff series, and even if the

IMF1 component has a slightly higher prediction error, the

impact on the runoff prediction accuracy is also small.

Therefore, the IMF1 contributes less to runoff series. This

is also the reason why the IMF1 prediction error does not

influence the overall prediction error of the runoff.

Due to the different evolution factors of runoff in differ-

ent regions, some regions are strongly influenced by human

activities, such as the construction of reservoirs, and water

and soil conservation. Some areas are greatly affected by

natural factors, such as regional precipitation, and under-

lying surface conditions. Due to the lack of sufficient data

in the study to verify feasibility in different regions, the feasi-

bility of applying this model to other regions cannot be

determined, but it is feasible in theory.

The factors that influence the results essentially depend

on the IMF’s weight itself. Generally speaking, human activi-

ties and natural factors can influence the non-stationarity of
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf

4

runoff series. Furthermore, it influences the non-stationarity

of IMF components after runoff decomposition. Under the

interference of different natural factors and human activities,



Table 4 | The prediction error of the three models

Time (year) True value (108 m3)

Prediction value (108 m3) Relative error (%)

MEEMD-ARIMA CEEMD-ARIMA EEMD-ARIMA MEEMD-ARIMA CEEMD-ARIMA EEMD-ARIMA

2010 276.3 268.17 250.17 231.28 �2.22 �9.46 �16.29

2011 287.1 284.65 300.65 316.36 �2.15 4.72 10.19

2012 388 385.25 364.28 351.30 7.2 �6.11 �9.46

2013 327.5 329.22 314.30 315.26 6.4 �4.03 �3.74

2014 231 227.61 200.15 200.23 �12 .23 �13.35 �13.32
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the value of IMF components after runoff decomposition is

different, which may lead to some data catastrophe points

of IMF components. However, this model has a slightly

lower prediction accuracy for the IMF1 component, which

has a certain impact on the model accuracy.

The Yellow River is one of the most complex rivers in the

world. It is greatly influenced by human activities and natural

factors, which make it very difficult to establish a model. This

multiple decomposition–reconstructionmodelmakes the appli-

cation of theMEEMD-ARIMAmodel in theYellowRiver basin

feasible. However, when determining the ARIMA model for

IMF components, determination one by one is necessary.
CONCLUSIONS

Annual runoff time series of Huayuankou station are charac-

terized by high randomness and uncertainty. The short-term

prediction can be accomplished by using MEEMD to reduce

the non-stationarity of the series.

The fitting and prediction results for annual runoff of

Huayuankou station show that the decomposition of runoff

series by MEEMD and EEMD not only solves the problem

that the ARIMA model requires the series to be stable, but

also reflects the variation characteristics of annual runoff

series in various frequency domains. The established

MEEMD-ARIMA coupling model was applied to the predic-

tion of annual runoff series of Huayuankou station, and its

prediction error was no more than �13%, which was better

than CEEMD-ARIMA and EEMD-ARIMA.

This has been a new attempt to apply the MEEMD-

ARIMA coupling model to prediction of the Lower Yellow

River runoff. Its extension and improvement in model accu-

racy still need further study. Furthermore, the MEEMD-
://iwa.silverchair.com/jwcc/article-pdf/11/3/865/716845/jwc0110865.pdf
ARIMA model can be used to predict rainfall, sediment

transport, and meteorological factors, which demonstrates

the prospect for broad application.

The model does not consider the physical mechanism of

runoff evolution and the long-term prediction. Furthermore,

how to deal with the pseudo-component properly and how

to improve the prediction accuracy of the model are the

next research direction and emphasis.
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