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Drought forecasting: A review of modelling approaches

2007–2017
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ABSTRACT
Droughts are prolonged precipitation-deficient periods, resulting in inadequate water availability and

adverse repercussions to crops, animals and humans. Drought forecasting is vital to water resources

planning and management in minimizing the negative consequences. Many models have been

developed for this purpose and, indeed, it would be a long process for researchers to select the best

suited model for their research. A timely, thorough and informative overview of the models’ concepts

and historical applications would be helpful in preventing researchers from overlooking the potential

selection of models and saving them considerable amounts of time on the problem. Thus, this paper

aims to review drought forecasting approaches including their input requirements and performance

measures, for 2007–2017. The models are categorized according to their respective mechanism:

regression analysis, stochastic, probabilistic, artificial intelligence based, hybrids and dynamic

modelling. Details of the selected papers, including modelling approaches, authors, year of

publication, methods, input variables, evaluation criteria, time scale and type of drought are

tabulated for ease of reference. The basic concepts of each approach with key parameters are

explained, along with the historical applications, benefits and limitations of the models. Finally,

future outlooks and potential modelling techniques are furnished for continuing drought research.
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ABBREVIATIONS
AC
 anomaly correlation
AIC
 Akaike information criterion
AICC
 Akaike information criterion corrected
ANFIS
 adaptive neuro-fuzzy inference system
APE
 absolute percentage error
AR(2)
 second order auto-regressive multivariate

model
ARID
 agricultural reference index for drought
ARIMAX
 multivariate autoregressive integrated moving

average
AUC
 area under the curve
AVHRR
 advanced very high-resolution radiometer
AWRI
 available water resource index
BCSD
 bias correction and spatial downscaling
BI
 bilinear interpolation
BIC
 Bayesian information criterion
BP-ANN
 back propagation artificial neural network
BRT
 boosted regression trees
CFS
 climate forecast system
CRPS
 continuous ranked probability score
CSS
 climatology skill score
d
 Willmott’s index
dMSE
 means squared error in derivatives
DDR
 developed discrepancy ratio
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development of a European multimodel

ensemble system for seasonal to interannual

prediction
DLSTM
 dynamic linear spatiotemporal model
DMSGRNN
 direct multi-step generalized regression neural

network
DMSMLP
 direct multi-step multi-layer perceptron
DMSNN
 direct multistep neural network
DMSRBF
 direct multi-step radial basis function
EDI
 effective drought index
ELM
 extreme learning machine
ENSO
 El Niño Southern Oscillation
ESP
 ensemble streamflow prediction
FFNN
 feed forward neural networks
FPE
 final prediction error
GFS
 global forecast system
GLM
 generalized linear model
GMSS
 Gandin-Murphy skill score
GPCP
 global precipitation climatology project
HMM
 hidden Markov chain model
HSNNDA
 hybrid stochastic neural network of direct

approach
HSNNRA
 hybrid stochastic neural network of recursive

approach
IIS-W-ANN
 iterative input selection wavelet artificial

neural network
IoAd
 index of agreement
LEPS
 linear error in probability score
MAD
 mean absolute deviation
MAE
 mean absolute error
MAPE
 mean absolute percentage error
MARE
 mean absolute relative error
MBE
 mean bias error
MCFO
 first order Markov chain
MCSO
 second order Markov chain
MCTO
 third order Markov chain
ME
 mean error
MEI
 multivariate ENSO index
MLM
 multiple linear model
MLP-ANN
 multilayer perceptron artificial neural

network
MODIS
 moderate resolution imaging spectroradiometer
MPE
 mean percentage error
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MSE
 mean square error
NADI
 nonlinear aggregated drought index
NAO
 North Atlantic oscillation
NCEP
 National Centers for Environmental Prediction
NDVI
 normalized difference vegetation index
NDVI-DEV
 deviation of normalized difference vegetation

index
NLDAS
 North American land data assimilation system
NMSE
 normalized mean square error
NOAA
 National Oceanic and Atmospheric

Administration
NSE
 Nash–Sutcliffe efficiency coefficient
NSSS
 Nash–Sutcliffe sufficiency score
PC
 proportion of correct predictions
Pdv
 peak percentage deviation
PDSI
 Palmer drought severity index
PERSIANN
 precipitation estimation from remotely sensed

information using ANN
PHDI
 Palmer hydrological drought index
PMDI
 Palmer’s modified drought index
PI
 persistency index
PPMC
 Pearson product moment correlation
R
 coefficient of correlation
R2
 coefficient of determination
R2
McF
 McFadden pseudo-coefficient of determination
RAE
 relative absolute error
RCP
 representative concentration pathway
RF
 random forest
RFOR
 random forest regression tree
RMSD
 root mean square difference
RMSE
 root mean square error
RMSGRNN
 recursive multi-step generalized regression

neural network
RMSMLP
 recursive multi-step multi-layer perceptron
RMSNN
 recursive multi-step neural network
RMSRBF
 recursive multi-step radial basis function
ROC
 receiver operating characteristic
RPS
 ranked probability score
RRMSD
 relative root mean square prediction
RS
 remote sensing
RSM
 regional spectral model
SARIMA
 seasonal ARIMA
SBC
 Schwarz Bayesian criterion
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standard deviation
SDI
 streamflow drought index
SHDI
 standardized hydrological drought index
SHI
 standardized hydrological index
SLP
 sea level pressure
SPI
 Standardized Precipitation Index
SOI
 Southern Oscillation index
SSE
 sum of squares of errors
SST
 sea surface temperature
SSTA
 sea surface temperature anomalies
T2M
 2 m temperature
T850
 850 hPa temperature
TCI
 temperature condition index
TLRN
 time lagged recurrent network
TMPA
 TRMM multisatellite precipitation analysis
TRMM
 Tropical Rainfall Measuring Mission
U200
 200 hPa meridional wind
U850
 850 hPa meridional wind
V200
 200 hPa zonal wind
V850
 850 hPa zonal wind
VCI
 vegetation condition index
VTCI
 vegetation temperature condition index
WN
 white noise variance
WRF
 weather research and forecasting
Z500
 500 hPa geopotential height.
INTRODUCTION

Droughts are overland events of prolonged periodic extreme

climate described by below-normal precipitation over

months or years (Dai ). Droughts can be categorized

into four classes depending on the conditions: meteorologi-

cal, agricultural, hydrological and socioeconomic droughts.

Conceptually, a meteorological drought is expressed as a

precipitation deficit over a region for a period of time

(Mishra & Singh ). A drought is considered to be

specific to a region for the fact that weather conditions of

low precipitation, dry winds and high temperature are

highly variable and do vary from region to region. When

atmospheric moisture is reduced to a level where the soil

moisture is affected, the onset of an agricultural drought is
jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
imminent (Zargar et al. ). During this period, crops

and animals are affected as the decline in soil moisture

content leads to reduction in crop production, which sub-

sequently affects the balance of the food chain in the

ecosystem. A hydrological drought is defined as dry periods

that are very long, to the extent that affected river stream-

flows and water storages in aquifers, lakes or reservoirs

fall below long-term mean levels (Dai ). Its development

is slower than the previous two classes because it covers not

only the process of depletion, but also the replenishing

phase. When the water resources systems fail to achieve

water demand for the economic good, accordingly, a

socioeconomic drought happens (Mishra & Singh ).

Practically, droughts can also be categorized based on the

timescales of precipitation anomalies. For example, the

Standardized Precipitation Index (SPI) is commonly used

to define droughts based on timescales; SPI-1 and SPI-2

for meteorological droughts, anywhere from SPI-1 to SPI-6

for agricultural droughts and SPI-6 to SPI-24 for hydrologi-

cal droughts, where the associated number is timescale in

months (World Meteorological Organization ). The

types of drought reviewed in this paper, unless otherwise

clearly clarified in the study of drought type being investi-

gated, are classified into the meteorological, agricultural

and hydrological drought categories and are based on the

respective purpose of the study, the inputs of the study, the

drought indices and the timescale of the study.

Given that the occurrence of drought can lead to crop

failures, interrupted food chains and reduced water supply,

forecasting of drought events is indeed a vital component

of water resources planning and management. While

compounded by the fact that the starts and ends of

droughts are very difficult to determine precisely, however,

many drought forecasting models have been developed to

improve the drought forecasting capability. These models

are founded on sound methodologies such as: regression

analysis, autoregressive integrated moving average (ARIMA),

Markov chain, artificial neural network (ANN), fuzzy logic

(FL), support vector regression (SVR) and different hybrid

models (Han et al. ; Ozger et al. ; Belayneh et al.

; Masinde ; Stagge et al. ; Taormina et al. ;

Belayneh et al. ; Sun et al. ; Ghorbani et al. ;

Moazenzadeh et al. ). With the large variety of forecast-

ing models available, it can be very difficult for researchers
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to decide which model is best suited to their research work,

not to mention that there is a slight chance that researchers

may overlook the best models for their problem if they are

not aware of the potential types of model available. Hence,

a study to compile the details of model studies undertaken

over the last decade with analyses of the pros and cons of

different models is undoubtedly beneficial to readers.

Despite the review paper on drought modelling that

had been comprehensively done by Mishra & Singh (),

review papers evaluating applications of forecasting

models in these areas pertaining to the overview of the

latest trends are still limited at the present state of model

development. This is attributed to the rapid development

in drought forecasting modelling with many different studies

using new approaches being developed thereafter. For

example, based on our findings, 18 new hybrid drought

forecasting studies were carried out from 2011 to 2017.

Apart from this, ANN and hybrid models were the focus

of artificial intelligence (AI) based models in the paper. In

order to allow readers to have a better overview of

AI models available, reviews of FL and SVR were also

included in this paper. Furthermore, the dynamic modelling

approach, which has been emerging rapidly in recent years,

has yet to be reviewed in any recent research.

The main objectives of this review paper are to

categorize drought forecasting models and to specify their

applications along with their limitations and benefits. This

paper covers reviews of different drought forecasting

approaches associated with drought indices and rainfall pre-

dictions, for the years 2007–2017. Details of the selected

papers, including modelling approaches, authors, and year

of publication, methods, input variables, evaluation criteria,

time scale and type of drought are given in Table 1. This is

followed by sections on the basic concepts of various

approaches, discussion of the limitations and benefits of

approaches and a conclusion of the whole review paper.

This paper also discusses the future development direction

of modelling approaches for drought applications.
REGRESSION ANALYSIS

Regression analysis is considered one of the early candidates

and widely adopted forecasting approach used for time
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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series predictions. Regression analysis is a statistical method

to examine the relationships between variables (Sykes ).

The performance of this method highly relies on the

number of independent variables, type of dependent vari-

ables and shape of the regression line. In essence, the wide

range of regression analysis used for time series forecasting

includes logistic regression and loglinear regression.

In 2015, Stagge et al. () applied the logistic

regression to forecast the SPI and Standardized Precipi-

tation Evapotranspiration Index (SPEI) in Europe. The

assessment was included for the four impact types spanning

the fields of agriculture, energy and industry, public water

supply, and freshwater ecosystems across the five European

countries. The Generalized Additive Models (GAMs) for

the two-dimensional interactions of two closely correlated

predictors (SPI and SPEI) was pursued. The performance

of the logistic regression was assessed by a pseudo-R2 and

the area under the receiver operating characteristic curve

(AUC) which showed a reasonably good prediction. Simi-

larly, Tatli () also adopted logistic regression for the

modelling of statistical downscaling in the study of drought

events in Turkey from 1940 to 2100. Unlike using the

downscaled precipitation to predict the SPI, it is easier to

downscale the drought categories instead of precipitation.

The resulting probabilistic patterns were considered accep-

table based on the proportion of correct predictions (PC)

as the model captured the main features of the climatic

data. A year later, Meng et al. () also applied logistic

regression for the analysis of drought persistence in East

China. The study depicted the impact of previous SPI and

the Southern Oscillation Index (SOI) on the seasonal

drought that differs in different regions and seasons. It was

observed that the drought persistence over the summers is

longer than in the other seasons.

Besides using logistic regression to predict the drought

event, Sohn & Tam () performed a bivariate pattern-

based downscaling for the assessment of droughts prediction

in South Korea. The SPEI with 6-month lead time for 60

stations in South Korea was determined. The

results obtained from the downscaled multi-model ensemble

(DMME)were reported to be better than the rawmulti-model

ensemble (MME) in describing the extreme floods and

droughts, which was proven by the better linear error in prob-

ability score (LEPS). Li et al. () applied the loglinear



Table 1 | Details of the papers reviewed

Type of approach
Number of
papers

Authors (year of
publication) Method Input variables Evaluation criteria Time scale Type of drought

Regression analysis 6 Stagge et al. () Logistic regression Precipitation, temperature,
wind speed

R2
McF, AUC Day Meteorological

Tatli () Logistic regression, statistical downscaling Precipitation PC Month Meteorological
Meng et al. () Logistic regression Precipitation Confidence level Day Meteorological
Sohn & Tam () Bivariate pattern–based downscaling Surface air temperature,

precipitation, SLP, T2M,
Z500, T850, UV850,
UV200, SST

LEPS Season Hydrological

Li et al. () Loglinear regression Precipitation R2 Month Hydrological
Park et al. () BRT, RF, Cubist MODIS data (RS), TRMM

rainfall data (RS)
R2 and RMSE Month Meteorological, agricultural

Time series analysis 22 Mishra et al. () ARIMA, RMSNN, DMSNN, HSNNDA,
HSNNRA

Precipitation MAE, R2, RMSE Month Meteorological, agricultural,
hydrological

Ochoa-Rivera () AR(2), ANN Streamflow RRMSD Month Hydrological
Abebe & Foerch () SARIMA Precipitation, temperature,

normalized digital
vegetation index,
streamflow

log (likelihood), AIC, AICC,
FPE, MAPE, WN Variance,
SBC, SSE

Month Hydrological

Durdu () ARIMA, SARIMA Precipitation AIC, SBC, Z-test and F-test Month Meteorological, agricultural,
hydrological

Han et al. () AR(1) VTCI (RS) AIC, SBC Day Meteorological, agricultural
Fernandez-Manso et al. () SARIMA Precipitation, temperature,

NOAA-AVHRR images
(RS), vegetation
information

MAE, MAPE, ME, MPE,
RMSE

Day Meteorological, agricultural

Barua et al. () ARIMA, DMSNN, RMSNN NADI, precipitation, potential
evapotranspiration, storage
reservoir volume,
streamflow, soil moisture
content

MAE, R, RMSE Month Meteorological, hydrological

Chun et al. () ARIMA, GLM Precipitation, streamflow Graphical comparison Month Agricultural, hydrological
Chen et al. () ARMA, RF Precipitation Bias, MAE, RMSE Month Agricultural, hydrological
Han et al. () ARIMA, SARIMA SPI APE, R Month, annual Meteorological, agricultural,

hydrological
Shatanawi et al. () ARIMA, 1st-order Markov-ARIMA, 2nd-

order Markov-ARIMA
Precipitation Graphical comparison Day, month,

annual
Meteorological

Woli et al. () ARMA, ANFIS, ANN, ENSO approach,
linear regression

Day weather data, ARID NSE, RMSE Month Agricultural

Shabri () ARIMA, ANFIS, W-ANFIS Precipitation MAE, RMSE Month Meteorological
Belayneh et al. () ARIMA, ANN, W-ANN, SVR, W-SVR Precipitation, SPI MAE, R2, RMSE Month Hydrological
Alam et al. (b) ARIMA, SARIMA Precipitation AIC, SBC, R2 Month, annual Meteorological
Mossad & Alazba () ARIMA, SARIMA Precipitation, temperature AIC, SBC, MAE, R2, RMSE Month, annual Agricultural, hydrological
Bazrafshan et al. () ARIMA, SARIMA Discharge volume R, RMSE, MAE Month, annual Hydrological
Djerbouai & Souag-Gamane

()
ARIMA, ANN, W-ANN Precipitation MAE, NSE, RMSE Month Agricultural, hydrological

Tian et al. () AR(1), SARIMA VTCI (RS) Absolute errors, average,
RMSE

Day Agricultural

Mahmud et al. () SARIMA Precipitation Normalized BIC criteria, R2,
RMSE

Month Meteorological, agricultural

Chen et al. () ARMA, ANN, HMM, HMM-RCP Precipitation CSS, RMSE Month Meteorological, agricultural
Karthika et al. () ARIMA Precipitation AIC, SBC Annual Meteorological

(continued)
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Table 1 | continued

Type of approach
Number of
papers

Authors (year of
publication) Method Input variables Evaluation criteria Time scale Type of drought

Probability models 15 Paulo & Pereira () Homogeneous Markov chain, non-
homogeneous Markov chain

SPI - Month Agricultural, hydrological

Jiang & Chen () Weighted Markov SCGM(1,1)c Drought crop area Example study, prediction
error

Annual Agricultural

Sharma & Panu () MCFO, MCSO, MCTO Streamflow, SHI Graphical comparison Week, month,
annual

Hydrological

Chen & Yang () Weighted Markov chain Precipitation Prediction accuracy Month Agricultural, hydrological
Alam et al. (a) Markov chain Precipitation Hypothesis testing Week Agricultural
Avilés et al. () MCFO, MCSO Precipitation, streamflow GMSS, RPS Month Meteorological, hydrological
Yeh et al. () Markov chain Precipitation, streamflow, SDI - Month Hydrological
Rezaeianzadeh et al. () Markov chain, ANN Precipitation, evaporation,

inflow volume
R2, RMSE Month Hydrological

Nnaji et al. () Semi-Markov model Streamflow R, RMSE Month Hydrological
Khadr () HMM Precipitation MAD, R, R2, RMSE Month, annual Meteorological
Chen et al. () HMM, HMM-RCP, ANN, ARMA, Precipitation CSS, RMSE Month Meteorological, agricultural
Avilés et al. () MCFO, MCSO, Bayesian network first

order, Bayesian network second order
Precipitation, streamflow RPS Month Meteorological, hydrological

Rahmat et al. () Non-homogeneous Markov chain Precipitation - Annual Hydrological
Sun et al. () MCFO, MCSO Precipitation, temperature,

streamflow
AIC Month Meteorological, hydrological

Zhang et al. () Weighted Markov chain, Volterra adaptive
filter, 3D loglinear

Precipitation, runoff Rates of accuracy Month Meteorological, hydrological

Artificial neural
network (ANN)

31 Mishra et al. () RMSNN, DMSNN, ARIMA, HSNNDA,
HSNNRA

Precipitation MAE, R2, RMSE Month Meteorological, agricultural,
hydrological

Ochoa-Rivera () ANN, AR(2) Streamflow RRMSD Month Hydrological
Bacanli et al. () FFNN, ANFIS Precipitation NSE, R, RMSE Month Meteorological, agricultural,

hydrological
Cutore et al. () ANN PHDI, climatic indices data R2 Month Hydrological
Dastorani et al. () TLRN, ANFIS Precipitation, temperature,

wind speed, intensive wind
direction, relative humidity

R2, RMSE Month Meteorological

Marj & Meijerink () ANN SOI, NAO R2, RMSE, SD Month Agricultural
Deng et al. () BP-ANN, ANFIS, LS-SVM Soil water content,

precipitation, temperature,
evaporation

MARE, R, RMSE Day Agricultural

Barua et al. () DMSNN, RMSNN, ARIMA NADI, precipitation, potential
evapotranspiration, storage
reservoir volume,
streamflow, soil moisture
content

MAE, R, RMSE Month Meteorological, hydrological

Chiang & Tsai () ANN, Bayesian classifier, maximum
likelihood classifier, SVM

Reservoir storage capacity,
inflows, critical limit of
operation rule curves, no.
of ten-days in a year

Prediction accuracy Day Hydrological

Belayneh & Adamowski
()

ANN, W-ANN, SVR Precipitation, SPI MAE, R2, RMSE Month Agricultural, hydrological

Belayneh & Adamowski
()

ANN, W-ANN, SVR Precipitation, SPI R2, RMSE Month Agricultural, hydrological

Woli et al. () ANN, ANFIS, ARMA, ENSO approach,
linear regression

Day weather data, ARID NSE, RMSE Month Agricultural

Shirmohammadi et al. () ANN, W-ANN, ANFIS, W-ANFIS Precipitation NSE, R2, RMSE Month Meteorological
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Chiang & Tsai () ANN, Bayesian classifier, maximum
likelihood classifier, SVM

Reservoir storage capacity,
inflows, critical limit of
operation rule curves, no.
of ten-days in a year

Prediction accuracy Day Hydrological

Masinde () ANN Precipitation, EDI, AWRI MSE, R Month Meteorological, agricultural
Belayneh et al. () ANN, W-ANN, ARIMA, SVR, W-SVR Precipitation, SPI MAE, R2, RMSE Month Hydrological
Jalili et al. () MLP-ANN, RBF-ANN, SVM NDVI (RS), NDVI-DEV (RS),

TCI (RS), VCI (RS)
Prediction accuracy Month Meteorological, agricultural

Jalalkamali et al. () MLP-ANN, ANFIS, ARIMAX, SVM Precipitation R2, RMSE Month Meteorological
Deo & Sahin () ANN, ELM Precipitation, temperature,

evapotranspiration
d, NSE, MAE, R2, RMSE Month Meteorological

Hosseini-Moghari &
Araghinejad ()

DMSMLP-ANN, RMSMLP-ANN,
DMSRBF-ANN, RMSRBF-ANN,
DMSGRNN-ANN, RMSGRNN-ANN

Precipitation MAE, R2, RMSE Month Meteorological, agricultural,
hydrological

Belayneh et al. () ANN, B-ANN, BS-ANN, W-B-ANN, W-BS-
ANN, SVR, B-SVR, BS-SVR, W-B-SVR,
W-BS-SVR

Precipitation, SPI MAE, R2, RMSE Month, annual Meteorological, agricultural,
hydrological

Rezaeianzadeh et al. () ANN, Markov chain Precipitation, evaporation,
inflow volume

R2, RMSE Month Hydrological

Djerbouai & Souag-Gamane
()

ANN, W-ANN, ARIMA Precipitation MAE, NSE, RMSE Month Agricultural, hydrological

Deo et al. () ANN, W-ANN, ELM, W-ELM, LS-SVR,
W-LS-SVR

Precipitation d, MAE, NSE, Pdv, R, R2,
RMSE

Month Meteorological, agricultural,
hydrological

Maca & Pech () Feedforward MLP-ANN, integrated-ANN Precipitation, temperature MAE, MSE, dMSE, NSE, PI Month Meteorological, hydrological
Borji et al. () ANN, SVR Streamflow R2, RMSE Month Hydrological
Chen et al. () ANN, ARMA, HMM, HMM-RCP Precipitation CSS, RMSE Month Meteorological, agricultural
Deo & Sahin () ANN, ELM Streamflow d, MAE, NSE, R2 Month Hydrological
Ali et al. () MLP-ANN Precipitation, temperature MAE, R, RMSE Month Meteorological, agricultural,

hydrological
Kousari et al. () ANN Precipitation, MEI, NAO, SOI,

NINO1þ 2, anomaly
NINO1þ 2, NINO3,
anomaly NINO3, NINO4,
anomaly NINO4,
NINO3.4, anomaly
NINO3.4

R, RMSE Month Agricultural, hydrological

Seibert et al. () ANN, MLM, RFOR Streamflow, climate indices
and gridded sea surface
temperature anomalies

NSE, ROC Month Hydrological

Fuzzy Logic (FL) 5 Keskin et al. () FL, ANFIS Precipitation R2 Month Meteorological
Ozger et al. () FL, WFL Precipitation, temperature,

PDSI
R, R2 Month Meteorological, agricultural

Ozger et al. () W-FL, ANN, W-ANN NINO 3.4 index, PMDI R, NSSS Month Meteorological
Agboola et al. () FL Temperature, pressure,

humidity, dew point, wind
speed

Prediction error, prediction
accuracy, MAE, RMSE

Hour, day,
week, month

Meteorological

Mehr et al. () FL, W-FL, ANN, W-ANN, LGP, W-LGP NINO 3.4 index, PMDI R2, RMSE Month Meteorological, agricultural,
hydrological

Support vector
machine (SVM)

12 Deng et al. () LS-SVM, ANFIS, BP-ANN Soil water content,
precipitation, temperature,
evaporation

MARE, R, RMSE Day Agricultural

Chiang & Tsai () SVM, ANN, Bayesian classifier, maximum
likelihood classifier

Reservoir storage capacity,
inflows, critical limit of
operation rule curves, no.
of ten-days in a year

Prediction accuracy Day Hydrological

Belayneh & Adamowski
()

SVR, ANN, W-ANN Precipitation, SPI MAE, R2, RMSE Month Agricultural, hydrological

(continued)
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Table 1 | continued

Type of approach
Number of
papers

Authors (year of
publication) Method Input variables Evaluation criteria Time scale Type of drought

Belayneh & Adamowski
()

SVR, ANN, W-ANN Precipitation, SPI R2, RMSE Month Agricultural, hydrological

Chiang & Tsai () SVM, ANN, Bayesian classifier, maximum
likelihood classifier

Reservoir storage capacity,
inflows, critical limit of
operation rule curves, no.
of ten-days in a year

Prediction accuracy Day Hydrological

Ganguli & Janga Reddy
()

SVM-without seasonal partition, SVM-
combined seasonal

Precipitation CRPS, NSE Month Meteorological

Belayneh et al. () SVR, W-SVR, ANN, W-ANN, ARIMA Precipitation, SPI MAE, R2, RMSE Month Hydrological
Jalili et al. () MLP-ANN, RBF-ANN, SVM NDVI (RS), NDVI-DEV (RS),

TCI (RS), VCI (RS)
Prediction accuracy Month Meteorological, agricultural

Jalalkamali et al. () SVM, ANFIS, ARIMAX, MLP-ANN Precipitation R2, RMSE Month Meteorological
Belayneh et al. () SVR, B-SVR, BS-SVR, W-B-SVR, W-BS-

SVR, ANN, B-ANN, BS-ANN, W-B-
ANN, W-BS-ANN,

Precipitation, SPI MAE, R2, RMSE Month, annual Meteorological, agricultural,
hydrological

Deo et al. () LS-SVR, W-LS-SVR, ANN, W-ANN, ELM,
W-ELM,

Precipitation d, MAE, NSE, Pdv, R, R2,
RMSE

Month Meteorological, agricultural,
hydrological

Borji et al. () SVR, ANN Streamflow R2, RMSE Month Hydrological

Hybrid models 23 Mishra et al. () HSNNDA, HSNNRA, ARIMA, RMSNN,
DMSNN

Precipitation MAE, R2, RMSE Month Meteorological, agricultural,
hydrological

Bacanli et al. () ANFIS, FFNN Precipitation NSE, R, RMSE Month Meteorological, agricultural,
hydrological

Keskin et al. () ANFIS, FL Precipitation R2 Month Meteorological
Dastorani et al. () ANFIS, TLRN Precipitation, temperature,

wind speed, intensive wind
direction, relative humidity

R2, RMSE Month Meteorological

Farokhnia et al. () ANFIS Precipitation, SST, SLP, EDI MAE, R2, RMSE Day, month Meteorological, agricultural,
hydrological

Ozger et al. () W-FL, FL Precipitation, temperature,
PDSI

R, R2 Month Meteorological, agricultural

Deng et al. () ANFIS, BP-ANN, LS-SVM Soil water content,
precipitation, temperature,
evaporation

MARE, R, RMSE Day Agricultural

Ozger et al. () W-FL, W-ANN, ANN NINO 3.4 index, PMDI R, NSSS Month Meteorological
Belayneh & Adamowski

()
W-ANN, ANN, SVR Precipitation, SPI MAE, R2, RMSE Month Agricultural, hydrological

Shatanawi et al. () 1st-order Markov-ARIMA, 2nd-order
Markov-ARIMA, ARIMA

Precipitation Graphical comparison Day, Month,
Annual

Meteorological

Belayneh & Adamowski
()

W-ANN, ANN, SVR Precipitation R2, RMSE Month Agricultural, hydrological

Woli et al. () ANFIS, ANN, ARMA, ENSO approach,
linear regression

Day weather data, ARID NSE, RMSE Month Agricultural

Shirmohammadi et al. () W-ANFIS, ANFIS, W-ANN, ANN Precipitation NSE, R2, RMSE Month Meteorological
Mehr et al. () W-ANN, ANN, W-FL, FL, W-LGP, LFP NINO 3.4 index, PMDI R2, RMSE Month Meteorological, agricultural,

hydrological
Shabri () W-ANFIS, ANFIS, ARIMA Precipitation MAE, RMSE Month Meteorological
Belayneh et al. () W-ANN, ANN, W-SVR, SVR, ARIMA Precipitation, SPI MAE, R2, RMSE Month Hydrological
Nguyen et al. () ANFIS Precipitation, temperature,

SSTA
NSE, R, RMSE - Meteorological, agricultural,

hydrological
Jalalkamali et al. () ANFIS, MLP-ANN, ARIMAX, SVM Precipitation R2, RMSE Month Meteorological
Belayneh et al. () W-BS-ANN, W-B-ANN, BS-ANN, B-ANN,

ANN, W-BS-SVR, W-B-SVR, BS-SVR, B-
SVR, SVR

Precipitation, SPI MAE, R2, RMSE Month, annual Meteorological, agricultural,
hydrological
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Djerbouai & Souag-Gamane
()

W-ANN, ANN, ARIMA Precipitation NSE, MAE, RMSE Month Agricultural, hydrological

Memarian et al. () C-ANFIS Precipitation, climatic indices NMSE, MSE, R, R2, Adjusted
R2

Month, annual Meteorological, agricultural

Deo et al. () W-ANN, W-ELM, W-LS-SVR, ANN, ELM,
LS-SVR

Precipitation d, MAE, NSE, Pdv, R, R2,
RMSE

Month Meteorological, agricultural,
hydrological

Prasad et al. () IIS-W-ANN, M5 Tree Streamflow d, NSE, MAE, R, RMSE Month Hydrological

Dynamic modelling 8 Luo & Wood () CFS Precipitation, temperature,
NLDAS data (RS)

RMSD Month Hydrological

Luo & Wood () CFS, CFSþDEMETER, ESP Precipitation, temperature,
streamflow, NLDAS data
(RS), CFS data, DEMETER
data

RPS Day, month Meteorological, agricultural,
hydrological

Yoon et al. () RSM dynamical downscaling, BI, BCSD,
Bayesian, multimethod ensemble, the
Schaake method

Precipitation RMSE, AC Month Meteorological

Shukla & Lettenmaier () CFS Runoff, soil moisture, snow
water equivalent

PPMC Month Hydrological

Hao et al. () Baseline probability distributions Precipitation (RS), soil
moisture (RS)

- Month Meteorological, agricultural

Sheffield et al. () CFS Precipitation (RS), temperature
(RS), wind speed (RS)

Brier skill score Month Meteorological, agricultural,
hydrological

Bowden et al. () WRF Precipitation Historical case comparison Month Meteorological, agricultural,
hydrological

Dehghani et al. () DLSTM, ANN Discharge, streamflow, SHDI DDR, IoAd, NSSS, RAE Month Hydrological
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regression approach for the prediction of short-term future

SPI and Standard Runoff Index (SRI) in the Luanhe river

basin, northeast China. The results obtained using the

three-dimensional loglinear approach provided

a satisfactory coefficient of determination (R2) with only

a few forecasted values in some cases where it did not

match the observed drought class, especially for the

2-month lead time. A conclusion is that the loglinear models

are not recommended for prediction of increased lead time

as the considerable number of parameters will increase the

complexity of the modelling for a 2-month lead time and

above. Park et al. () proposed to use the machine learning

approaches including the random forest (RF), boosted

regression trees (BRT) and Cubist to assess and monitor the

drought events over different regions of the USA. It was

found that the random forest provided the best performance

for SPI prediction compared with the other methods. The

drought indicators were further used to generate the drought

distribution maps and the maps were favourably compared

with the U.S. Drought Monitor (USDM) maps.

Although the studies above showed that regression

analysis provided reasonably good results but with simple

and direct algorithms, this method tends to show weak per-

formance in longer-lead time forecasting for the assumption

on linearity between predictor and predictand. Other than

that, if there exists a nonlinear relationship, the assumption

on linearity cannot produce a good model, although it can

be compensated by log or square root transformation in

some cases. Similar to other machine learning methods, over-

fitting may also arise if the regression begins to model the

random error (noise) in the data, rather than just the relation-

ship between the variables, especially when there are too

many parameters compared with the number of samples.

Hence, the application of regression analysis has been reduced

in recent years, unless evidence of causality is required.
STOCHASTIC MODELLING: ARIMA AND SARIMA

Stochastic models have been widely used for scientific

applications, including analysing and modelling of the hydro-

logic time series. The advantages of stochastic models include

better consideration of the serial linear correlation character-

istic of time series; capability to search systematically for
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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identification; estimation and diagnostic check for model

development; and SARIMA requires only a few parameters

to describe non-stationary time series for both within and

across seasons. Two important and popular classes of sto-

chastic models are the ARIMA and the SARIMA (Mishra

et al. ). For both variants of these stochastic models,

they contain three important parameters; namely the autore-

gressive order of p, the dth difference of the time series zt and

the moving average order of q, where iterative tuning has to

be carried out to generate a robust model. With the par-

ameters defined, the models are normally described as

ARIMA (p,d,q) for ARIMA and ARIMA (p,d,q) (P,D,Q)s for

SARIMA, where (p,d,q) is the non-seasonal part of the

model and (P,D,Q)s is the seasonal part of the model.

Abebe & Foerch () had carried out a study to

identify a time series forecasting model for mathematical

description, simulation and short-term forecasting of hydro-

logical drought severity at the Wabi Shebele river basin,

Ethiopia. Prominent homogeneous pools were developed

using the parameters mean rainfall, temperature, normal-

ized digital vegetation index and stream flow. Thereafter,

forecasting using SARIMA models was carried out and the

results showed that the (0, 1, 1) (0, 1, 1)12 was the best

among the candidate models. Two years later, Durdu

() used ARIMA and SARIMA to predict the SPI at the

Büyük Menderes river basin. The results suggested that the

linear stochastic models were suitable to predict multiple

time scales of SPI time series for the Büyük Menderes

river basin and other hydrometeorologically similar basins.

In the same year, Han et al. () used ARIMA to forecast

the Vegetation Temperature Condition Index (VTCI) in

the Guanzhong Plain. Thirty-six pixels of VTCI were first

studied for their model fitting, and then a first order auto-

regressive multivariate model, AR(1) was chosen as the

best model to be used in each pixel of the whole area. In

the study, remote sensing images for years 1999 to 2006

was acquired; each image reflects the drought condition

for a ten-day period. The data set before the last ten days

of March in 2006 is used for model development while

the data set after that period is used for model validation.

The validations were done in 1 and 2 steps, which represent

the first ten and middle ten days of April in 2006, respect-

ively. The results showed that the forecasting ability of 1

step was better than 2 steps after comparing the simulating
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data with the historical data. Yet, most of the simulating

errors were small and with that, it was concluded that AR

(1) model created for VTCI series is suitable for the drought

forecasting in the Guanzhong Plain.

Fernandez-Manso et al. () also developed the

SARIMA for drought prediction in the areas of Castile

and Leon, Spain. A 10-day maximum value composite

(MVC) band of the normalized difference vegetation index

(NDVI) was analysed using stochastic processes and then,

NDVI in the following 10-day periods was forecasted

using the developed SARIMA model. The results showed

that using climatic variables as regressors of MVC-NDVI

can improve the accuracy of forecasting models if the

species considered are subjected to summer water stress.

Hence, the use of SARIMA is suitable to extend its use for

short-term forecast of agricultural drought, with NDVI as

the drought index. In the following year, Chun et al. ()

investigated and modelled the drought severity indices of

six catchments in UK using ARIMA models and the general-

ized linear model (GLM). The ARIMA was used to identify

the autocorrelation structures for the drought indices and to

establish empirical relationships between climate variables

and drought. Then, GLM was used to simulate the incidents

and quantities of rainfall with the conditioning on climate

variables. The results showed that ARIMA underestimated

the magnitude of drought severity but it provided good

short-term forecast fit. The GLM was concluded as being

suitable for the local drought assessment at seasonal scale

but needs improvement for rainfall simulations of more

than six months. Chen et al. () also used ARIMA for

drought forecasting at the Haihe river basin, China. The

performance of ARIMA with RF in predicting SPI was the

subject of interest. Accordingly, the RF-based models have

the advantages of nonparametric forecasting, flexibility to

capture the basic relationship of time series and able to

generate ensemble of drought forecast rather than a

mean prediction. The results also showed that RF-based

model was more reliable than ARIMA for both short- and

long-term drought forecasting.

Han et al. () developed ARIMA models to forecast

the SPI at the Guanzhong Plain, China. The forecast results

showed that the ARIMA models are efficient in forecasting

all SPI series with 1-month lead time and SPI-9, SPI-12,

SPI-24 with 6-month lead time. In other words, the
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
ARIMA models were reflected as more convincing for the

short-term forecasting. Over the same year, Shatanawi

et al. () used the Markov chain to support ARIMA in

forecasting the SPI for the Jordan River Basin in the

Middle East. It was observed that the ARIMA models

were not able to produce exact predictions for the SPI

series, and that the Markov chain models can give only

the likely condition based on the precursor condition of

the one or two previous seasons. Hence, both models

were used to support each other in order to get better

drought predictions. The results showed that ARIMA

models can be used to forecast long-term future drought

trends and with the aid of Markov transitional probabilities,

and early warning of developing droughts can also be

deduced. Two years later, the ARIMA was used to assess

the meteorological drought severity at the Bundelkhand,

Central India (Alam et al. b). The SPI series at

3-month, 6-month, 9-month, 12-month and 24-month time

scales had been used, and the statistical analysis revealed

that the non-seasonal ARIMA model was suitable for the

3-month SPI series, while seasonal ARIMA models had

been found assuring for the other longer SPI time scales.

Then, the forecasted data from the best ARIMA model

was compared with the observed data in which the fore-

casted data showed a good bond with the observed data.

Mossad & Alazba () developed a linear ARIMA

model to forecast the hyper-arid climate based on

the SPEI. The few statistical parameters including the R2,

mean absolute error (MAE), root mean square error

(RMSE), Akaike information criterion (AIC) and Schwarz

Bayesian criterion (SBC) were used to evaluate the perform-

ance of different ARIMA models. The results demonstrated

that the ARIMA models can accurately predict the drought

event for a longer time scale like SPEI-24. On the other

hand, the performance was less reliable over a shorter

time scale such as SPEI-3. In the same year, Bazrafshan

et al. () assessed the efficiency of ARIMA and

SARIMA for monthly and seasonal hydrologic drought

forecasting, and determined the amount of lead time for

effective forecasting, in the Karkheh Basin, Iran. The SRI

in the study was generated using monthly and seasonal dis-

charges from ten hydrometric stations for the years 1974 to

2013. The results showed that the ARIMA model performed

better for the two months and one season lead-time
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forecasts. For the SRI values forecasts, the SARIMA model

performed better over the monthly time scale than the seaso-

nal time scale. Tian et al. () explored the effectiveness of

AR(1) and SARIMA forecasting VTCI in the Guanzhong

Plain of China. In the study, VTCI of the first 10 days of

March 2000 to the last ten days of March 2009 was used

as input to develop the models. The results showed that

the SARIMA has better performance compared with AR

(1) as it can predict both no-drought grades and drought

grades, unlike AR(1) which can only predict no-drought

grades although it has lower absolute errors compared

with SARIMA. Mahmud et al. () also adopted the

SARIMA for drought forecasting in the same year. Rainfall

data from 30 stations in Bangladesh was used as input to

forecast monthly rainfall for 12 months lead-time in the

region. Based on R2, RMSE and normalized BIC criteria,

it was found that the SARIMA can predict monthly rainfall

with reasonable accuracy and was established as a suitable

model to forecast year-long rainfall for Bangladesh. A year

later, Karthika et al. () used ARIMA models for short-

term annual forecasting of meteorological drought at the

Lower Thirumanimuthar Sub-basin, India. One-year to 3-

years lead-time of forecasting was considered and the results

showed that the developed model can be used to design a

drought preparedness plan for the region, ensuring sustain-

able water resources planning in the sub-basin.

However, despite all the continuing improvements

associated with this well-known and widely used linear

stochastic model, it is, slowly but surely, being replaced by

the newer AI models which have the advantages of inborn

nonlinear property and flexibility for modelling (Mishra

et al. ). In order to identify the correct model from

the class of possible models, identification techniques with

complicated computations are required. Furthermore,

these traditional model identification techniques are difficult

to understand and, thus, the process is also subjective as the

reliability of the chosen model is heavily dependent on the

skills and experience of the user.
PROBABILISTIC MODELLING: MARKOV CHAIN (MC)

Markov chain is a memoryless random process in which, if a

present state has been known or given, the future and the
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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past are independent of each other (Chen & Yang ). It

is a mathematical technique to obtain the probabilities of

the system using a set of transition probabilities from one

state to another. Generally, when the transitional probability

is dependent on the conditions in the previous m time

periods, it is called an mth order Markov chain. Details of

the algorithm can be found in Avilés et al. ().

Paulo & Pereira () investigated the efficacy of non-

homogeneous formulation for the Markov chain model.

Sixty-seven years of monthly SPI from Alentejo, southern

Portugal were utilized for model development. The authors

predicted drought class transitions up to 3 months ahead

and the results showed that the non-homogeneous Markov

chain model has the advantage of distinguishing among

months when drought is computed, compared with the

homogeneous Markov chain model. Then, Jiang & Chen

() developed a new model named weighted Markov

SCGM(1,1)c for the prediction of drought crop area. This

model combined the advantages of cloud grey system and

Markov chain to improve drought prediction accuracy. By

using data from China as an example, it was proven

that this model can predict drought crop area with high pre-

cision. Sharma & Panu () used Markov chain to forecast

hydrological drought durations for the case of the Canadian

prairies. Modelling was done using the SHI series derived

from annual, monthly and weekly streamflow series. The

results showed that the first-order Markov chain was suit-

able for the forecasting of annual drought lengths, while

the second-order was found to be satisfactory on monthly

and weekly time scales. Subsequently, Chen & Yang ()

carried out SPI-based regional drought prediction using

a weighted Markov chain model. In the study, monthly

precipitation data from Anhui Province of Huaihe River in

China was used to compute the SPI series which was used

for model development. Based on the outcomes, it was con-

cluded that the model is a useful tool for drought prediction

and can be helpful for regional drought disaster manage-

ment. Two years later, Alam et al. (a) used a Markov

chain model to analyse long-term rainfall data of 12 rainfall

stations at the semiarid Barind region. The results were

tested with hypothesis testing (χ2 test) and the model was

termed as statistically satisfactory.

Another Markov chain study was done by Avilés et al.

(). Unlike other studies, the performance of Markov
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chain-based drought forecasts was evaluated using skill

scores, namely the ranked probability score (RPS) and the

Gandin-Murphy skill score (GMSS). The results indicated

that drought events with greater severity were more

accurately forecasted. In the same year, Yeh et al. ()

also adopted a Markov chain model for drought forecasting

for Lanyang River and Yilan River basins in Taiwan.

Precipitation and streamflow data were used to compute

the streamflow drought index (SDI) as an input to the

model. The results showed that the Markov chain model

can produce reliable drought frequency and occurrence

probabilities using short-term data. A year later, Nnaji

et al. () used a semi-Markov chain model, which is

capable of preserving longer memory persistence than

the simple Markov process, to predict monthly streamflow

series for Apalachicola-Chattahoochee-Flint, USA. The

results showed that the model can predict streamflow near

drought and critical drought conditions with high accuracy.

Khadr () also investigated the use of the homogeneous

hidden Markov chain model (HMM) to forecast SPI for

the Blue Nile river basin, Egypt. A set of procedures for

meteorological drought forecasting using homogeneous

HMM to predict SPI with multiple timescales with lead-

time of more than 1-month was produced.

Chen et al. () proposed a new approach called the

HMM aggregated with the RCP 8.5 precipitation projection

(HMM-RCP). A probabilistic forecast of SPI-3 with the infer-

ence on the model parameters through reversible jump

Markov chain Monte Carlo algorithm and weight-corrected

post-processing on the RCP precipitation projection trans-

formed SPI (RCP-SPI) was the subject of investigation.

The proposed approach showed good results of accurately

predicting 71.19% of drought events, and forecasted the

mean duration with an error of less than 1.8 months and a

mean severity error of <0.57. Next, Avilés et al. () pro-

duced another paper comparing the performances of

Markov chain and Bayesian network models. Monthly

rainfall and streamflow data from the Chulco River basin,

located in southern Ecuador were used to develop the

models. According to the results of the RPSS, the authors

concluded that MC-based models have higher prediction

accuracy for wet and dry periods, and BN-based models

forecast better for extreme droughts. A Markov chain

model was also used to forecast short-term droughts in
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
Victoria, Australia (Rahmat et al. ). The estimated

drought probabilities and drought forecasts up to three

months lead time using a non-homogeneous Markov chain

model were analysed. The results showed that the model

developed forecasted drought situations one month ahead

reasonably well, but further development was required to

forecast drought situations of two and three months ahead.

Sun et al. () also evaluated the efficiency of Markov

chain models in forecasting two drought indices, SPEI and

SRI. The first order Markov chain (MCFO) and second

order Markov chain (MCSO) were developed in the study

and the results showed that the first-order Markov chain

model was acceptable for the modelling practice of the

SPEI–SRI integrated drought events. Recently, a weighted

Markov chain model was also evaluated by Zhang et al.

(). The performance of the model was compared with

the Volterra adaptive filter model and the three-dimensional

(3D) loglinear model, based on the accuracy in forecasting

SPI and SRI series. The results showed that the 3D loglinear

model can forecast drought class but limited to within one

month, and the precision decreases with timescales. For

the weighted Markov chain, it is suitable for drought early

warning as the precision is the highest for non-drought,

followed by moderate and severe/extreme, and lowest for

near-normal. The Volterra adaptive filter model is capable

of forecasting long-term drought.

Although the Markov chain has been giving good

results, even when dealing with complex distributions of

data, the use of the Markov chain may be limited by the

performance of the researchers’ computers. This is because

Markov chain models require a large number of states to be

constructed and solving models with so many states does

not only challenge the computational resources of memory

and execution time offered by computers, but more impor-

tantly, tests the users’ patience, and in a world of more

automation and robotics, this can be the ultimate reason

for its demise. In addition, the problem of correctly specify-

ing states and inter-state transitions is generally difficult and

awkward. This is especially so if the formulated model is

very large and complex. It may be very difficult for the

researcher to construct a model of a large system and

verify that it is correct. Hence, if the system behaviour to

be modelled is too complex or too detailed to be expressed

in a Markov type model, then an alternative method capable
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of representing the behaviour of interest should be more

likely of use instead of Markov modelling.
ARTIFICIAL INTELLIGENCE-BASED MODELS

Artificial neural network (ANN)

Artificial neural networks are flexible, nonlinear models that

resemble the structure of a nerve system. They can adapt the

data inserted and analyse and discover patterns from it.

Theoretically, by giving an adequate amount of nonlinear

processing units, neural networks are able to gain experi-

ences and learn to estimate any complex functional

relationship accurately (Mishra & Singh ). The ANNs

learn based on a black-box process, the main factors affect-

ing the performance of the model are input adequacy,

network architecture and model validation. The network

of ANNs are constructed from three major components:

input layer, hidden layer and output layer. To generate an

ANN model, researchers are required to tune the par-

ameters: namely, the number of neurons in hidden layers,

the learning rate (training parameter that controls the size

of weight and bias changes in learning of the training algor-

ithm) and the momentum (weightage of precedent input to

be updated to the subsequent input). Thus, ANNs have the

clear advantage of not needing to define the procedures

or processes between the inputs and outputs. Also, the flexi-

bility in the network architecture also allows for the cases to

be extended easily from the univariate to the multivariate

cases. Due to the differences in network architecture,

there are thus many variants in ANNs and the multilayer

perceptron feed forward model is the most popular neural

network architecture (Djerbouai & Souag-Gamane ).

However, the discussion of the applications of ANNs in

this paper is not limited to any particular variant of ANN.

Ochoa-Rivera () investigated the performance

between ANN and second order auto-regressive multi-

variate model (AR(2)) in generating stream-flows for the

Alto Tajo River Basin in Spain. The ANN architecture

used was the popular multi-layer perceptron ANN model.

Average values of the mean, standard deviation, and skew-

ness coefficient and correlation function of the synthetic

series were estimated to compare with the historical series
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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to analyse the goodness of fit of the developed models,

while the relative root mean square prediction (RRMSD)

was used for the model comparisons. The results showed

that ANN performed better than AR(2) and according to

the authors this was due to the nonlinear structure of

the ANN models. Following closely, Cutore et al. ()

also applied ANN models to carry out forecasts of Palmer

index series in Sicily, Italy. The aim of the study was to

investigate influence of the North Atlantic Oscillation

(NAO) and European blocking (EB) indices on the Palmer

index series. The results showed that there was a significant

improvement during the winter and autumn forecasts when

NAO and EB were included in the ANN models. Next,

Dastorani et al. () evaluated the applicability of ANN

and ANFIS to predict dryland precipitation in Yazd, Central

Iran. Different architectures of ANN were constructed to

compare with ANFIS. The best architecture time lagged

recurrent network (TLRN) ANN were then chosen as the

best ANN model, and used to compare with ANFIS. The

results showed that both models have similar efficiency in

the dryland precipitation prediction and were efficient in

predicting precipitation 12 months in advance.

Marj & Meijerink () also conducted a study on

drought forecasting for the Ahar-chay Basin, Iran. A feed-

forward multiple neural network was used in the study to

forecast the NDVI. The SOI and NAO was adopted as

the input for ANN model and the results showed that the

predicted NDVI has R2 of 0.79, RMSE of 0.011 and the dis-

crepancies are less than 1 SD compared with the observed

NDVI. Barua et al. () conducted a study to evaluate

the effectiveness of an ANN-based model in forecasting

the nonlinear aggregated drought index (NADI). Two

ANN forecasting models, namely the recursive multistep

neural network (RMSNN) and direct multistep neural net-

work (DMSNN), were developed in the study. Forecasted

data from these two models were compared with ARIMA,

and the results showed that both RMSNN and DMSNN

models had better performance than the ARIMA model. It

was also found that the RMSNN model forecasted slightly

more accurately than the DMSNN model for 2–3 months

lead times, while the DMSNN model produced forecasts

with higher accuracy than the RMSNN model for forecast

4–6 months lead times. ANN was also used by Masinde

() to overcome the drawbacks of old drought forecasting
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approaches in Kenya that were unable to provide short- and

long-term forecasts and severity of the drought. The effective

drought index (EDI) was combined with ANN in the

study, and accuracies as high as 98% were achieved, con-

cluding that ANN can be a great enhancement to the old

approaches practised in Kenya.

Other than forecasting the NADI and EDI, the SPEI

were also forecasted using ANN by Deo & Sahin (). In

their study, the feasibility of the ANN was tested to predict

the monthly SPEI for eight stations in eastern Australia.

Different architectures of ANNs were tested in the study

and the structure with 18 input neurons, 43 hidden neurons

and 1 output neuron was established as the best architec-

ture. In addition, the results from performance measures

of R2, MAE and RMSE revealed that the ANN model was

a useful data-driven method to forecast the monthly SPEI

in the region. Hosseini-Moghari & Araghinejad () also

used ANN to forecast short-, mid-, and long-term droughts

in the Gorganroud basin (northern Iran). Different architec-

tures of ANN including the recursive multi-step multi-layer

perceptron (RMSMLP), the direct multi-step multi-layer

perceptron (DMSMLP), the recursive multi-step radial

basis function (RMSRBF), the direct multi-step radial basis

function (DMSRBF), the recursive multi-step generalized

regression neural network (RMSGRNN), and the direct

multi-step generalized regression neural network

(DMSGRNN) were used to forecast SPI on 3, 6, 9, 12 and

24-month time scales. The results showed that recursive

models performed better at smaller time scales, whereas

direct models performed better at longer time scales.

Rezaeianzadeh et al. () compared the performance of

ANN and Markov chain models in drought forecasting for

the Doroodzan reservoir dam, Iran. The 1-month lead time

inflow volume using current reservoir inflow volumes and

other hydroclimatic variables were forecasted. The results

showed that the ANN model performed better than the

Markov chain model and it was concluded that simul-

taneous application of both models can reduce both the

uncertainty and error of the models. Maca & Pech ()

also used ANN models for the forecasting and analysis of

SPI and SPEI. The models they used are a feed forward

multilayer perceptron based ANN and an integrated

neural network model. Datasets from two different areas

in USA were used, which were the Leaf River near Collins,
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
Mississippi and Santa Ysabel Creek near Ramona,

California. For data performance evaluation, the results of

four from five performance measures showed that the inte-

grated neural network model outperformed the feed

forward multilayer perceptron-based ANN. Deo & Sahin

() used ANN as a benchmark to elucidate the predictive

accuracy of the extreme learning machine (ELM) model for

prediction of streamflow water levels. The streamflow water

levels were predicted from a set of nine variables for three

hydrological catchments in eastern Queensland, namely

Gowrie Creek, Mary River and Albert River. The authors

carried out correlation analysis for the selection of inputs

in the training process of both models. The results showed

that ANN was outperformed by ELM. However, both

models performed better when the selection of variables

was done.

Ali et al. () applied the MLP-ANN model to forecast

the SPEI for 17 climatology stations in the Northern

Area and Khyber Pakhtunkhwa of Pakistan. Based on the

outcomes, it was reported that the ANNs were able to

capture the variation in selected drought indices with one-

month time scale. The results from the MAE, R and

RMSE also showed that the MLP-ANN has potential capa-

bility for the SPEI forecasting. Kousari et al. () also

explored the potential of ANN in forecasting drought.

They forecasted SPI in 3, 6, 9, 12, 18 and 24 monthly

series for the Fars Province of Iran. It was reported that

increasing the lead-time of forecasting leads to decreasing

accuracy of the models. In order to obtain successful per-

formance of drought forecasting, a set of procedures to be

followed was given. Seibert et al. () also used ANN for

seasonal forecasting of hydrological drought in the Limpopo

Basin, Africa. Streamflow data, climatic indices and gridded

sea surface temperature anomalies were used as predictands

for the models and SPI with lead-time up to 12 months were

the outcomes of the models. The performance of ANNs was

compared with the multiple linear model (MLM) and the

random forest regression tree (RFOR) models and the results

showed that MLMs are the best while ANNs and RFORs

were likely to suffer from overfitting.

Based on the papers reviewed, studies are showing that

the ANN is outperforming other traditional non-AI based

models with the advantages of less statistical training and

its nonlinear property. The availability of different variants
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is another advantage of using ANN to cope with different

needs and situations compared with the other methods.

This, despite the fact that the ‘black-box’ nature of ANN

causes it to be lacking in interpretation of the model’s

functional behaviour. As the computing process dependent

on the size of input space, model performance is affected

by availability of data. The model performance can be unsa-

tisfying when the data size is small, while the model can

become complex and computationally expensive when

input space is large, not to mention the fact that the increase

in model complexity may also result in overfitting. Hence,

researchers are required to carry out an in-depth model

evaluation in order to produce a robust model.

Fuzzy logic (FL)

Fuzzy logic was conceptualised by Zadeh () and is

defined as a handy way to map an input space to an

output space (Prasad & Sudha ; Sandya et al. ).

Among the several advantages of using fuzzy logic, the

most relevant for our subject matter is the fact that it can

model imprecise data and nonlinear functions of arbitrary

complexity and that it is based on a natural language. In

classical (Boolean or crisp) set theory, membership of an

element x in a set A, is defined by a characteristic function,

which assigns a value of either 1 (true) or 0 (false) to each

individual in the universal set X. That it is to say ‘every prop-

osition is either true or false’. But, fuzzy logic violates both

‘excluded middle’ and ‘contradiction’ laws (Klir & Yuan

). Fuzzy logic is based on fuzzy sets in that, unlike

classical sets, their membership is not a ‘true-false’ but

‘not-quite-true-or-false’ answer. Hence, the general concept

behind fuzzy logic is that a set of pre-defined rules (if-else

statements) are applied in parallel to interpret some values

in the input vector and then assign values to the output

vector. And to achieve that, a fuzzy membership function

(FMF) curve is used to define the way to map points in the

input space (universe of discourse) to a membership value

(or degree/grade of membership) between 0 and 1.

Compared with ANN which incorporates the human-

like thinking process to solve problems, fuzzy logic allows

definite decision making based on imprecise or ambiguous

data. Both try to exploit the scope of using ‘Tolerance

towards uncertainty and imprecision’, but the approaches
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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used by each are starkly different. While the fuzzy logic is

based on mathematical modelling to incorporate impreci-

sion and tolerance towards uncertainty, the ANN follows

the human brain’s biological model to solve the same pro-

blem. Thus, there is a possibility of evolution and learning

for ANN whereas fuzzy logic is pure calculative logic

taking into its fraction (wherever possible), the scope of

tolerance for imprecision and uncertainty and does not

evolve by itself.

Keskin et al. () applied FL models to analyse

meteorological droughts at nine stations located around

the Lakes District, Turkey. Using monthly historical precipi-

tation data and expert knowledge, rule bases were created

for the fuzzy logic models. Analyses were performed on

SPI of 3, 6, 9 and 12 months long. The simulated data

from FL models were compared with data sets from

ANFIS and the results showed that R2 values of ANFIS

models were higher than those of the FL models, especially

for SPI-12. It was concluded that ANFIS models were effec-

tive for extreme point predictions. However, the advantage

of FL models of not requiring the model structure to be

known a priori can be used for hybrid models in the

future. Agboola et al. () investigated the ability of fuzzy

rules/logic in modelling the precipitation of south-western

Nigeria for better drought management. In the study, mem-

bership functions were assigned for each fuzzy variable,

namely temperature, pressure, humidity, dew point, wind

speed and rainfall. The model-predicted outputs were com-

pared with the observed rainfall data and it was concluded

that fuzzy rule-based models were flexible, suitable for mod-

elling of ill-defined, scattered data. FL has also been proven

to be useful in forming hybrid models for drought forecast-

ing. Ozger et al. () combined wavelet transformation

and fuzzy logic to forecast PDSI for the ten climate divisions

in Texas and continued studies of the hybrid models by

adopting the wavelet fuzzy logic (W-FL) and wavelet

artificial neural network (W-ANN) to predict future long-

term drought events in Texas (Ozger et al. ). The

results showed that W-FL was more accurate for drought

forecasting compared with W-ANN.

Although the FL can model imprecise data and is able

to read ‘natural language’ rules applied by the users, the

limitation of increase in computational time when the set

of fuzzy rules increases makes it less versatile and popular.
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The lack of an evolution and learning element of the FL is

also holding it back from being utilized now as self-learning

is important in the era of real time forecasting. However, its

advantage of modelling imprecision in data is being used to

developed hybrid models. This shall be discussed along with

some examples in the section headed ‘Hybrid models’,

below.

Support vector regression (SVR)

In 1997, Vapnik () introduced support vector machines

(SVM) to describe properties of learning machines so that

they were able to simplify unseen data (Kisi & Cimen

). The learning process is unresponsive to the relative

number of training examples in positive and negative

classes. Unlike other empirical risk minimization based

learning algorithms (e.g. ANNs) that classify only the posi-

tive class correctly to minimize the error over the data set,

SVM aims at minimizing a bound on the generalization

error of a model in high dimensional space, so-called struc-

tural risk minimization. In short, SVMs seek to minimize

the generalization error, while ANNs and other empirical

risk minimization based learning algorithms seek to mini-

mize training error. SVMs can be categorized into two

types: support vector classification (SVC) and support

vector regression (SVR), where SVR is the preferable type

for forecasting tasks. The important parameters for the

tuning of SVMs include kernel type and parameter (classes

of algorithms for pattern analysis), regularization parameter

(the trade-off between achieving a low training error and

a low testing error), Gamma parameter (complexity of

model) and margin of error acceptance. Through an

iteration process, researchers are able to develop a robust

SVM model using the availability of different types of

kernel and through the tuning of the aforementioned

parameters.

Deng et al. () used least squares support vector

machine (LS-SVM) to simulate the daily soil water content

of Hunan Province, southern China. Compared with

conventional SVM, LS-SVM is an improved algorithm

using equality type constraints instead of inequalities. The

model’s performance was compared with BP-ANN and

ANFIS in terms of MARE, R and MRSE. The results

showed that LS-SVM was more stable and superior at soil
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
water simulation compared with BP-ANN and ANFIS.

Chiang & Tsai () compared the performance of SVM

model with three other models (ANN, maximum likelihood

classifier, Bayesian classifier). The models were used to

predict reservoir drought status in the next 10–90 days

in Tsengwen Reservoir, Taiwan. The results showed

that SVM had better performance than the other three

approaches in drought forecasting. Even with the evidence

that the longer the prediction time period the lower the

prediction accuracy, the accuracy of forecasting the next

50 days was still high with percentages of about 85% both

in training and testing data set by SVM. Hence, SVM was

concluded to have high accuracy in drought forecasting.

Later, Chiang & Tsai () improved the SVM model

into a two-stage SVM model. The two-stage SVM outper-

formed the original SVM and the three other approaches

(ANN, maximum likelihood classifier, Bayes classifier)

that were used for evaluation through comparisons. Ganguli

& Janga Reddy () also applied SVM for drought forecast-

ing over western Rajasthan, India. Two variants of

SPI-based drought forecast models were developed to

simulate SPI up to 3 months lead time, which were the

SVM-copula approach without seasonal partition and the

SVM-copula approach with seasonal partition. It was

found that the developed SVM-copula approach improved

the drought prediction capability for the combined seasonal

model compared with the model without seasonal partition.

Jalili et al. () also explored the use of SVM in drought

forecasting, comparing the SVM with other models,

namely the MLP-ANN and RBF-ANN in the study. The

SPI drought index was used in the study but the results

showed that MLP-ANN was the best performing model.

The advantages of SVM were utilized by Belayneh et al.

() to combine with wavelet, bootstrap and boosting tech-

niques, forming different hybrid models. The performance

measures results showed that all SVM-based hybrid

models outperformed the ANN-based hybrid models in

drought forecasting. Borji et al. () also explored the

usage of SVR in drought forecasting and compared its per-

formance with ANNs. Runoff data from Jajrood River,

Iran was used to predict SDI for hydrological drought analy-

sis. The conclusion was that the SVR has better efficiency in

forecasting long-term droughts compared with ANNs

because the SVR does not fall into the trap of local errors.
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Through the papers reviewed, SVR models seemed to be

outperforming other machine learning models, especially

for the long-term forecasting. This may be due to its advan-

tage of avoiding overfitting and local minima through proper

tuning of regularization parameters and convex optimization,

respectively (Jalalkamali et al. ). Due to its difference in

risk minimization algorithms, the independence of the SVR

model complexity from the dimensionality of the input

space has also brought advantage to the SVR over other

empirical modelling models. Apart from that, Kernel tricks

that allow development of the SVR models to suit different

conditions is also one of the factors for its outstanding per-

formances. However, it has the same weakness shared

among models with nonlinear property; that is, it is just as

computationally inefficient.

Hybrid models

Hybrid models is a new category of hydrology modelling

which has emerged in the last decade. To the best knowl-

edge of the authors, the first drought forecasting hybrid

model used in the hydrology field since 2007 was introduced

by Mishra et al. (). According to the papers reviewed,

the authors observed that the hybrid models can be grouped

into two variants, first, the hybrid between machine learning

models and, second, the hybrid between data pre-processing

techniques and machine learning models.

Coupled machine learning models

For the first variant, machine learning models were coupled

to rectify respective incompetency. For example, Mishra

et al. () coupled the advantages of both a linear stochas-

tic model (ARIMA) and a nonlinear ANN model to forecast

droughts in the Kansabati River basin in India using the

SPI. Two kinds of hybrid ARIMA-ANNmodels were created

in the study, namely the hybrid stochastic neural network of

recursive approach (HSNNRA) and the hybrid stochastic

neural network of direct approach (HSNNDA). The per-

formance of the hybrid models were compared with

individual ARIMA and ANN models, and the results

showed that the hybrid models were able to forecast

droughts with greater accuracy. Two years later, another

hybrid model ANFIS was tested for its applicability for
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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SPI forecasting in Central Anatolia, Turkey by Bacanli

et al. (). The basic problems of fuzzy systems are the

difficulties in defining the membership function parameters

and the design of fuzzy if–then rules. To overcome this, the

authors utilized the learning capability of ANN for auto-

matic fuzzy rule generation and parameter optimization.

Therefore, a hybrid model combining the advantages of

fuzzy system and ANN, the so-called ANFIS was developed

in the study. Monthly mean precipitation was used to com-

pute the values of SPI for different time scales of 1 month

to 12 months. The feed forward neural networks (FFNN)

were used to compare with ANFIS for their performance.

The results demonstrated that ANFIS was more accurate

and reliable for drought forecasting. Besides, the finding

described the ANFIS model as a suitable approach for

drought forecasting as it combined the advantages of

neural network and fuzzy logic methods.

In 2010, ANFIS were compared with ANN for their

applicability in forecasting droughts for the Yazd meteorolo-

gical station in Central Iran (Dastorani et al. ). Different

architectures of ANN and ANFIS models together with

various combinations of meteorological conditions were

applied in the study. The results showed that both the

ANN (with structure of TLRN) and ANFIS were efficient

tools to forecast droughts in that area. In another study

(Farokhnia et al. ), ANFIS was once again adopted as

a drought forecasting tool. The study intended to examine

the utility of SST and SLP global data for forecasting the

likelihood of drought events compared with EDI by using

them as inputs to the ANFIS model. It was found that

in all the cases, those that had applied SST/SLP datasets

had a higher accuracy. Woli et al. () also used ANFIS

to predict the agricultural reference index for drought

(ARID) for five locations in the south-eastern United

States. The performance of ANFIS were compared with

other approaches, namely ANN, the autoregressive moving

averages (ARMA), linear regression and the El Niño

Southern Oscillation (ENSO) based approach (the ARID

values were separated into three ENSO phases and aver-

aged by phase). However, the results showed that ANFIS

performed poorly, in general, due to the limited availability

of the input data. To further study the application of hybrid

models in drought forecasting, Nguyen et al. () applied

the ANFIS model for forecasting the drought event at the
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Cai River basin in Vietnam. The precipitation, temperature

and the sea surface temperature anomalies (SSTA) were

used as the input for ANFIS to predict the SPI and SPEI.

The results showed that the ANFIS model provided a

satisfactory forecasted result, and it was further concluded

that the SPI was more suitable in predicting the short-term

drought event (1- and 3-month models) than the SPEI,

while the SPEI was found to be more suitable in predicting

the long-term drought event (6- and 12-month models).

Jalalkamali et al. () applied several AI models including

ANN, SVM and ANFIS to compare with the performance

of the ARIMAX model for drought forecasting at Yazd

Province, Iran. The past monthly precipitation for a 51-

year period was used to calculate the SPI values. All the

performances of the models were evaluated by R2 and

RMSE. All the models had good capability and sensitivity

to drought forecast in a 9-month period. The performance

of the ARIMAX was slightly better for the 9-month SPI

prediction, followed by ANFIS, ANN and SVM.

From the reviews, it was observed that the hybrid

models can be customized to suit the problem of the

researchers by coupling two different machine learning

models together. For examples Mishra et al. () coupled

ARIMA and ANN models to overcome the respective

incompetency in modelling linear and nonlinear data,

while Bacanli et al. () adopted the ANFIS to utilize

the learning capability of ANN for automatic fuzzy rule

generation and parameter optimization in FL. These two

studies showed the capability and flexibility of first variant

hybrid model in solving problems. However, similar to any

other variants of single ANN models, the performance of

these ANN-based hybrid models can also be unsatisfactory

when there is limited availability of data, as found out by

Woli et al. (). Other nonlinear modelling methods

such as the SVR, which is less constrained by the dimension-

ality of input space, can be experimented as a substitution

for ANN.
Data pre-processing techniques cum machine learning
models

Further on, the second variant of hybrid model was first

observed in the field of hydrology from a study that com-

bined wavelet transformation and fuzzy logic (W-FL) that
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
was applied to ten climate divisions in Texas to forecast

the PDSI (Ozger et al. ). The performance of the

model was compared with the traditional FL model. Better

results from the W-FL model were obtained, where the

annual cycle of precipitation was dominant. They concluded

that using wavelet transformation to combine with FL

model can improve the performance significantly in fore-

casting PDSI. W-FL can obtain a significant improvement

over the FL model in the forecast of the PDSI, where

W-FL was capable of modelling more complex problems.

Ozger et al. () further studied hybrid models by adopting

the wavelet fuzzy logic (W-FL) and wavelet artificial neural

network (W-ANN) approaches to forecast the long lead

drought event in Texas. The results showed that W-FL

was more accurate for drought forecasting. Belayneh &

Adamowski (, ) also compared among W-ANN,

ANN and SVR using data from the Awash River Basin of

Ethiopia. The drought index chosen to represent drought

in the basin was the SPI, and the results indicated that

the forecasted SPI values over multiple lead times had

the highest accuracy when W-ANN models were used.

Belayneh et al. () increased the number of model com-

parisons by developing a new W-SVR model for the same

river basin as the previous studies. Accordingly, it was the

first time that W-SVR models had been explored and

tested for long-term SPI forecasting. However, the results

of the RMSE, MAE and R2 showed that W-ANN had

better performance than W-SVR. Mehr et al. () also

developed a new hybrid model called wavelet-linear genetic

programing (W-LGP), for long lead-time drought forecast-

ing. The results were promising, showing that W-LGP can

be effectively used for the forecasts of 3-, 6-, and 12-month

lead time drought conditions. Additionally, they found that

the W-LGP was slightly less precise than the W-FL and

W-ANN models as the original time series in both W-FL

and W-ANN models were decomposed prior to training.

The benefit of using the wavelet decomposition was

further studied by Djerbouai & Souag-Gamane (),

where the meteorological drought was forecasted in the

western part of the Algerois Catchment. Similar to the

previous studies, SPI-12 for all the models was considered

the best parameter to model the drought event for all the

lead times (1-month to 6-month). Additionally, the hybrid

model W-ANN was better than the other two models
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(ARIMA and ANN) for all the time scales and lead times. It

was found that the wavelet transform had the ability to

reduce the complexity of a given time series, thus managed

to reduce the number of hidden neurones and saved the

computation time. The extent of adopting the wavelet

transform with the extreme machine learning was studied

by Deo et al. (). A wavelet-based extreme learning

machine (W-ELM) was proposed to forecast the monthly

EDI for three hydrological stations in Australia. The per-

formance of the W-ELM was compared with the ANN,

LS-SVR and their wavelet-equivalent models (W-ANN and

W-LS-SVR). The results showed that W-ELM was the best

among the models. Moreover, W-ELM model was found

to be computationally efficient as running time was faster,

and most of the predicted errors were considered low.

In spite of the fact that previous hybrid models, with

the combination of data pre-processing technique with

standalone machine learning models, showed satisfactory

prediction accuracy, many researchers attempted to

improve the hybrid models further. For example, Shirmo-

hammadi et al. () came up with a three-layer hybrid

model, wavelet-ANFIS (W-ANFIS) by combining wavelet

transformation with the existing hybrid model, ANFIS.

The capability of this model was evaluated by comparing

with W-ANN, ANN and ANFIS. The results showed that

ANFIS models forecasted more accurately than ANN

models, and also demonstrated that wavelet transform can

improve meteorological drought modelling. This showed

that the performance of wavelet-hybrid models is quite

promising. This was further proven by Shabri () through

his study on the W-ANFIS model in Malaysia. W-ANFIS

was once again proven to be outperforming the traditional

ANFIS and ARIMA models. Other than combining ANFIS

model with the wavelet transform, Memarian et al. ()

further improved the performance of ANFIS by integrating

fuzzy inputs with modular neural network to increase

the accuracy in estimating complex functions, namely the

co-active neuro-fuzzy inference system (C-ANFIS). The

results from performance metrics showed that the global

indices with a time lag had better correlation with ENSO.

Belayneh et al. () explored the ability of wavelet

transforms, bootstrap and boosting ensemble techniques in

developing reliable ANN and SVR models for drought fore-

casting. The bootstrap artificial neural network (BS-ANN),
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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bootstrap support vector regression (BS-SVR) and their

wavelet coupled bootstrap ensemble (W-BS-ANN and

W-BS-SVR) models were used to forecast the SPI-3, SPI-12

and SPI-24. Compared with bootstrap that improves the

model performance by increasing stability, the boosting tech-

nique that enhances weak learning effects showed better

improvement in forecasting accuracy of SPIs. Besides, wave-

let analysis also enhanced the performance of all models

through its capability in de-noising. Thus, the wavelet boost-

ing SVR (W-BS-SVR) model provided better forecast

accuracies compared with other assessed models. A year

later, Prasad et al. () evaluated the capability of the

iterative input selection (IIS) method in aiding W-ANN,

benchmarking with the M5 tree model. The area selected in

the study was the Murray-Darling Basin, Australia and

monthly streamflow water levels of the basin were used as

input to develop the models. The results showed that the

IIS-W-ANN model outperformed W-ANN models and

the IIS-W-ANN model accuracy outweighed the IIS-W-M5

model. Hence, IIS was concluded as a useful model-

enhancing method for streamflow forecasting models.

It was observed that the second variant of the hybrid

models, which possess the advantages of data pre-processing

techniques to improve the performance of models, also gave

satisfying results. The reviews have shown that data pre-

processing techniques can be tied in with the machine

learning models to generate higher performance hybrid

models. The main function of the data pre-processing tech-

nique is to improve the quality of input data before the

modelling process. Based on the different types of problem

encountered, different techniques with desired functions

have been adopted to accommodate with the machine learn-

ing models. For example, Djerbouai & Souag-Gamane

() adopted the wavelet transform to reduce the complex-

ity of a given time series, which subsequently reduced the

number of hidden neurones and thus saved on computation

time. The bootstrap and boosting ensemble techniques were

also adopted as data pre-processing techniques by Belayneh

et al. () to improve the quality of input data, where the

bootstrap improved the performance stability and the boost-

ing enhanced the performance of weak learners.

Given the flexibility and adaptability of both variants of

hybrid models in modelling, researchers attempted to

explore further the possible combinations of hybrid models
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in order to produce better and more robust forecasts. How-

ever, researchers are advised to identify the research’s

problem before selecting the hybrid models to be developed

as they can be customized to suit different situations. Hence,

the reviews are to provide an overview for researchers to

differentiate the characteristics of both variants.
DYNAMIC MODELLING

Dynamic modelling is an approach which utilizes real

time data to describe a phenomenon over time. Due to

the rapid development of remote sensing in drought moni-

toring and impact assessment, the availability of drought-

related real time variables has also increased. Thus,

dynamic drought forecasts studies are increasing over the

years. Unlike the statistical drought forecasting models

that use long-term conventional gauge observations,

dynamic drought modelling is highly dependent on the

real time remote sensing data. Remote sensing is a tech-

nique of obtaining reliable information about objects,

areas or phenomenon from afar and/or without making

physical contact, typically from an aircraft or a satellite

(NOAA ). Satellite remote sensing has been used for

monitoring the Earth’s weather or climate since the suc-

cess of the Television and Infrared Observation Satellite

(TIROS-1) mission in 1960 (NASA ). For the study

on droughts, remote sensing observations can be used to

monitor drought-related climatological variables and

quantify drought impacts from an ecosystem perspective

(AghaKouchak et al. ). For example, precipitation

rate can be converted from satellite infrared and visible

images of cloud top temperature using empirical statistical

relationships (Arkin et al. ; Joyce & Arkin ); volu-

metric water content of the soil of 2–5 cm depths from the

ground surface can be converted from passive microwave

brightness temperature and active microwave backscatter-

ing through empirical relationships (Njoku et al. );

and quantification of temporal terrestrial water storage

anomalies can be done by measuring the distance between

two spacecraft (Rodell ).

Apart from drought monitoring and drought impact

assessments, the use of remote sensing data for drought fore-

casting has also become relevant over recent years. In ,
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
Han et al. used VTCI series (1999–2006, Guanzhong Plain

of China) generated based on the remote sensing infor-

mation of the land surface temperature versus the NDVI

scatter plot falling into a triangular shape as the input for

the forecasting model of AR(1). Compared with the conven-

tional time series forecasting, the study tried to capture not

only the variations of one pixel value over time, but also

the spatial changes about all the 36 evenly distributed

pixel values in the region. Fernandez-Manso et al. ()

also used remotely sensed NOAA-AVHRR images (from

1993 to 1997), to forecast the short-term response of forest

vegetation in Castile and Leon, Spain. The results showed

that the different ARIMA models can be developed to

suit the evolution of the NDVI series for various conifer

species and the forecasting models can be improved by

using climatic variables as regressors of the MVC-NDVI

time series for the species considered being subjected to

summer water stress. Jalili et al. () explored the use of

different remote sensing data to forecast the SPI in Iran.

NDVI, TCI and VCI were extracted from NOAA-AVHRR

images and used as input to forecast SPI. From the results,

TCI was found to be the most suitable satellite feature to

describe drought conditions. The results also showed that

the drought conditions could be forecasted with accuracy

up to 90% when the ANN model was applied with remote

sensing data. AVHRR images were also adopted by Tian

et al. () for the agricultural drought forecasting of

Guanzhong Plain, China. About 90 VTCI images of the

years from 2000 to 2009 were derived from AVHRR data

to develop ARIMA models. Similar to the study done

by Han et al. (), 17 pixels were chosen based on the

existence of weather stations. The results showed that the

forecasted drought severity from ARIMA models were in

good agreement with the categorized VTCI drought

monitoring results.

However, remote sensing is a relatively new technique

in which the data can only provide short-term information

from recent decades. It is necessary to combine the remotely

sensed information with the long-term climatology to reduce

the bias of the model forecasts. For example, Luo & Wood

() used the Drought Monitoring and Prediction System

(DMAPS) for US drought and in the prediction part

(NCEP CFS), the system implemented the Bayesian merging

procedure (Luo et al. ) to combine seasonal forecasts
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(outputted from NLDAS forcing datasets) with observed

monthly climate data. By doing so, biases in the seasonal

forecasts have been removed and the results showed

that the system gave promising skills in the prediction.

Luo & Wood () carried out another study in eastern

United States to compare the performances among multimo-

del dynamic modelling (CFSþDEMETER), conventional

dynamic modelling (CFS) and non-dynamic modelling

(ESP). Evaluation of the models was done using a case

study of forecast in 1988 and 19-year period hindcasts.

The results showed that CFSþDEMETER forecasts gave

very promising skills over two other models in producing

precipitation, soil moisture and streamflow over the

Ohio River Basin. For the 19-year period hindcasts, CFSþ
DEMETER gave significant advantage over ESP for the

first two months of the forecasts. Hao et al. () presented

data sets available from the Global Integrated Drought

Monitoring and Prediction System (GIDMaPS) that

showed relatively reasonable forecasts for 2 to 4 months of

lead time using baseline probability distributions. In the

system, one of the inputs called GDCDR also utilizes the

benefits of combining PERSIANN satellite data with long-

term GPCP observations for drought predictions. Sheffield

et al. () also carried out drought forecasting in sub-

Saharan Africa using satellite-based TMPA (precipitation)

and GFS (temperature and wind speed) data for the years

2002 to 2008. These data were bias corrected before being

used as the input for the NCEP CFS. The results showed

that the forecasts indicated good skills in early predictions

but performance decreased when the lead time increased.

Dehghani et al. () utilized real time information

from real time gauges in Black River Basin, USA for dynami-

cal drought forecasting. In the study, DLSTM and ANN

were compared for their capability in the forecasting of

SHDI. The results showed that DLSTM performed better

than ANN especially for long lead time forecasting. Another

approach to carry out dynamic modelling for drought

prediction was carried out by Yoon et al. in . They per-

formed dynamical downscaling on the RSM forecasts over

the contiguous United States and compared with five

other statistical and error correction methods, which are

BI, BCSD, Bayesian, the Schaake method and multimethod

ensemble. The results showed that RSM dynamical down-

scaling is regionally and seasonally dependent. Four years
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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later, Bowden et al. () also performed dynamical down-

scaling over the contiguous United States using WRF to

evaluate hindcast simulations of SPI. The results showed

that dynamically downscaled fields were more suitable for

water resource applications compared with the larger-scale

fields, as WRF was able to improve the timing and intensity

of moderate to extreme wet and dry periods. Shukla & Let-

tenmaier () also compared dynamical downscaling of

CFS forecasts to statistical downscaling. The results

showed that dynamical multi-RCM ensemble downscaling

performed better than statistical downscaling. However, sig-

nificant differences were only limited to the northwest and

north central regions. Hence, it was suggested that careful

selection of regional climate models is crucial for dynamical

downscaling. Dynamic modelling is a relatively new method

in drought forecasting which exists due to the advances in

real time data observation technology. However, due to

the short period of information available, various data

fusion methods to reduce the bias of model forecasts

should be further explored in order to achieve better mer-

ging effects with long-term conventional observations.

Studies can also be pursued to solve the problem of data

continuity (due to satellite or gauges failure) as dynamic

modelling requires good connection between the input and

forecast systems.
FUTURE TRENDS IN DROUGHT MODELLING

With the presence of modern data collection methods

and retrievals (such as smart sensors, remote sensing, the

Internet of Things), the availability of water resources data

is not only limited to recorded data from traditional sources,

but also from a different variety of real time data. This allows

analyses to be done by utilizing the integration of multiple

datasets from different sources simultaneously, to discover

the big trends. Hence, the future trend of drought modelling

would be the utilization of the Big Data integrated system in

producing real time and robust forecasts. For example, a big-

data approach that integrates meteorological and remotely

sensed data streams, together with other datasets such as

vegetation type, wildfire occurrence and pest activity, can

clarify direct drought effects while filtering indirect drought

effects and consequences.
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For hydroinformatics, although the research on Big

Data is still at a very early stage, there is no doubt that

drought modelling can achieve better results with the

presence of Big Data. For instance, IBM has started its

research on big data applications for watershed manage-

ment by capturing meteorological, surface, sub-surface and

groundwater data, monitoring rain, snow, soil moisture,

water turbidity, flow rates, temperature, and groundwater

quality using different sensors (IBM a). In the same

year, the Kerala Water Authority in India also used IBM

Big Data and analytics technology for seamless water distri-

bution for the city of Thiruvananthapuram with more than

3.3 million inhabitants (IBM b). Ai & Yue () also

proposed a framework for processing water resources big

data by describing the application based on the features of

modern water resources data. The framework of the study

mainly consists of four layers, the data acquisition layer,

resource organization layer, data analysis layer and appli-

cation service layer. For the data acquisition layer, real

time water resources data with sufficient quantity, density

and variety were collected. Then, based on water resources

information organization theory, the data were extracted,

integrated and transformed using SQL and NoSQL tools

to form the master database. Data analysis layers were

designed to mine the value of information using the

Hadoop and MapReduce, and thereafter provide compre-

hensive information services in the last layer.

Other than data integration, fusing of data of the same

nature but from different sources has also been performed

by Verdin et al. (). The author used a Bayesian data

fusion model to blend infrared precipitation data with

gauge data on the Central and South American region.

The results showed that data fusion significantly improved

upon the satellite-driven estimates. Given the outstanding

performances of the Big Data system, data integration and

data fusion techniques in water resources management,

it is without doubt that they are applicable to drought

modelling for more robust and reliable forecasting.
CONCLUSIONS

The study of modelling approaches in drought forecasting

is important in the field of meteorology, hydrology, and for
://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
managing agricultural systems and managing water resource

systems. Indeed, precise prediction is required to enhance

the multi-step-ahead prediction mandatory for the much-

needed best management practices. Regression analysis is

considered the earliest and one of the simplest and most

direct methods to predict future drought conditions based

on the relationship between the variables. The logistic and

loglinear regressions are found useful to predict the drought

index. However, the assumption on linearity between pre-

dictor and predictand reduced its capability in long-lead

forecasting. Stochastic modelling can predict the drought

index by determining the elemental parameters: autoregres-

sive (AR), differencing (I) and moving average (MA). The

ARIMA/SARIMA models are found to be more suitable

to predict the higher time scale of drought index (12- or

24-month) with shorter lead time. Still, this linear approach

cannot ideally capture the non-linearity component in the

time series and thus it is gradually being replaced by the

AI models.

The probabilistic modelling, Markov chain was another

approach adopted to forecast future drought events based on

probability theory. Similar to the ARIMA model, the MC

model was identified to reasonably forecast the time series

with short lead times. Undeniably, the AI models including

the ANN, FL and SVR have been widely used in recent

drought forecasting studies, as they can predict the drought

events that do not have a good, straightforward mathemat-

ical solution. The AI models were proven to have

the ability to capture the white noise, non-stationary and

non-linearity in the time series. This review article has

ascertained that modelling with AI models is reliable in

predicting different types of drought indices including the

NADI, SPI, SPEI, EDI and PDSI.

It is without doubt that the hybrid models have been

extensively applied in drought forecasting throughout the

past decade because their performances are dramatically

better than the stand-alone models. In this paper, a thorough

review of the hybrid models has shown that the hybrid

model can be classified as either the hybrid between

machine learning models or the hybrid between data pre-

processing techniques and machine learning models. Since

a hybrid model is combining the merits of each individual

model, it thus has a better prediction accuracy to predict

the time series with a shorter time scale and longer lead
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time. The hybrid models are extremely useful for the short-

term and medium-term drought forecasting as well as

multistep-ahead prediction and should pave the way for

more advances in drought prediction in an era of climate

change.

For real time forecasting, dynamic modelling is a well-

known method in drought forecasting. Remote sensing

data is usually used as the input for dynamic modelling

due to its ability to provide real time information. However,

remotely sensed data may carry biased information and

thus, Bayesian merging with observed climatology is usually

done as a bias correction to improve the forecasts. Other

than remote sensing, real time gauges and dynamical down-

scaling were also adopted for dynamic modelling. The
Table 2 | Advantages and disadvantages of the models

Approach Advantages Disadvantages

Regression
analysis

• Simple and direct

• Low computational cost
• Poor in lo

the assum

Stochastic
models

• Able to fit well to linear data

• Systematic search for
identification, estimation and
diagnostic check for model
development

• Poor cap
nonlinear

• Complica

Probabilistic
models

• Able to deal with complex
distributions

• Computa

Artificial neural
network

• Less formal statistical training

• Nonlinear property

• Able to detect all possible
interactions between predictors

• Able to do multiple training
algorithm

• ‘Black-bo

• Computa

• Prone to

• Empirica
developm

Fuzzy logic • Can model imprecise data and
nonlinear functions of arbitrary
complexity

• Fuzzy rules can be interpreted
using natural language

• Can be c
when the
increases

Support vector
machine

• Able to avoid overfitting

• No local minima

• Different kernels are available for
different datasets

• Limited c

• Can be c
validation

Hybrid models • Able to combine the pros of
different models

• Required
multiple

• Weaknes
carried fo

Dynamic
modelling

• Able to provide real time results • Required
the input
drought f

om http://iwa.silverchair.com/jwcc/article-pdf/11/3/771/716843/jwc0110771.pdf
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advantages and disadvantages of the models reviewed are

summarized in Table 2.

In conclusion, there are multiple criteria influencing the

performances and accuracies of forecasting models. Appro-

priate inputs with suitable time-scales as well as the length

of lead-time are the key factors for accurate predictions. Lit-

erature also indicated that the use of pre-processing

techniques can enhance the accuracy of models. Hybrid

models that combine the advantages of various models or

adopt the use of pre-processing techniques are trending in

drought forecasting. Dynamic modelling is also very likely

to be adopted for drought forecasting as the ease and

availability of real time information is ever promising with

the development in digital technology. The study from
Remarks

ng-lead forecasting due to
ption of linearity

• Large number of variables are
required to produce accurate
predictions

ability to model data with
characteristics
ted computations

• Difficult to understand and
require skilful users for reliable
results

tionally expensive • Memoryless process

x’ nature
tionally expensive
overfitting
l nature of model
ent

• Theoretically fit to any types of
data but required iterative
tuning of parameters

omputationally expensive
number of fuzzy rules

• Require expert knowledge to
define rules

hoices of kernels
omputationally expensive in
stage

• Theoretically fit to any types of
data but required iterative
tuning of parameters

a thorough understanding of
models
ses from models may be
rward

• Different combinations can be
developed based on the
problems encountered

good connection between
and forecast systems (for
orecasting)

• Good for both monitoring and
forecasting purposes
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Schepen et al. () which showed promising results by com-

bining the strengths of statistical and dynamical modelling

should not be overlooked. Researchers should endeavour to

combine the advantages fromhybridmodels, dynamicmodel-

ling and to produce better drought forecasts in the future.

Finally, Big Data systems is expected to be a future trend in

droughtmodelling given its capability to clarify direct drought

effectswhilefiltering indirect drought effects andconsequences.
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