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Exploring the multiscale changeability of precipitation

using the entropy concept and self-organizing maps

Kiyoumars Roushangar, Farhad Alizadeh, Jan Adamowski

and Seyed Mehdi Saghebian
ABSTRACT
This study utilized a spatio-temporal framework to assess the dispersion and uncertainty of

precipitation in Iran. Thirty-one rain gauges with data from 1960 to 2010 were selected in order to

apply the entropy concept and study spatio-temporal variability of precipitation. The variability of

monthly, seasonal and annual precipitation series was studied using the marginal disorder index

(MDI). To investigate the intra-annual and decadal distribution of monthly and annual precipitation

values, the apportionment disorder index (ADI) and decadal ADI (DADI) were applied to the time

series. The continuous wavelet transform was used to decompose the ADI time series into time-

frequency domains. The decomposition of the ADI series into different zones helped to identify the

dominant modes of variability and the variation of those modes over time. The results revealed the

high disorderliness in the amount of precipitation for different temporal scales based on disorder

indices. Based on the DI outcome for all rain gauges, a self-organizing map (SOM) was trained to find

the optimum number of clusters (seven) of rain gauges. It was observed from the clustering that

there was hydrologic similarity in the clusters apart from the geographic neighborhood.
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INTRODUCTION
Effective and sustainable management of water resources

involves planning, development and distribution strat-

egies, which are directly or indirectly associated with

rainfall prediction and spatial examination of the hydrolo-

gic cycle. Assessment of precipitation variation over a

large area (e.g. Iran) can provide valuable information

for water resources engineering and management, particu-

larly in a changing climate. In general, climate warming

intensifies the global hydrological cycle and increases

average global precipitation, evaporation and runoff

(Clark et al. ). Alteration of the hydrologic cycle has

significant impacts on the rate, timing and distribution of

rainfall as well as evaporation, temperature, snowfall

and runoff (Mishra et al. ). An example of
precipitation variation in Iran (during 1966–2005) is the

significant decreasing trends in annual precipitation,

which varied from (�) 1.999 mm/year in the northwest

to (þ) 4.261 mm/year in the west of the country. The sig-

nificant negative trends, which mainly occurred in

northwest Iran, affected agricultural production and

water supply in the region. In contrast, no significant

trends were detected in the eastern, southern and central

parts of the country (Tabari & Hosseinzadeh Talaee

; Raziei ). Sustainable water resources manage-

ment is challenging when there is high spatial and

temporal variability of precipitation and frequent dry

periods since this can cause water scarcity. The determi-

nation of sub-regions based on different precipitation
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regimes is useful for water resources management and

land use planning.

Understanding the spatial and temporal variability of

precipitation is not only important for water resources man-

agement and other water activities, but is also useful for

evaluating the impacts of climate change and human activi-

ties on hydrologic processes and available water resources

in a watershed (Li & Zhang ; Sang ; Nourani

et al. ). However, understanding hydrologic processes

is complicated; hydrological processes are influenced by

many physical factors (e.g. climatic variables) (Mishra

et al. ; Sang et al. ; Sang ), and with large

impacts of climatic change, hydrologic processes are likely

to show even more complex variability. Researchers have,

among other topics, tried to quantify the variability and

complexity of precipitation processes using various

approaches, and tried to connect the variability of precipi-

tation with atmospheric variables and indices (e.g.

temperature, wind, North Atlantic Oscillation, etc.).

Although there is a lack of climatological data and a

sparse distribution of meteorological stations, some precipi-

tation studies have been carried out in Iran. Domroes et al.

() applied principal component analysis (PCA) and

cluster analysis (CA) to mean monthly precipitation at 71

stations irregularly distributed across Iran, and classified

the precipitation regimes into five different sub-regions.

By applying PCA and CA to 12 variables selected from 57

candidate variables for 77 stations distributed across Iran,

Dinpashoh et al. () divided the country into seven

climate sub-regions. Soltani et al. () used monthly pre-

cipitation time series from 28 sites in Iran and applied a

hierarchical cluster analysis to the autocorrelation coeffi-

cients at different lags where three main climatic groups

were found. Modarres & Sarhadi () performed spatial

and temporal trend analyses of annual and 24-hour maxi-

mum rainfall for a set of 145 precipitation gauging stations

in Iran over the 1950–2000 period. The study showed that

annual rainfall decreased at 67% of the stations while the

24-hour maximum rainfall increased at 50% of the stations.

The negative trends of annual rainfall were mostly observed

in the northern and northwestern regions, whereas the posi-

tive trends of 24-hour maximum rainfall were primarily

located in arid and semiarid regions of Iran. Raziei et al.

() analyzed the spatial distribution of seasonal and
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annual precipitation in western Iran using data from 140

stations covering the 1965–2000 period. By applying the

precipitation concentration index (PCI), intra-annual pre-

cipitation variability was studied and results suggested

that five spatially homogeneous sub-regions could be charac-

terized by different precipitation regimes. The authors

indicated that the spatial pattern of seasonal precipitation

appeared to be highly controlled by the wide latitudinal

extent of the region, the pronounced orographic relief and

the occurrence of maximum precipitation, which varied

from spring in the north to winter in the south.

In these studies, stations were not homogeneously

distributed and different methodologies were applied to pro-

cess the data. As a result, the identified sub-regions differed

greatly, especially in the mountainous regions of western

Iran that are characterized by a complex orography.

Sarmadi & Shokoohi () identified eight precipitation

sub-regions for Iran and found the Wakeby probability distri-

bution as the function that best fit the monthly precipitation

time series of half of the identified sub-regions. Recently,

by applying CA to the rotated PC scores resulting from a

PCA implemented on the seasonal precipitation magnitudes

and percentages from a high-resolution gridded dataset,

Darand & Mansouri Daneshvar () partitioned Iran

into nine sub-regions with different precipitation regimes.

Raziei () used monthly precipitation time series of 155

synoptic stations distributed over Iran, from 1990 to 2014,

to identify areas with different precipitation time variability

and regimes utilizing S-mode PCA and CA preceded by

T-mode PCA, respectively.

The artificial neural network (ANN) is a commonly

used approach for dealing with large amounts of complex

hydrological data (Roushangar et al. b). When an unsu-

pervised ANN is used for clustering, the restriction of

specifying the number of clusters prior to the clustering

analysis can be avoided (Hsu & Li ). Murtagh &

Hernández-Pajares () demonstrated that the K-means

method is a special form of ANN, and Lin & Chen ()

showed that ANN is more robust than the K-means

method or Ward’s method for accurately identifying homo-

geneous regions. Among ANNs, the self-organizing map

(SOM) neural network proposed by Kohonen () is a

descriptive unsupervised tool that is increasingly used in

hydrology and water resources, such as for the clustering
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of watershed conditions (Liong et al. ; Nourani et al.

); the determination of hydrological and hydrogeologi-

cal homogeneous regions (Hall & Minns ; Lauzon

et al. ; Lin & Chen ; Hsu & Li ; Nourani

et al. ; Han et al. ); the study of algal blooms

(Bowden et al. ); and the identification of river pollutant

sources (Gotz et al. ). The SOM network quantifies

the data space and simultaneously performs a topology-

preserving projection from the data space onto a regular

one- or two-dimensional grid. The SOM produces informa-

tive visualizations of the data space, which allow for the

exploration of data vectors. Results of ANN depend on the

training data. Since not all characteristics are the main con-

cern of specific features, ANN may produce misleading

homogeneous regions. For example, the frequency change

of extreme hydrological events may be of most interest for

disaster prevention and mitigation, while for water supply

management, the amount of precipitation is of greater con-

cern (Hsu & Li ). Therefore, appropriate methods are

required to extract the features of interest embedded in

the data. Although raw precipitation data contains a great

deal of information, an entropy-based approach can empha-

size specific features of the data and reduce the effect of

noise on analysis.

From the reviewed literature, it was concluded that

there is a lack of multiple-scale entropy studies of climatic

variables in Iran. Hence, the present study proposes

multiscale entropy models and a clustering model for the

extraction of multiscale randomness and uncertainty attri-

butes of precipitation for different months, seasons, years

and decades. After investigating the multiscale uncertainties

of each rain gauge, it is important to determine the homo-

geneous areas based on these properties (Agarwal et al.

; Roushangar & Alizadeh ). Therefore, classification

of rain gauges was performed using the SOM approach.

The entropy method was used to quantify the variability

or disorder of spatio-temporal precipitation in Iran, and pre-

cipitation time series with different time scales (i.e. annual,

seasonal and monthly) were considered. Variability as

used in this study was defined as the difference between

maximum possible entropy and the entropy obtained by cal-

culation from individual series, the so-called disorder index

(DI) (Mishra et al. ). We calculated the variability of

annual, seasonal and monthly precipitation time series and
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
determined the possible seasonal time series that dominated

the (variability of) annual time series and the monthly time

series that dominated the variability of seasonal time series.

In addition, the intra-annual distribution of monthly precipi-

tation was investigated to find the years with high DIs in the

historical time series. The variability of annual precipitation

on a decadal scale was also studied to compare disorderli-

ness within the decades. The spatial structure of

precipitation variation in latitude, longitude and elevation

dimensions was then investigated and finally, the obtained

entropy-based values were used as input to the SOM in

order to spatially cluster the rain gauges.
METHODOLOGY

Case study and climatological dataset

This study used monthly climate data (1960–2010) from 31

precipitation gauges across Iran to study precipitation regio-

nalization (Figure 1 and Table 1). Due to the variety of

information that is involved in hydrologic processes and

the need for accurate models, monthly precipitation time

series were used that include various multivariate properties

such as seasonality properties. Iran is a large country

(approximately 1,600,000 km2) and the climate is mostly

affected by its wide latitudinal extent. Iran is located in

southwest Asia (25� to 40�N and 44� to 63�E) with the

Caspian Sea to the north and the Persian Gulf and Oman

Sea to the south (Araghi et al. ). Moisture coming

from the Persian Gulf is usually trapped by the Zagros

Mountains. The plateau is open to cold (dry) continental

currents flowing from the northeast, and the mitigating influ-

ence of the Caspian Sea is limited to the northern regions of

the Alborz Mountains. The Zagros chain stretches from

northwest to southeast and is the source of several large

rivers such as Karkheh, Dez and Karoon. Lowland areas

receive surface water from these basins and are of great

importance for agricultural applications (Raziei et al. ).

The climate of Iran is generally recognized as arid or semi-

arid with an annual average precipitation of about 250 mm;

however, its climate is very diverse, with large annual precipi-

tation and temperature variation across the country

(Figure 1(a)). For example, in different areas of the country



Figure 1 | (a) Climate map of Iran; (b) geographic location of rain gauges used in this study.
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annual precipitation varies from 0 to 2,000 mm (Domroes et al.

; Dinpashoh et al. ; Bahrami et al. ). The Caspian

Sea coastal areas in the northern and northwestern regions of

the country are subjected to higher precipitation while the
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
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lowest values of annual precipitation are found in the southern,

eastern and central desert regions (Ashraf et al. ).

Generally, Iran is categorized as: hyper-arid (35.5%),

arid (29.2%), semi-arid (20.1%), Mediterranean (5%) and



Table 1 | Geographical coordinates of precipitation gauges used in this study

Station

Lat. (decimal
degrees)

Long. (decimal
degrees)

Station

Lat. (decimal
degrees)

Long. (decimal
degrees)Name

Number
(ID) Name

Number
(ID)

Abadan 1 30.282 48.411 Mashhad 17 36.568 59.146

Ahwaz 2 31.353 49.053 Ramsar 18 36.785 50.833

Arak 3 34.145 49.188 Rasht 19 37.261 50.096

Babolsar 4 36.68 52.537 Sabzevar 20 35.51 58.01

Bandar abbas 5 27.213 56.42 Sanandaj 21 35.738 47.178

Birjand 6 32.373 59.576 Shahre Kord 22 32.41 50.452

Bushehr 7 28.94 50.952 Shahrood 23 35.775 55.836

Dezfoul 8 32.838 48.353 Shiraz 24 29.897 52.18

Esfahan 9 33.181 52.694 Tabriz 25 37.784 46.526

Ghazvin 10 36.1 49.843 Tehran 26 35.787 51.66

Gorgan 11 36.956 54.26 Torbat-Heydariye 27 35.196 59.466

Hamedan 12 34.786 48.492 Urmia 28 37.546 44.908

Kerman 13 30.15 56.58 Yazd 29 32.224 55.549

Kermanshah 14 34.425 46.645 Zahedan 30 29.597 60.831

Khorramabad 15 33.586 48.51 Zanjan 31 36.55 48.468

Khoy 16 38.617 44.908
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wet climate (10%). Temperature in Iran also varies widely

(�20 to þ50 �C) (Saboohi et al. ). On the northern

edge of the country (the Caspian coastal plain), tempera-

tures rarely fall below freezing and the area remains

humid for most of the year. Summer temperatures rarely

exceed 29 �C (Nagarajan ; Weather & Climate Infor-

mation ). To the west, settlements in the Zagros basin

experience severe winters with below zero average daily

temperatures and heavy snowfall (Farajzadeh & Alizadeh

). The eastern and central basins are arid and have

some desert areas. Average summer temperatures here

rarely exceed 38 �C (Nagarajan ). The coastal plains of

the Persian Gulf and Gulf of Oman in southern Iran have

mild winters and very humid and hot summers (Figure 1(a)).

The dataset applied in this study was provided by the Iranian

Meteorological Organization (http://www.irimo.ir).

Proposed approach

In the present study, a spatial clustering approach was

performed based on the entropy calculation to show the
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
disorderliness of the precipitation (proposed by Mishra

et al. ), and the entropy-based variabilities of precipi-

tation across time scales were calculated for 31 rain

gauges. Next, the captured values for each rain gauge were

used as input to the SOM. The proposed approach,

namely DI-SOM, was expected to perform more accurately

than the SOM approach without DI in determining areas

of precipitation variability. Since precipitation time series

include a wide range of fluctuations, noise and error, using

them as input can reduce the performance of the SOM.

Therefore, a useful SOM-based model which uses measures

of entropy as a signature of the precipitation time series in

order to determine areas with the same level of uncertainty

of precipitation is proposed. A schematic of the proposed

approach is presented in Figure 2. Properties of parameters

in the proposed methodology are presented in Table 2.

Measures of variability and entropy

Generally, variability is the quality of unevenness and lack

of uniformity over multiscales (Sang ). Spatial variability

http://www.irimo.ir
http://www.irimo.ir


Figure 2 | Schematic of the proposed model to regionalize rain gauges in Iran.
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characterizes the different values of a variable measured at

multiple locations in an area, whereas temporal variability

measures the unevenness or randomness of a variable over

different time intervals. Various descriptive statistics are

used for measuring variability (Mishra et al. ). Infor-

mation theories have been widely applied in hydrology to

quantify the variability and complexity of hydrologic vari-

ables (Lee et al. ; Sehgal et al. ; Guo et al. ;

Roushangar et al. a), streamflow (Bartlein ; Guetter
Table 2 | Properties of entropy and relative disorder index (DI)

Variable name

Maximum possible
value of marginal
entropy Description

Entropy Log2k DI¼ (maximum poss
under evenly appor
(actual entropy val
time series)

Marginal entropy (ME) log215¼ 3.90 Related DI: marginal

Apportionment entropy (AE) (log212)¼ 3.58 Related DI: apportion
index (AE)

Decadal apportionment
entropy (DAE)

(log210)¼ 3.32 Related DI: decadal a
disorder index (DA

Mean disorder index (MDI) – Spatial and temporal

om http://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
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& Georgakakos ; Huh et al. ; Kalayci & Kahya

; Nourani et al. ; Roushangar et al. ), runoff

(Maurer et al. ), evaporation (Lenters et al. ), temp-

erature (Michaels et al. ), soil moisture (Wittrock &

Ripley ; Brocca et al. ), North Atlantic Oscillation

(Raible et al. ; Feldstein ; Walter & Graf ),

drought indices (Cook et al. ), snow water equivalent

(Cyan ; Derksen et al. ), sea level pressure (Haylock

et al. ), and sea level for meso-scale variability
Parameter determination
method References

ible entropy value
tioned state) –
ue obtained for the

According to the shape
of the distribution of
probabilities pi

Shannon (),
Kawachi et al.
()

disorder index Mishra et al. ()

ment disorder Mishra et al. ()

pportionment
DI)

Mishra et al. ()

mean Mishra et al. ()
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(Thompson & Demirov ). The variability of entropy

reflects the randomness and complexity of systems and

vice versa.

The entropy concept is used in this study to determine

the spatio-temporal variability/disorder of precipitation.

Entropy (Shannon ) is a measure of dispersion, uncer-

tainty, disorder and diversification. Singh () provided a

review of entropy applications in hydrology and water

resources.

A discrete form of entropy, H(x), is given in Equation

(1), where k denotes a discrete data interval, xk is an

outcome corresponding to interval k; and p(xk) is the prob-

ability of xk. The probability p(xk) is based on the empirical

frequency of values of x. Entropy is expressed in bits if the

base of the logarithm is assumed to be equal to 2. Variable

x can have only k outcomes. For continuous variables,

such as precipitation, a finite number of class intervals k

must be chosen. Entropy H(x) is also called the marginal

entropy (ME) of a single variable x. Entropy is a measure

of uncertainty of a particular outcome in a random process

and provides an objective criterion in selecting a mathemat-

ical model (Mishra et al. ).

H(x) ¼ �
XK

k¼1

p(xk) log [(p(xk)] (1)

Entropy-based measures for analysis of precipitation

The variability of a precipitation time series can be quantitat-

ively measured using entropy and can be described in spatial

and temporal terms. In the present application, annual, sea-

sonal and monthly precipitation time series were considered

individually because it is useful to understand the uncer-

tainty or variability within each time series and compare

them in terms of their variability. Results of: (i) the infor-

mation of the precipitation time series, (ii) the uncertainty

associated with this information based on different temporal

scales (decadal, yearly, seasonal and monthly) and on

spatial scales (comparing individual stations with respect

to overall stations in the basin), and (iii) the precipitation

variables having maximum variability were further analyzed

for decision making purposes (Mishra et al. ). Its math-

ematical expression is presented in Equation (1).
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
Marginal entropy

ME H(x) can be defined as the average information content

of a random variable x with the probability distribution p(x)

and is used as a measure of uncertainty. This term basically

calculates the ME of a single time series. For example, when

the historical monthly time series of a station is considered

for the calculation of ME, it provides the randomness

associated with the entire length of the time series. ME

can be used for any type of dataset (e.g. yearly, monthly,

seasonal, rainy days) to evaluate the randomness in the

time series. Its mathematical expression is the same as

Equation (1) (Mishra et al. ).
Apportionment entropy (AE)

If ri is the aggregate precipitation (monthly precipitation)

during the ith month in a year, the aggregate precipi-

tation during the year (annual precipitation), R, can be

expressed by the sum of ri from i¼ 1 to i¼ 12 as

(Mishra et al. ):

R ¼ �
X12

i¼1

ri (2)

Apportionment entropy (AE) measures the temporal

variability of monthly precipitation over a year (i.e.,

monthly-based apportionment of annual precipitation).

The expression of AE is demonstrated in Equation (3)

(Mishra et al. ):

AE ¼ �
X12

i¼1

(ri=R) log 2(ri=R) ¼�
X12

i¼1

(pi) log 2(pi) (3)

By definition, Equation (3) states that when the annual

precipitation amount is evenly apportioned among each

of the 12 months with a probability of 1/12, AE takes on

its maximum value of H¼ log212. The minimum value of

AE¼ 0 occurs when the apportionment is made to only

one out of the 12 months with a probability of 1. This indi-

cates that AE takes on a value within a finite range of 0

and log212.
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Decadal apportionment entropy (DAE)

Using the decadal apportionment entropy (DAE), the ran-

domness of the time series data on a decadal basis can be

measured. This can be applicable to any time series of

hydro-meteorological variables. For example, considering

the annual time series of a station (ai being the annual

precipitation for year ‘i’), the aggregate decadal precipitation

over ten years (decadal precipitation), DR, can be expressed

by the sum of ri from i¼ 1 to i¼ 10 as (Mishra et al. ):

DR ¼ �
X10

i¼1

ai (4)

The ratio ai/DR thus becomes an occurrence probability

of the outcome. Letting this ratio be di (Equation (5)) and

employing Shannon’s discrete informational entropy, DAE

measures the temporal variability of decadal annual precipi-

tation over ten years (Mishra et al. ) (i.e., yearly-based

over ten-year apportionment of annual precipitation) as

expressed in Equation (5).

DAE ¼ �
X10

i¼1

di log2 di ¼ �
X10

i¼1

(ai=DR)log2 (ai=DR) (5)

DAE can also be applied to months. For example, by

considering individual month time series (i.e., taking all

January months) of all years, it is possible to explore how

much randomness occurred for that month over a decade.
Entropy-based variability (disorder index)

In the present paper, variability is defined based on entropy

as the difference between maximum possible entropy and

the entropy obtained for individual series (disorder index

(DI)). The properties of all types of applied DIs are

presented in Table 2.

When the DI is calculated from ME, it is known as the

marginal disorder index (MDI). Likewise, it is known as the

apportionment disorder index (ADI) when based on AE.

When the decadal analysis is carried out based on DAE, it

is known as decadal apportionment disorder index (DADI).
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The higher the disorder index value, the higher the

variability. The MDI is calculated based on ME for

annual, seasonal and monthly time series. This determines

the variability associated with individual series. Spatial

and temporal variability can be compared based on the aver-

age disorder index as demonstrated in Equation (6), where

N is defined as the length of entropy time scales in a spatial

or temporal domain (Mishra et al. ).

MDI ¼ 1
N

XNDI

i¼1

(6)
Self-organizing map (SOM) neural network

The SOM is a powerful method used to explore and extract

the interrelationships of high-dimensional multivariate sys-

tems, and is beneficial for clustering and forecasting in a

wide range of disciplines (Kohonen ). One of the main

advantages of the SOM is its ability to extract implicit pat-

terns from a high-dimensional input dataset and classify

the obtained patterns into a low-dimensional output layer,

where similar inputs remain close together in the output

neurons while preserving data structure (Hsu & Li ;

Nourani et al. ). The neurons in the output layer are

commonly arranged in two-dimensional grids so that the

constructed topology can be visualized to give insight into

the system under investigation.
RESULTS AND DISCUSSION

In this study, data from 31 rain gauges were used to investi-

gate the variation of precipitation over Iran. In order to find

the spatial distribution of the DI, different temporal scales

for calculating entropy were considered.

Variability of annual precipitation

To investigate the variability of annual, seasonal and

monthly precipitation time series, the MDI was computed

for the time series. The deviation of individual ME from

maximum ME represented the variability associated with

the individual station time series (Mishra et al. ).



Figure 3 | (a) Marginal disorder index (MDI) for annual and seasonal time series, (b) mean annual precipitation (mm/year) and (c) distribution of variability of precipitation for annual time

series based on the marginal disorder index.
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Comparison of seasonal and annual scales of MDI values

(spring, fall, summer and winter) are shown in Figure 3(a).

Table 3 shows the statistical attributes of monthly and seaso-

nal time series of stations. According to Table 3, summer

and its constituent months (e.g. August) have the greatest

MDI values among all the seasons. It was observed that

the spatial variability of the spring and winter seasons’

series was lower than that of the summer and fall seasons.

The MDI of the summer was greater than the MDI of the

fall and the annual MDI did not show a significant variation.

The spatial distribution of mean annual precipitation

(Figure 3(b)) was compared with the variability of MDI

based on annual precipitation (Figure 3(c)). It was observed

that mean annual precipitation showed obvious changes

and presented a decreasing path from the north to the
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
south of the country. The greatest values of mean annual

precipitation were observed in northern Iran near the

Caspian Sea while central and southeast Iran had the

lowest precipitation. In the case of MDI based on annual

precipitation, the variability seemed to follow a smoother

variation for the whole country. It can be concluded

that the nature of mean annual precipitation differed from

the disorder associated with it on a spatial scale (Mishra

et al. ).

Variability of seasonal precipitation

MDI values for different seasons were compared and

results revealed the higher deviation and range in the

variability of summer precipitation compared with other



Table 3 | Statistical properties of the marginal disorder index (MDI) for seasonal time

series along with their constituent months

Seasons
Constituent
months

Min.
(mm)

Max.
(mm)

Mean.
(mm)

Std
dev.
(mm)

Range
(mm)

Spring March 0.07 0.76 0.19 0.14 0.69
April 0.07 1.43 0.25 0.27 1.35
May 0.07 4.91 0.80 1.10 4.84
Spring 0.23 6.58 0.03 0.05 5.35

Summer June 0.07 5.6 2.72 1.88 5.53
July 0.15 5.74 3.31 1.73 5.59
August 0.07 5.60 3.61 1.74 5.53
Summer 0.07 6.58 1.84 1.67 5.11

Fall September 0.07 5.74 3.55 1.82 5.67
October 0.07 4.91 1.54 1.37 4.84
November 0.07 2.88 0.60 0.75 2.81
Fall 2.25 6.58 0.31 0.54 4.33

Winter December 0.07 1.22 0.25 0.26 1.14
January 0.07 0.37 0.17 0.08 0.30
February 0 0.71 0.20 0.14 0.71
Winter 0.11 6.58 0.024 0.029 6.47
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seasons (Figure 4). Accordingly, summer precipitation

contributed more to the variability of the annual series,

whereas winter and spring seasons contributed less.

Summer is the driest period of the year in nearly all of

Iran, and its variability is higher than all the other sea-

sons. The stations with high variability for different

time series were: spring (5, 8, 29 and 27), fall (5, 13, 29

and 30), summer (1, 2, 6, 7, 8, 15, 24 and 29) and

winter (9, 13, 17 and 28). The regions with high variabil-

ity of summer precipitation in the west, center and

southeast of Iran (Figure 4(b)) belonged to deserts in

the center of Iran, the Zagros Mountains, the Gulf of

Oman and the Persian Gulf. The remaining parts of

Iran had more or less the same variability. The winter

precipitation variability was similar across different

areas of Iran (Figure 4(d)), and therefore it could be

inferred that winter precipitation over Iran had low dis-

order. The variability of fall precipitation was high in

the central and southern regions (i.e., Bandar Abbas,

Kerman and Zahedan rain gauges; Figure 4(c)). The

highest variability in spring precipitation occurred in

southern and eastern Iran (low values of MDI), as

shown in Figure 4(a). It can be seen that the seasons

had distinct spatial patterns.
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Variability of monthly precipitation

The intra-variability of months within seasons is shown in

Figure 5. During the spring (Figure 5(a)), it is apparent

that the month of May has high variability for 11 stations

and the variability of the spring season is lower than the

individual months. The variability of the summer season is

less than that of the contributing months (Figure 5(b)), and

August seemed to contribute more to the variability of the

summer season with a mean of 3.61 (mm) and standard

deviation of 1.74 (mm), as shown in Table 3. Unusual

peaks were observed for most stations across Iran. The

variability of the fall season was lower than its constituent

months (September, October and November; Figure 5(c))

and September and October had dominant peaks at various

stations. The variability of the winter season along with con-

stituent months (December, January and February) is shown

in Figure 5(d). Based on the standard deviation values, Jan-

uary contributed more variability than the other months to

winter precipitation variability (see Table 3). The variability

of the winter season was lower than the related months, and

when individual months were compared, it was observed

that all three contributing months had little deviation in

their statistical properties (Table 3). As a general conclusion,

it was observed that the seasonal variability is always lower

than the constituent months.

Variability of precipitation distribution within a year

Temporal scale

It is important to investigate the variability of precipitation

distribution within a year and to discover the years with a

high disorder index (variability) in the historical time

series. The apportionment disorder index (ADI) was calcu-

lated to assign the variability of precipitation in different

months within a year. The greater the ADI, the greater the

variability of monthly precipitation within a year (Mishra

et al. ). In order to illustrate the variability of precipi-

tation distribution within a year on a regional basis, mean

ADI in relation to the long-term mean is shown in

Figure 6(a). The long-term mean is defined as the average

of historical ADIs, and is used as a threshold to show discre-

pancies between high and low variabilities in the time series



Figure 4 | Distribution of variability of precipitation for (a) spring, (b) summer, (c) fall and (d) winter seasons based on the marginal disorder index.
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(Mishra et al. ). Values over the threshold indicate the

variability is high. When temporal scales were considered,

the variability of precipitation within a year was highest

during the 1960s and the early 1970s, and above the

threshold during the late 1970s to early 1990s and some

years during 2000–2010.
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
In order to assess the oscillation of the disorder index,

continuous wavelet transform (CWT) was used to decom-

pose the ADI time series into time-frequency space. The

information from this decomposition determined the domi-

nant modes of variability and variation of those modes

with time.



Figure 5 | MDI for (a) spring, (b) summer, (c) fall and (d) winter precipitation and individual months.
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Figure 7 shows CWT for the annual precipitation ADI

and the scale of periods are in years. In order to investigate

the ADI variables more closely, ADI values for all stations

were analyzed (Figure 7(a)). Next, the area of Iran was sep-

arated into five different zones: center, northeast (NE),

northwest (NW), southeast (SE) and southwest (SW). The

contour lines enclosed regions of statistically significant

wavelet power in the time-frequency space at the 5% signifi-

cance level of a white noise process (Torrence & Compo

; Grinsted et al. ). Significant inter-annual values

were observed for all regions. Significant inter-annual (2–3

year) oscillations were active during 1965–75 and 5–6 year

oscillations occurred around 1975–85. In the center of

Iran, significant inter-annual (5–6 year) oscillations

were observed in the 1980s. In the NW zone, significant
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
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inter-annual (2–4 year) oscillations were active during

1965–75 and 5–6 year oscillations were identified around

the 1980s. In the NE, significant inter-annual (2–3 year)

oscillations were dominant in 1965–75 and inter-annual

(5–6 year) oscillations were evident during 1975–85. A sig-

nificant 1–2 year oscillation in the late 1960s and a 5–6

year oscillation in 1975–85 were observed in the SW zone.

In the SE, an inter-annual (1–2 year) oscillation was active

around 1995–98. The significant periods were considered

as severe drought periods in Iran.

Spatial variability

In order to provide a clear picture of spatial variability

between stations, the average of ADI for all years over



Figure 6 | (a) Mean apportionment disorder index of all precipitation stations over all years; (b) mean apportionment disorder index of all years over different precipitation stations; and (c)

variability of apportionment disorder index for precipitation series over Iran.
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Figure 7 | Continuous wavelet transform of precipitation mean apportionment disorder index (ADI) for different zones: (a) all rain gauges, rain gauges in (b) central parts of Iran, (c)

northwest Iran, (d) northeast Iran, (e) southwest Iran, (f) southeast Iran.
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different stations is shown in Figure 6(b). The long-term

mean of the annual apportionment index was used as a

threshold level to distinguish between highly variable and

low variable stations. High variability was associated with

station numbers 5, 6, 7, 8, 9, 13, 22, 24, 29 and 30; whereas

lower variability was associated with station numbers 4, 11,

16, 18 and 19. The patterns of ADI represented different

values, which describes the variability of monthly precipi-

tation within the year. The observed variability seemed to

increase from east to west in Iran. The highest variability

could be seen in the south, northwest and southwest parts

of Iran, as shown in Figure 6(c). These regions belong to

semi-arid and hot zones.
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Decadal variability

In order to explore the decadal variability of precipitation

over Iran, analysis was carried out in three steps (Mishra

et al. ): (i) the DADI was calculated for all stations

over different decades; (ii) the mean of DADI was plotted

for different scales (annual, seasonal and monthly) to under-

stand the spatial variability over different decades; and (iii) a

comparison between decades was carried out.

The mean DADI over all stations for individual decades

is plotted in Figure 8. It was evident that the variability of the

winter and spring seasons’ precipitation series as well as the

January, February and March precipitation time series were



Figure 8 | Mean decadal apportionment disorder index (DADI) of different time scales over decades.
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lower than all other time series. Significantly, there was an

equivalent deviation for all decades in these time series.

On the other hand, for all other time series, there was a

large variation within the decades. A comparison of the

two first decades (1960–69 and 1970–79), indicated that

both decades showed a high variability for June, July,

August, September and summer.
Mann–Kendall statistics

To assess the trend in the variability of precipitation, the

non-parametric Mann–Kendall statistic was calculated for

all stations, and results are plotted in Figure 9. According

to the figure, it can be seen that statistically significant

(MK statistics >2) and positive trends (5% confidence

limit) were observed for five rain gauges (12, 14, 22, 23

and 27) and for the remaining stations no statistically signifi-

cant trends were observed. These results indicated that there

was no trend in the variability of precipitation across Iran on

the basis of the Mann–Kendall test of MDI time series,
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
except for five rain gauges which are located in the west

and south of Iran.
Structure of spatial and disorder index variation

The connection between the MDI of summer and fall (due

to the wide changes in values) and ADI values were tested

for possible links to latitude and longitude in order to indi-

cate the spatial structure of the precipitation. The results

(Figure 10) showed that the DI had a different relationship

with spatial coordinates for different seasons. For all seasons

and related months, seasonal and monthly MDI and ADI

had a decreasing relationship with latitude. Also, it was

observed that annual ADI had a decreasing relationship

with latitude over Iran. It can be inferred from Figure 10

that the variation in precipitation (seasonal, monthly and

annual MDI and ADI) possesses longitude zonality, which

implies that precipitation variability might have increased

with longitude from the west to the east.



Figure 9 | Mann–Kendall statistics of apportionment disorder index for precipitation stations.
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Spatial clustering

For spatial clustering of 31 rain gauges (RG) over Iran, the

entropy-based values calculated for each rain gauge at differ-

ent time scales were used as input data for the SOM. Based

on the outcome, H(MDIRG) and H(MADIRG) as the dis-

order index values for precipitation series with different

scales were used as inputs for the SOM. In the input layer,

the H(MDIRG) had monthly MDI (12 values), seasonal

MDI (4 values) and annual MDI (1 value) and MADI

(1 value), for a total of 17 DI-based values. These DI-based

values of all rain gauges, H(MDIRG) and H(MADIRG);

RG¼ 1, 2,… , 31) were then fed into a two-step SOM-

based clustering approach. In the first step, a two-

dimensional SOM was applied to classify the rain gauges

into classes with similar RG patterns. The purpose of such

a two-dimensional SOM clustering was to have an overview

of homogeneous regions and approximate the number of

clusters with regard to plain topology (Nourani et al. ).

In order to apply the proposed two-step SOM, the size of

the Kohonen layer was considered to be 10 × 10 for the first

step. The DI values across different scales for all 31 precipi-

tation series were then used as a basis for clustering the rain

gauges. The optimal number of clusters was decided using

four validation indices: Calinski Harabasz, Dunn, Davies

Bouldin and Silhouette. The Calinski Harabasz index (CH)

(Desgraupes ), represents the internal cluster evaluation

criterion. Calculated for each possible cluster solution, the

maximal achieved index value indicates the best clustering
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
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of the data. An important characteristic of this index is the

fact that the evaluation will start at a comparably large

value and, with an increasing number of clusters (approach-

ing the optimal clustering solution in groups), the value

should significantly decrease due to the increasing compact-

ness of each cluster. Dunn’s index (Dunn ; Halkidi et al.

), which is an internal cluster evaluation criterion, is

defined as the ratio of the minimal intra-cluster distance to

the maximal inter-cluster distance. A large value of Dunn’s

index is preferred as it represents a well compacted cluster

(Agarwal et al. ). The Davies–Bouldin (DB) index

(Davies & Bouldin ; Kasturi et al. ), which also rep-

resents an internal cluster evaluation criterion, is the most

popular and widely used index in hydrology due to its ability

to identify the optimal number of clusters that are well sep-

arated and compact. The DB index is defined as a function

of the ratio of the sum of within-cluster scatter to between

cluster separations. A minimum value of DB is preferable

in a good clustering structure. Finally, to evaluate the per-

formance of the spatial clustering result produced by the

SOM neural network, the Silhouette coefficient was used

as the measure of cluster validity (Hsu & Li ; Nourani

et al. ). The Silhouette coefficient of a cluster can indi-

cate the degree of similarity of piezometers within a cluster.

The results of the four indices are presented in Table 4.

Based on the Calinski Harabasz index, six and seven

clusters had optimum values. The Dunn index showed opti-

mum values at two and seven clusters, whereas the Davies

Bouldin and Silhouette indices had optimum values at



Table 4 | Selection of the optimum cluster number based on different indexes

Number of clusters (k)

Index Rule 2 3 4 5 6 7 8 9 10

Calinski Harabasz (*105) Min 1.9 2.4 2.25 2 1.3 1.2 2.8 3.5 5

Dunn Max. 2.8 1.8 1.45 0.67 0 2.7 0.5 0.3 0

Davies Bouldin Min. 0.58 0.57 0.66 0.62 0.56 0.46 0.65 0.6 0.5

Silhouette Max. 0.63 0.62 0.56 0.54 0.66 0.7 0.49 0.62 0.61

Best values are shown in bold italics.

Figure 10 | Relationships between disorder index (DI) and longitude and latitude.
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seven clusters. Therefore, the possible number of clusters

could be two, six or seven. However, only the Dunn index

indicated an optimum value for two clusters; the other indi-

ces showed poor outcomes for two clusters. The Dunn index

did not indicate a favorable spatial clustering at six clusters

since one of the six had only one rain gauge. When the opti-

mum number of clusters was chosen as seven, the overall

distribution of the rain gauges in the clusters was justifiable.

Based on these observations, the 31 rain gauges were parti-

tioned into seven clusters using the DI based approach.

Figure 11(a) shows the hits plan of the output layer size

of 1 × 7. The hits plan is an illustration of a SOM output

layer, with each neuron showing the number of classified

input vectors. The relative number of vectors for each

neuron is shown via the size of a blue patch. In other

words, the hits plan represents the group of rain gauges

located in one cluster with similar properties (based on

input data). Figure 11(b) shows the neighbor weight dis-

tances obtained by the SOM, where the blue hexagons

represent the neurons. The colors in the regions indicate

the distances between neurons, with the darker colors repre-

senting larger distances and lighter colors representing

smaller distances. Based on Figure 11(b), cluster 1 and 2

are the closest, whereas clusters 6 and 7 are at a larger dis-

tance. Figure 11(c) shows the geographic locations of the

rain gauges in each of the clusters based on the output of

SOM represented in Figures 11(a) and 11(b).

Spatial clustering of precipitation in Iran has also been

studied by other researchers. Raziei et al. () regionalized

the precipitation of the western part of Iran and found five

zones based on the behavior of precipitation, while Mod-

arres () separated rainfall regions into eight groups.

However, the outcome of the clustering was different in

the present study as the clustering showed that there was

hydrologic similarity in the clusters apart from geographic

neighborhood. Some of the rain gauges in a given cluster

were spread across the study area indicating that the basis

of clustering was not geographic contiguity (Agarwal et al.

). The first cluster (1) had 10 rain gauges located in

the northern (Caspian Sea) and northwest parts of Iran

with cold, moderate and rainy climates. In the north

center, northeast and northwest, cluster 2 included four

rain gauges, located in a cold region (see Figure 1). Cluster

3, also in the cold region, had three rain gauges that were
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spatially close to the rain gauges in cluster 2 in northeast

and northwest Iran. The rain gauges of cluster 4 were

located in cold and semi-arid areas in the center and west

of Iran, and cluster 5 included three rain gauges in the

lower middle part of Iran with a semi-arid, hot and dry cli-

mate. Cluster 6, with two rain gauges (Yazd and Bandar

Abbas), represented the warmest cluster and finally, cluster

7 with four rain gauges was located in the west of Iran

(Zagros mountain) with a semi-arid climate. To better high-

light the different precipitation and DI variation of the seven

clusters, mean monthly and annual precipitation along with

related MDI are illustrated in Figure 12. Generally, it was

observed that with decreasing precipitation (i.e. during

June, July, August and September), the MDI values

increased. For cluster 1, high values of mean monthly pre-

cipitation were observed and the MDI values ranged from

0.1 to 1.5. For clusters 2 to 5, the MDI varied up to 5,

with mean monthly precipitation from about 30 to

350 mm. Cluster 6 with the lowest mean precipitation (0

to 125), had MDI values up to 6. Cluster 7 with mean pre-

cipitation from zero to 260 mm, had the highest MDI

values from June to September.
CONCLUSIONS

This study presented a precipitation regionalization method

for Iran using a multiscale entropy-based SOM approach.

Using precipitation data (1960–2010) from 31 rain gauges

in Iran, this approach led to promising outcomes for regio-

nalization. The variability of the annual series had less

disorder compared with the constituent seasonal time

series, which may have concealed the effects of individual

months. Various seasons contributed distinctly to the varia-

bility of the annual precipitation time series. The summer

variability contributed the most to the variability of annual

time series, whereas winter contributed the least to the

annual variability. Spatial variability behaved differently

for the four seasons. The spatial variability in the monthly

precipitation was diverse, indicating an inconsistency in

the precipitation pattern over Iran. The variability of

annual precipitation was not significant over the study

period.



Figure 11 | Results of clustering via SOM: (a) hits (b) SOM neighbor weight distance and (c) geographic location of rain gauges in clusters. Please refer to the online version of this paper to

see this figure in colour: http://dx.doi.10.2166/wcc.2019.097.
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There was also an increasing variability over the study

period for some rain gauges. This could be related to an

increase in annual drought severity in the region and
://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
needs further study. From the analysis it can be stated that

high disorder in the distribution of monthly precipitation

could have a major effect on drought.

http://dx.doi.10.2166/wcc.2019.097


Figure 12 | Mean monthly and annual precipitation along with respective MDI values for the seven clusters.
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Less variability was detected for annual precipitation

time series as well as the January time series. By considering

specific decades over the study period (1960–2010), it was

observed that the variability in earlier decades (1960–1969

and 1970–1979) was greater than in recent decades.

The proposed SOM coupled multiscale disorder index

approach for regionalization of precipitation in Iran

overcame some of the limitations of existing approaches

(especially regarding a lack of data) and was found to be

useful for hydrologic regionalization. Clustering showed

that there was hydrologic similarity in the clusters where

there are no geographic neighborhoods.

This study showed that disorderliness associated with

the distribution of precipitation within a year was highest

in the center, southern and western parts of Iran. This is a

sign of a deficiency in the availability of water resources

and indicates a need for water use restrictions. It was

observed that the DI decreased with latitude and increased

with longitude. Applications of the proposed approach to

data from other case studies, with different climatic, hydro-

logic and environmental characteristics, would help to

verify and possibly strengthen the outcomes found in this

study.
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/655/717057/jwc0110655.pdf
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