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ABSTRACT
Droughts of greater severity are expected to occur more frequently at larger space-time scales under

global warming and climate change. Intensified drought and increased rainfall intermittency will

heighten tree mortality. To mitigate drought-driven societal and environmental hazards, reliable

long-term drought forecasting is critical. This review examines causative mechanisms for drought

and tree mortality, and synthesizes stochastic, statistical, dynamical, and hybrid statistical-dynamical

drought forecasting models as well as theoretical, empirical, and mechanistic tree mortality

forecasting models. Since an increase in global mean temperature changes the strength of sea

surface temperature (SST) teleconnections, forecasting models should have the flexibility to

incorporate the varying causality of drought. Some of the statistical drought forecasting models,

which have nonlinear and nonstationary natures, can be merged with dynamical models to

compensate for their lack of stochastic structure in order to improve forecasting skills. Since tree

mortality is mainly affected by a hydraulic failure under drought conditions, mechanistic forecasting

models, due to their capacity to track the percentage of embolisms against available soil water, are

adequate to forecast tree mortality. This study also elucidates approaches to improve long-term

drought forecasting and regional tree mortality forecasting as a future outlook for drought studies.
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INTRODUCTION
Drought is a recurring climatic phenomenon, initiated

by below-normal precipitation persisting for an extended

period (Mishra & Singh ; Dai a; Hao & Singh

). Creeping nature and lingering effects of drought

obscure the detection of the exact timing of initiation and

termination of drought (Wilhite ; Hao & Singh ).

In addition, intertwined causative physical processes
and nonlinear feedbacks of the oceanic-atmospheric-land

system manifest equivocal definition of drought (Kavvas &

Anderson ). The lack of a universal definition of drought

coined the conceptual framework of multistage drought

propagation, based on hydroclimatic variables and the pur-

pose of discipline (Mukherjee et al. ). Once initiated

with a deficit of precipitation (meteorological drought),

drought propagates into the depletion of soil moisture

(agricultural drought), reduction of runoff (hydrologic

drought), lowering of groundwater table (groundwater

drought), and eventually socioeconomic disruption

mailto:vsingh@tamu.edu
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(sociological drought) (Mishra & Singh ; Hao et al. ;

Mukherjee et al. ).

Based on its intensity, duration, frequency, and areal

extent, as well as regional hydrologic conditions, drought

leads to the loss of agricultural productivity, reduced

domestic water supply, lower industrial productivity, and dis-

ruption in the ecosystem (Mishra & Singh ; Hao et al.

). The drought-driven environmental and societal impacts

can be aggravated by human population growth and the

amplified water demand exceeding available water resources

(D’Odorico et al. ). Drought, as the costliest natural disas-

ter, has caused an average annual loss of $6–8 billion in the

U.S. alone (FEMA ). The recent extreme drought of Cali-

fornia (2011–2017) caused agricultural losses amounting to

$5.5 billion and the destruction of 130 million trees (Kam

et al. ). Besides the economic loss, drought contributes

to tree die-off and deforestation, which in turn change

forest to CO2 emitter and influence climate and ecological

degradation (McDowell et al. ; Allen et al. ).

Since drought occurrences are natural phenomena, which

are beyond human control, proactive drought mitigation strat-

egies aimed at drought resilience should be prioritized (Fu

et al. ; Mukherjee et al. ). Decision/policy makers or

stakeholders, therefore, need a robust proactive drought miti-

gation plan which relies on reliable monitoring, assessment,

and forecasting of drought characteristics (Wilhite ;

Nam et al. ). Given the complexity and equivocal defi-

nition of drought, the fundamental issues of drought

monitoring and forecasting are the objective assessment and

comparison of quantified droughts in time and space (Heim

; Wilhite ). To quantify drought, a compound

measure, so-called drought index, that aggregates multiple

drought indicators has been applied, such as Reconnaissance

Drought Index (RDI), Standardized Precipitation Evaporation

Index (SPEI), and Palmer Drought Severity Index (PDSI)

(Palmer ; McKee et al. ; Mishra & Singh ; Vice-

nte-Serrano et al. ; Hao & Singh ). Although drought

assessment has improved along with the development of var-

ious drought indices, critical issues associated with climate

change, data uncertainty, and defining the base period still

exist in formulating drought indices (Trenberth et al. ;

Mukherjee et al. ; Scheff ).

Drought forecasting has its foundation on the under-

standing of how drought indicators interact in oceanic-
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
atmospheric-land circulation and how initial hydrological

conditions affect the development of drought (Kavvas &

Anderson ; Mishra & Singh ; Hao et al. ).

Although it is difficult to generalize drought causative mech-

anisms for all seasons and over the entire globe, many

studies have considered primary contributors to drought as

ocean-atmospheric teleconnection, land-atmospheric feed-

backs, and chaotic synoptic weather conditions (Cook

et al. ; Sheffield & Wood ; Hoerling et al. ;

Williams et al. ; Hao et al. ). For example, the Dust

Bowl drought of the 1930s in the United States was initiated

with the ocean-atmospheric teleconnection (La Niña) and

then the land-atmospheric feedback aggravated and pro-

longed the drought (Cook et al. , ). Within the

California drought during 2011–2017, the drought event of

2013–2014 began with the ocean-atmospheric teleconnection

(La Niña) and persisted with the internal atmospheric varia-

bility (stagnant anticyclone) (Seager et al. ; Swain et al.

; Kam et al. ). The 2012 Great Plains drought,

referred to as a flash drought, was initiated by internal atmos-

pheric variability or chaotic synoptic weather conditions

(Hoerling et al. ; Hao et al. ).

Therefore, screening out unforecastable noise, establishing

a statistically significant relationship of ocean-atmospheric tel-

econnection with regional hydroclimatic variables, and

physically sound modeling of climate and hydrologic pro-

cesses with high resolution are essential to improve drought

forecasting skills (Mishra & Singh ; Wood et al. ;

Hao et al. ). Based on the explored causative mechanisms,

various types of forecasting methods, such as statistical,

dynamic, and hybrid forecasting models, have been developed

(Mishra & Singh ; Hao et al. ). However, dynamic

models are not successful in long lead-time (longer than 1-

month) forecasting and statistical models need to have the

flexibility to adapt to a changing climate (Wood et al. ).

Climate change is attributed to natural variability or

anthropogenic warming or compound effects of both (Yeh

et al. ). However, it is now accepted that the increased

level of greenhouse gases (GHG) has contributed to global

warming (Dai b; Fu & Feng ). Under global warming

scenarios, it is expected that the background state of sea

surface temperature (SST) changes, such that occurrences

of ocean-atmospheric circulation are affected and the spatial

variability of extreme hydrologic events increases along with
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intensified land-atmospheric feedback (Dong & Sutton ;

Mishra & Singh ; Yeh et al. ). Therefore, better

drought forecasting under global warming requires nonsta-

tionary statistical modeling and dynamic models which

have low sensitivity to initial boundary conditions and

high resolution (Mishra & Singh ; Wood et al. ;

Hao et al. ; Mukherjee et al. ).

The reduced rhizosphere water content and increased

population of pests and pathogens under drought conditions

influenced by global warming affect the physiology of trees

which in turn leads to an increase in tree mortality and dev-

astation of ecosystems (McDowell et al. ; Allen et al.

; Berg & Sheffield ). The increase in tree mortality

rate, along with droughts under global warming, has led to

the increased possibility of reduction of forest worldwide,

as documented for forests of southern Europe and temperate

and boreal forests of western North America (Allen et al.

). van Nieuwstadt & Sheil () also found a relation-

ship between the El Niño Southern Oscillation (ENSO)

related drought and die-off of the tropical moist forests in

Borneo. Tree die-off can alter ecosystem structures (e.g.,

root biomass and canopy height), functions (e.g., biodiversity

and productivity), and fluxes (e.g., carbon sequestration and

cycling and water flux) (Anderegg et al. ). Therefore,

increased tree mortality changes regional climate and

lowers biodiversity, net primary productivity, and pro-

ductivity of commodities (Ciais et al. ; Bigler et al.

; McDowell et al. ). While the importance of under-

standing causative mechanisms of tree mortality under

drought conditions and environmental implications of tree

mortality has gained attention, poorly monitored data and

the stochastic nature of tree mortality have increased uncer-

tainty of forecasting of tree mortality (Anderegg et al. ).

Besides the effect of drought on tree mortality, land degra-

dation, which is caused by natural climate variability, and

anthropogenic activities on irrigation, can predispose trees

to die off by salinization which drives drought-like hydraulic

tree failure (Munns ; D’Odorico et al. ; Kath et al.

). Therefore, understanding of tree die-off caused by soil

degradation can explain extended tree mortality following

the termination of severe drought events.

This paper aims to synthesize forecasting methods of both

droughts and tree mortality, based on causative mechanisms

and implications of global warming. The next section covers
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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drought causative mechanisms and impacts of global warming

on the causative mechanisms. This is followed by sections on,

in sequential order, discussion of limitations and benefits of

drought forecasting methods, tree mortality causative mechan-

isms and forecastability of tree mortality under global

warming, effects of soil degradation on tree die-off, and discus-

sion of future prospects for forecasts of droughts and tree

mortality. The conclusion of this study is given in the last

section. The list of acronyms used in this study and comp-

lementary discussions of the causative mechanisms of

drought can be found in supplement file-1. Recent advances

in drought indices and their benefit and limitations and

more details related to drought forecast models are separately

discussed in supplement file-2.
CAUSATIVE MECHANISMS FOR DROUGHT

The atmospheric moisture deficit, which is mainly associated

with meteorological drought, is affected by the teleconnec-

tion of global SST anomalies and/or atmospheric internal

variability (Newman et al. ; Mo & Schemm ;

Hoerling et al. ; Sheffield & Wood ; Wang et al.

). In addition, land-atmospheric feedbacks can accelerate

the development or propagation of drought, once the meteor-

ological drought occurred (Cook et al. ; Sheffield &

Wood ; Hoerling et al. ; Williams et al. ). Drought

causative mechanisms, in reality, cannot be dichotomized

into quasi-periodic (contribution of SSTs) and less foreca-

stable components (effects of random atmospheric internal

variability and land-atmosphere feedback). However, to

understand the process of drought development, this study

divides the intertwined causative physical processes into

anomalies of SST, atmospheric internal variability, and

land-atmosphere feedbacks, and discusses each causative

mechanism and its interaction (Mishra & Singh ; Shef-

field & Wood ; Hao et al. ).

Anomalies of sea surface temperature (SST) and their

role

Since atmospheric flows are critical moisture supply

channels from oceans to inland areas, understanding of

how anomalies of SST force ocean-atmospheric circulation
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and regional hydroclimate are associated with drought is

important. The ocean-atmospheric dynamics, which are

induced by SST anomalies, are represented by ENSO,

Pacific Decadal Oscillation (PDO), North Atlantic

Oscillation (NAO), Arctic Oscillation (AO), Atlantic Multi-

decadal Oscillation (AMO), and Indian Ocean Dipole

(IOD) (Enfield et al. ; Newman et al. ; Mo &

Schemm ; Sheffield & Wood ).

ENSO is one of the most important driving forces which

modulates interannual climate variability across most of

the globe, including North America and South America,

Australia, India, east and south Africa, and Southeast Asia

(Sheffield & Wood ; Hao et al. ; Yeh et al. ).

The impact of ENSO on droughts is shown in Figure 1.

The mean of 3-month Standardized Precipitation-

Evaporation Index (SPEI3) for February and the mean of

9-month SPEI (SPEI9) for August were estimated across

the globe during ENSO’s warm (El Niño) and cold (La

Niña) years for the period of 1901–2006 (Figure 1; Beguería

et al. ). The differences between El Niño and La Niña

years are remarkable across most of the globe, and it is con-

firmed that ENSO has implications for the interannual

variation of local terrestrial water budgets.

The occurrence of ENSO is linked to the tropical Pacific

thermocline and the Walker circulation, which are modu-

lated by the east-west thermal gradient over the tropical

Pacific (Kumar et al. ; Sheffield & Wood ; Yeh
Figure 1 | Impact of ENSO on SPEI at the global scale: (a) Mean SPEI3 for February during El Niñ

years; and (d) same with (c) but during La Niña years (Beguería et al. 2010).

://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
et al. ). As El Niño matures, warm temperature in the

western tropical Pacific expands toward the east of the tropi-

cal Pacific, such that the location of occurrence of deep

atmospheric convection shifts to the central or eastern

tropical Pacific (Cai et al. ; Yeh et al. ). In contrast,

La Niña events mature by the process reverse of the El Niño

occurrence. During the El Niño event, the western tropical

Pacific has a subsided precipitation producing tendency,

such that Australia, East Asia, the Maritime Continent,

and east and south Africa, are prone to dryness (Schubert

et al. ; Hao et al. ). In addition, interactions of El

Niño along with IOD, PDO, and NAO have impacts on

the strength of teleconnection outward from tropical areas

and modulate the Indian monsoon and the East Asian mon-

soon which are critical moisture suppliers for India and

Southeast Asia, respectively (Kumar et al. ; Xiao et al.

). For droughts in North America, ENSO, PDO, and

AMO have salient implications (McCabe et al. , ;

Mo & Schemm ; Cook et al. ). Reduced winter

precipitation in the southwestern U.S. and the western

Great Plains have a significant correlation with La Niña

(Seager et al. ; Cook et al. ). The positive phase of

PDO impacts dryness (wetness) in the northwestern (south-

western) U.S. (McCabe & Dettinger ; Cook et al. ).

The positive phase of the AMO induces dryness in the Mid-

west and southwest of the U.S. (Enfield et al. ; Sheffield

& Wood ). However, the level of significance of
o years; (b) same with (a) but during La Niña years; (c) Mean SPEI9 for August during El Niño
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ocean-atmospheric teleconnection to the U.S. is influenced

by the combined effect of ENSO, PDO, and AMO which

have different periodic spans, such as interannual, decadal,

and multidecadal, respectively (McCabe & Dettinger ;

Enfield et al. ; Dong et al. ; McCabe et al. ).

The variability of ENSO (i.e., amplitudes and asymmetry

of El Niño and La Niña) are affected by SST anomalies of

the North Atlantic Ocean via atmospheric and oceanic

teleconnection (Dong et al. ; Dong & Sutton ).

The negative SST anomaly over the tropical North Atlantic

Ocean shifts the Atlantic intertropical convergence zone

(ITCZ) southward and develops an anticyclonic circulation

over midlatitude North Atlantic Ocean and increases north-

east trade winds (Dong & Sutton ). As a consequence,

interhemispheric SST dipole becomes prominent and, in

turn, the east Pacific Ocean shows similar dipole patterns

(cold and warm SST for the northern and southern hemi-

sphere, respectively) such that northeasterly winds are

reinforced (Dong & Sutton ; Yeh et al. ). The north-

easterly wind anomalies shift the center of atmospheric deep

convection over the tropical Pacific Ocean and contribute to

the change in the Rossby waves which affect weather

conditions by shifting midlatitude storm tracks, and modu-

late the ENSO teleconnection to regions outside of the

tropics (McCabe & Dettinger ; Dong & Sutton ;

Yeh et al. ). Therefore, during the cold phase of the

North Atlantic Ocean, the El Niño teleconnection may be

weakened and may show less significant correlation with

precipitation in inland areas. Furthermore, PDO also

modulates the strength of ENSO teleconnections by reinfor-

cing El Niño (La Niño) anomalies when PDO is in a warm

(cold) phase (McCabe & Dettinger ; Yeh et al. ).

Although PDO or AMO themselves correlate with

precipitation at decadal-to-multidecadal time scales, their

interplay with ENSO may provide additional clues to under-

stand the SST teleconnection to hydroclimate and improve

drought forecasting skills (Hoerling et al. ). However,

since the strength of SST teleconnection varies as global

mean temperature increases, an understanding of the poten-

tial change in SST teleconnections under climate change

will provide clues to improve drought forecasting methods.

Therefore, we discuss details on the implications of

global warming on SST teleconnection in Appendix 1B of

supplement file-1. Since land-atmospheric feedback and
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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internal atmospheric variability contribute to drought

occurrence and its development, we will discuss their

impacts on drought in the following section.

Land-atmospheric feedback and internal atmospheric

variability and their role

Land-atmospheric feedback

Aerosols (e.g., dust, sea salt, and volcanic ash) and land

surface changes affect the weather and climate of the

Earth by aerosol-radiation interaction (ARI) mechanism

(Cook et al. ; Li et al. ): When wind-blown dust aero-

sols are amplified with increases of bare soil, the aerosols

directly reflect incoming shortwave solar radiation and

reduce the downwelling energy reaching the terrestrial sur-

face, such that the energy deficit is magnified (Donohoe &

Battisti ; Cook et al. ). The increased energy deficit

stabilizes the land-atmospheric dynamics and, in turn, the

dry condition is prone to occur by inhibited convection

(Cook et al. ). The iconic drought event related to

land-atmospheric feedbacks is the Dust Bowl drought of

the 1930s across the central U.S. Great Plains (Cook et al.

, ; Sheffield & Wood ). The Dust Bowl drought

was initiated with below-normal precipitation caused by the

La Niña event and, in turn, the drought-sensitive crops were

withered at the early stage of the drought and the farmland

was degraded into barren which is easily eroded by winds

(Worster ; Cook et al. ).

Cook et al. () disclosed land-atmospheric feedback

mechanisms through the Dust Bowl drought. They assessed

the effects of each isolated factor (SST, Crop failure

(hereafter Crop), and Dust amplification (hereafter Dust))

on precipitation and temperature that were hindcasted by

the Goddard Institute for Space Studies atmospheric general

circulation model (GCM) (GISS ModelE) for the period of

1932–1939. Anomalies of the hindcasted precipitation and

temperature, which were affected by the isolated factors,

were compared with anomalies of Climate Research Unit

Time-Series version 2.1 (CRU TS2.1) considered as true

observation (Figures S1-1 and S1-2 in Appendix 1C of

supplement file-1). Adding a single factor (Crop or Dust)

to SST could not reproduce the patterns of precipitation

and temperature of the Dust Bowl drought, but adding all
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the factors mimicked those well (for details, see Appendix

1C in supplement file-1). For more details on the effects of

land-atmospheric feedback mechanisms for the Dust Bowl

drought, reference is made to Cook et al. ().

The land-atmospheric feedback mechanisms explained

for the Dust Bowl drought might be applicable for the Med-

ieval Climate Anomalies (circa 1,100–1,500 Common Era)

which caused megadrought (lasting for a decade or multide-

cade) in the western North and central Great Plains (Cook

et al. , , ). The paleoclimate showed that the

dune mobility and continuous changes of land geomorphol-

ogy occurred due to the destabilized soil, implying complete

loss of vegetation during that era (Cook et al. , ).

Internal atmospheric variability

Drought can be more severe and more prolonged due to

internal atmospheric variability which shifts the location of

jet stream and mid-latitude storm tracks and affects zonal

atmospheric anomalies (Harzallah & Sadourny ; Liu &

Alexander ; Wang et al. ). A Rossby wave, known

as an atmospheric bridge, is initially formed by SST

anomalies and propagates energy waves from west to east

inside wave guards/boundaries by meandering between

ridge and trough of atmospheric pressure (Figure S1–3(b) in

Appendix 1D of supplement file-1) (Hoskins & Ambrizzi

; Wang et al. ). The atmospheric internal variability

can amplify the Rossby wave and elongate its persistence.

The extreme drought in California during 2013–2014 was

caused by the shifting of the jet stream to the north and block-

ing of moisture flow into the west coast of the U.S due to the

long-lasting ridge, which was caused by the abnormal Rossby

wave over the eastern Pacific (for details see Appendix 1D in

supplement file-1). As a consequence, it led to the lowest pre-

cipitation amounts, which were around 10% of the normal

(the ratio to the climatology; right-side map of Figure S1–

3(b) in Appendix 1D of supplement file-1), in the last 119-

year observations and caused the extreme drought event in

California (Seager et al. ; Swain et al. ; Wang et al.

; Wang & Schubert ; Williams et al. ).

Based on the causative mechanisms of drought reviewed

thus far, it is expected that skillful drought forecasting can be

accomplished by answering the questions as follows: How

significantly the correlation between SST teleconnections
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
and hydroclimate variables in inland areas is established;

how the nonlinear or chaotic nature of internal atmospheric

variability can be incorporated in forecasting models; and

how accurately land-atmosphere feedback can be simulated

by hydrological or land surface model. Besides, understand-

ing the causative mechanisms of drought and implications of

global warming for them suggests the nonstationary nature

of drought into drought forecasting.
DROUGHT FORECASTING METHODS

Before discussing drought forecasting methods, drought

quantification methods, developed during the last decades,

are synthesized, and their advantages and limitations are dis-

cussed (See Appendix 2A of supplement file-2). Drought

forecasting has its foundation in establishing a significant

relationship between drought and drought indicators

and/or finding seasonal or periodic patterns of drought

(Hao et al. ). When we consider the nonstationarity of

drought under global warming discussed in previous sec-

tions, it is expected that drought forecasting methods need

to consider the non-static drought causative mechanisms.

Some issues in considering drought mechanisms into model-

ing frameworks are discussed in Appendix 2B of supplement

file-2. Although various statistical, dynamical, and hybrid

drought forecasting models have been developed, the ability

of forecasting models to consider the evolutionary drought

causative mechanisms and chaotic atmospheric variation

is still a question (Mishra & Singh ; Hao et al. ;

Fung et al. ). Since drought is characterized by its sever-

ity, duration, interarrival time, and areal extent, how well

forecasting models forecast the characteristics of drought

is a key to successful drought mitigation planning (Mishra

& Singh ). Temporal aspects of drought characteristics,

such as severity, duration, and interarrival time, can be quan-

tified by applying the theory of runs (Yevjevich ; Kendall

& Dracup ; Mishra & Singh ). The areal extent of the

temporal aspects of drought characteristics is estimated by

spatial interpolation (Akhtari et al. ). When, on the

other hand, the regionalization of a drought index is already

accomplished by using a climate model and a distributed

hydrological model, the theory of run can be applied to

each cell/grid to define drought characteristics therein
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(Rajsekhar et al. ). From the perspective of forecasting

drought characteristics, methodological approaches can be

distinguished into two frameworks: (1) to use directly histori-

cal observations of severity and drought occurrence in the

forecasting process (hereafter referred to as prior-application

of the theory of runs), and (2) to apply the theory of runs after

forecasting drought index (hereafter referred to as post-appli-

cation of the theory of runs). Therefore, we synthesize

drought forecasting methods, including stochastic (to empha-

size models of probabilistic nature), statistical, dynamical,

and hybrid models, in these two forecasting frameworks.

Prior-application of the theory of runs

The theory of runs differentiates drought conditions into two

states (dry and wet conditions) or multiple states (e.g., severe

drought, moderate drought, normal, moderate wet, and

severe wet) based on the number of thresholds one applies

(Lohani & Loganathan ; Chung & Salas ; Mishra

et al. ; Hao et al. ). Figure S2-1 in Appendix 2C of

supplement file-2 depicts temporal aspects of drought

characteristics after applying the theory of runs (see details

in Appendix 2C of supplement file-2). Several stochastic

models have been widely used in this forecasting approach.

Markov chain (MC) models (Lohani & Loganathan ;

Cancelliere et al. ; Avilés et al. ), and discrete auto-

regressive moving average (DARMA) models (Chung &

Salas ) have been widely used to forecast duration

and interarrival time for drought early warning. The alter-

nating renewal-reward (ARR) model (Kendall & Dracup

; Mishra et al. ) can be used to forecast duration,

interarrival time, and severity simultaneously.

Stochastic drought forecasting models

Markov chain (MC) models. Stochastic evolution of counta-

ble states (two states or multiple states) is simulated by MC

models governed by the transition probability matrix

(Lohani & Loganathan ; Avilés et al. ). MC

models forecast the state of the next time (Stþ1) by

depending on the current known state (St) in the case of

first-order MC (Lohani & Loganathan ). Therefore, the

transition probability is represented by a conditional

probability. The mathematical expression of MC models
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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can be found in Appendix 2D of supplement file-2. The

MC model can be extended to the higher-order model

which can depend on the current and previous times (i.e.,

second-order MC) (Avilés et al. ; Hao et al. ).

Lohani & Loganathan () forecasted the state of drought

at the 4-month lead time by using monthly PDSI such that

drought onset, termination, or persistence can be inferred

with the probability of its occurrence. They used a non-

homogeneous first-order MC model to consider monthly

variation or cyclic patterns of PDSI, and decision tree analy-

sis to track the transition of drought from the current to the

target month. The forecasted drought occurrences were

coincident with the observed drought events. Avilés et al.

() used an Aggregate Drought Index (ADI), which com-

bines multiple hydrologic variables by using principal

component analysis (PCA), in the first-order and the

second-order MC models. They also used decision tree

analysis and forecasted drought state for 3 months (DJF)

that has the highest frequency of drought occurrence in

the Chulco River basin in southern Ecuador. The second

(first)-order MC models showed 47% (30%) of the hit rate,

and both models had a false alarm rate of less than 10%.

However, the estimation of the transition matrix is

significantly affected by the length of observation due to

too insufficient samples to reliably estimate the frequency

of transitions, especially for multistate drought (Cancelliere

et al. ). In this context, Cancelliere et al. () esti-

mated the transition matrix using an analytical method

based on the autocovariance of Standardized Precipitation

Index (SPI) and compared it with the empirically estimated

transition matrix. They showed that the analytically-driven

transition matrix resulted in better forecasting than the

empirically-driven one. Besides, MC models use a short-

term dependency which, in turn, may lose long-term self-

dependency of drought (Chung & Salas ).

Discrete autoregressive moving average (DARMA) models.

Most of the hydrologic variables, which have sub-annual

temporal scales, show a certain degree of autocorrelation

which, in turn, makes MC models ineligible (Chung &

Salas ). However, Discrete Autoregressive Moving

Average (DARMA) models can be used for drought

forecasting even when an ordinal time series is highly auto-

correlated (Jacobs & Lewis ; Chung & Salas ;
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Sharma & Panu ). As a discrete version of autoregressive

moving average (ARMA) models, DARMA models consider

the persistence of time series of ordinal variables (e.g.,

drought¼ 0 and wetness¼ 1 which are defined by cutting

off a drought index at a designated threshold) such that dur-

ation and its reliability are forecasted (Chung & Salas ;

Cancelliere & Salas ; Sharma & Panu ). Low-order

DARMA models have been used in drought forecasting. The

mathematical theory of DARMA is explained in Appendix

2D of supplement file-2.

Chung & Salas () forecasted occurrence times and

interarrival times of droughts which have different durations

varying from 1 to 12 years for the Niger River at Koulikoro

in Africa and the South Platte River at Denver in the U.S.

When the duration length is greater than 5 years, the esti-

mated drought occurrence probability and interarrival time

significantly deviate from historical observations due to

not enough sub-samples for reliable historical estimation.

Sharma & Panu () estimated the transition probability

matrices by using empirical and Discrete Autoregressive

(DAR) (1) methods and then forecasted drought duration by

using the first-order and second-order MC models. They

showed that the second-order MC models with DAR (1) fore-

casted drought duration at the monthly time scale better than

the first-order of MC models with the empirical transition

probability matrix. Based on Sharma & Panu (), it is high-

lighted that the self-dependency of the truncated drought

index is not a negligible factor in forecasting drought duration.

Alternating renewal-reward (ARR) model. While MC and

DARMA models have been used in forecasting drought dur-

ation, occurrence time, and interarrival time, realizing

mutual correlation among duration, interarrival time, and

severity alludes to the need for forecasting all drought charac-

teristics simultaneously (Mishra et al. ). The ARR model

is capable of forecasting occurrence time, duration, interarri-

val time, and severity simultaneously (Kendall & Dracup

; Mishra et al. ). The ARR model considers duration

and severity as random variables and, in turn, fits durations

and severities of the predefined frequent durations by geo-

metric and gamma distributions, respectively (Kendall &

Dracup ). Therefore, once a drought event starts

with randomly sampled duration, D, from a geometric distri-

bution, drought severity is estimated by aggregating D times
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
randomly sampled drought index values from a gamma

distribution. Kendall & Dracup () showed that the one-

step-ahead estimated mean, standard deviation, and autocorre-

lation coefficient from the ARR models are close to those of

observations. In addition, the estimated frequency of severe

drought events is not underestimated. However, the prominent

issue with the ARR model is caused by the insufficient sub-

sample number of durations and severities when those are

fitted to probability distribution functions (Kendall & Dracup

). In this context, González & Valdés () used historic

and tree ring paleo reconstruction data in the ARR model.

The parameters of MC, DARMA, and ARR models are

estimated, based on the observations of the truncated

drought index values under the assumption of stationarity.

Therefore, they may not successfully forecast drought

characteristics under global warming.

Post-application of the theory of runs

Since some of stochastic models and most of the statistical,

dynamical, and hybrid models handle continuous variables,

drought duration, interarrival time, and severity can be

inferred simultaneously by applying the theory of runs

after a drought index is forecasted. Therefore, how accu-

rately peaks, trend, and variability of a drought index are

forecasted at different lead-times is important in this

approach. In this context, we synthesize drought forecasting

methods in four broad categories: stochastic, statistical,

dynamical, and hybrid statistical-dynamical modeling.

Stochastic drought forecasting models

Conditional probability models. Conditional probability

models forecast future values conditioned on self-correlated

or/and cross-correlated variables (Hao et al. c, ).

The joint probability distribution, which is inherently associ-

ated with a conditional probability model, represents the

relationship between predictors and predictand. Since

conditional probability models can easily incorporate

nonlinearly related variables into forecasting, these models

have been widely used in a wide range of hydroclimate

studies, including drought forecasting (Cancelliere et al.

; Maity & Nagesh Kumar ; Wong et al. ;

Araghinejad ; Khedun et al. ; Hao et al. c,
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). Prediction using the conditional probability model is

conceptually equal to the probability distribution of the fore-

casted value such that the conditional probability model

provides the expectation and its variance (Cancelliere et al.

) (see mathematical expressions in Appendix 2D of

supplement file-2). Therefore, it facilitates the quantification

of uncertainty of prediction (Hao et al. c).

For example, Hao et al. (c) forecasted Standardized

Runoff Index (SRI) in Texas by using SRI and SPI in

previous time steps as predictors in a conditional probability

model. The forecast skill was compared with Ensemble

Streamflow Prediction (ESP) as a baseline drought

prediction. Although variable correlations between SRI and

antecedent SPI caused seasonal and regional variation in

forecasting skill, the overall performance of the conditional

forecasting method outperformed ESP. However, its forecast-

ing accuracy and reliability reduced as lead-time increased.

Once SRI was forecasted, the probability of occurrence of

drought, which had more severity than the moderate drought

(e.g., �0.8), was calculated. They also showed that the esti-

mated high probability of drought occurrence agreed well

with the historical drought events in the case of a 1-month

lead-time. However, conditional probability models, as any

other data-driven forecasting models, explore serial depen-

dence and cross-correlation based on only observed data.

Therefore, to improve forecasting accuracy and reliability

and reflect the nonstationarity of drought into the model,

long historical observations of predictand and predictors

are required.

To build the joint probability distribution, it is necessary

that predictand and predictors have common marginal distri-

butions. However, when incorporating a large number of

predictors, this requirement is not always satisfied and estab-

lishing a dependence structure is difficult in high dimensions

(Hao & Singh ; Hao et al. ). To compromise the

issues in high dimensions, the vine copula method can be

used due to its flexibility in handling dependence structures

(Joe ; Hao & Singh ; Hao et al. ).

Copula models. The mutual dependence among drought

characteristics requires multivariate analysis for drought

risk analysis and drought forecasting (Mishra & Singh

; Zhang et al. ; Reddy & Singh ; Xiao et al.

). Since drought occurrence and propagation are related
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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to the ocean-atmospheric teleconnection and initial hydrolo-

gic conditions, drought forecasting can be implemented by

using joint distribution models (Hao et al. c). AghaKou-

chak () forecasted drought using the Multivariate

Standardized Drought Index (MSDI) based on the joint

distribution of precipitation and soil moisture (SM), and

forecasting was done using ESP over East Africa. The fore-

casted MSDI with ESP showed that the accuracy of

forecasts was acceptable up to a 4-month lead-time but

was critically affected by initial conditions and climate of

the target month. However, different hydroclimate variables

may have marginal distributions belonging to different

families such that the conventional joint distribution

models may not successfully mimic the dependence struc-

tures (Mishra & Singh ; Khedun et al. ; Madadgar

& Moradkhani ). Copula models, which build depen-

dent relationships among d (the number of variables)

variables using their copula function in the d-dimensional

unit hypercube with the uniform distributions, are not lim-

ited to the type of marginal distributions (Grimaldi &

Serinaldi ; Khedun et al. ; Zhang & Singh ).

Therefore, copula models have been widely adopted to fore-

casting precipitation and streamflow (Lee & Salas ; Hao

& Singh ; Khedun et al. ), besides their application

to developing drought index and multivariate drought (e.g.,

severity-duration-areal) frequency analysis (Wong et al.

; Hao & AghaKouchak ; Yang et al. ; Zhang

& Singh ).

Since copula models have various families, finding the

optimal copula model and estimating parameters of copula

functions are important. The procedure to fit marginal

distribution functions and estimate the optimal parameters

of copula functions can be found in Appendix 2D of

supplement file-2.

Copula models have been used to forecast drought index

and occurrence/transition of drought state in terms of

temporal and spatial extent (Madadgar & Moradkhani

, ; Xiao et al. ; Dehghani et al. ). For

example, Madadgar & Moradkhani () forecasted one-

season-ahead drought (spring streamflow conditioned on

winter drought state) using 3-month aggregated streamflow

fitted to the Gaussian copula for the Gunnison River basin

of the upper Colorado River basin in the U.S. The forecasted

streamflow outperformed ESP (as a benchmark method)
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and observed streamflow fell inside an estimated 90%

confidence interval. Based on the forecasted streamflow

and confidence interval, they could forecast a drought state

and its occurrence probability. Madadgar & Moradkhani

() was successfully extended to forecast seasonal drought

and its occurrence probability in the spatial extent by

Madadgar & Moradkhani (). Dehghani et al. () prob-

abilistically modeled the propagation of meteorological

drought to hydrological drought or normal to wet conditions

using the Clayton copula, which belongs to the Archimedean

copula family, for Karun River basin in the southwest Iran.

Besides the forecasting of drought indicators/indices,

copula models can also forecast the transition of drought

state with its occurrence probability, so practitioners can

decide whether drought will be getting more severe or termi-

nate at a certain level of confidence in the next season and

have benefit in managing water resources. Copula has also

been widely used in drought analysis (e.g., Thilakarathne

& Sridhar ; Montaseri et al. ; Ayantobo et al. ;

Samantaray et al. ). For example, Thilakarathne & Srid-

har () analyzed drought risk in the Lower Mekong River

basin by using the Gumbel-Hougaard copula for trivariate

distributions of severity, duration, and peak which were

driven from 3-month SPI. However, copula models also

require the stationarity assumption for fitting marginal distri-

butions and estimating parameters of copula functions.

Therefore, copula models may not fully reflect nonstationar-

ity embedded in drought signals or drought indicators.

Statistical drought forecasting models

Statistical forecasting methods utilize persistent and peri-

odic characteristics of drought index and/or statistically

significant covariation between drought index and drought

indicators (Cordery & McCall ; Mishra & Singh ;

Hao et al. ). However, to forecast drought in a skillful

manner, finding predictors, which can explain a greater per-

centage of variability of predictand, is important (Cordery &

McCall ). Since drought is attributed to multiple hydro-

climate variables and various frequency bands of SST

anomalies, a wide range of drought indicators with long

enough observation periods are required. When multiple

predictors have multicollinearity, authentic relationships

between predictors and predictand are deluded by
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
redundant predictors (Graham ). To avoid problems

caused by multicollinearity, the PCA and canonical corre-

lation analysis (CCA) can be used to reduce the

dimensionality of multiple predictors (Hao et al. ).

Since each statistical model has a distinct way to apply pre-

dictors to forecasting processes, we discuss the widely used

statistical models, including time series models, regression

models, and machine learning models.

Time series models. Time series models forecast future data

values by linearly aggregating previously observed values

based on weights for least squares estimation (Mishra &

Desai ; Shumway & Stoffer ). Autoregressive Inte-

grated Moving Average (ARIMA) is a representative time

series model. While ARIMA is proposed for non-seasonal or

non-periodic time series, the multiplicative seasonal ARIMA

(SARIMA) can be used when the time series has seasonal

cyclic patterns (Mishra & Desai ; Fernández et al. ).

The mathematical theory of ARIMA and SARIMA can be

found in Appendix 2D of supplement file-2.

ARIMA and SARIMA are the generalized versions of

ARMA to forecast nonstationary time series (Mishra &

Desai ; Hao et al. ). While regular differencing in

ARIMA relaxes the drift term in time series, SARIMA has

both regular and seasonal differencing terms to relax trend

and seasonal cyclic patterns.

Moghimi et al. () forecasted seasonal drought based

on the 3-month RDI (RDI3) by using subsets of ARIMA

models (e.g., autoregressive (AR), moving average (MA),

and ARMA) for 16 synoptic stations in the south of Iran

and showed the applicability of ARIMA models in forecast-

ing droughts. Mishra & Desai () forecasted SPI by using

ARIMA and SARIMA in the Kanasabati River basin in

India. They showed statistical similarities of mean and

variance of observed and forecasted data at a 1-month

lead-time. The coefficient of correlation (CC) reduced as a

lead-time increase. Han et al. () used ARIMA for fore-

casting the forthcoming 10-day period of Vegetation

Temperature Condition Index (VTCI) for the Guanzhong

Plain in the northwest of China. Since they used spatiotem-

poral data, ARIMA models were fitted at each pixel and, in

turn, the spatial extent of forecasted VTCI and its error were

easily estimated. Consequently, they showed 65.7% of fore-

casted data had a mean standard error between �0.1 and
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0.1. Since ARIMA uses only the self-dependency nature of

the drought index itself, it has limitations in considering

the land-atmospheric feedback in drought occurrence and

development. The importance of using explanatory variables

was highlighted by Fernández et al. (). They forecasted

Standardized Streamflow Index (SSFI) by using the ARIMA

model incorporating Martonne index expressed as a ratio of

precipitation to temperature as an explanatory variable to

the predictand. As a result, the model showed an improved

root mean square error (RMSE) when compared with the

RMSE of the conventional ARIMA model. Besides, non-

linear relationships and time-dependent feedbacks between

drought indicators, which are important to estimate drought

occurrence, may be easily ignored in time series models

(Hao et al. ; Fung et al. ). Machine learning

models are appropriate to consider nonlinear relationships

between predictors and predictand due to their inherent

nonlinear nature (Fung et al. ).

Regression models. Various regression models have been

used in a wide range of hydro-climatology and water man-

agement studies (Cordery & McCall ; Adamowski

et al. ; Hao et al. a, b, ; to name a few).

Multivariate regression models forecast unobserved values

based on covariation between observed predictand and pre-

dictors and hypotheses of temporal and spatial dependency

in predictand and predictors.

In forecasting drought index as a predictand, predictors

may be any of the drought indicators, such as ENSO, PDO,

precipitation, streamflow, and soil moisture, as long as they

have a significant correlation with the predictand (Kumar &

Panu ; Liu & Juárez ; Barros & Bowden ). For

example, Liu & Juárez () forecasted monthly Normal-

ized Difference Vegetation Index (NDVI) from 1951 to

1998 for a 4-month lead-time in northwest Brazil using var-

ious ENSO indices, including Niño-3.4, Southern

Oscillation Index (SOI), Dipole 2, North Atlantic Sea Sur-

face Temperature (NATL), and South Atlantic Sea Surface

Temperature (SATL). They showed that the model accu-

rately forecasted seasonal drought and drought

occurrence. Since forecasting NDVI efficiently displays the

spatial extent of drought truncated below a specified

threshold, it can replace drought indicators that suffer

from spatial sparsity. Barros & Bowden () forecasted
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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12-month SPI (SPI12) across the Murray-Darling basin,

Australia, by using predictors, including SST anomalies

across the Indian and Pacific oceans, a zonal gradient of

outgoing longwave radiation (OLR) over the Pacific

Ocean, and far western Pacific wind-stress anomalies.

Although 12-month lead-time forecasting of the spatially

averaged SPI12 showed a high level of accuracy, spatial

errors were large in the area which had high regional vari-

ations of rainfall but had a low density of rainfall gauges.

Besides, the uncertainty of forecasts increases when more

redundant predictors are used in the model. Therefore, find-

ing predictors, which increase fitness to observations and

reduce uncertainty, is an important element in the multiple

linear regression (MLR) model. When predictand values are

an ordinal variable like drought categories of the U.S.

Drought Monitor (USDM), Hao et al. (a, b) used

the ordinal regression (OR) model to forecast drought cat-

egories by using predictors, including 6-month SPI (SPI6),

3-month SRI (SRI3), and 3-month running mean of soil

moisture percentile (SMP). Since OR uses the logit function,

which links forecasted continuous variable by MRL to the

non-exceedance probability of corresponding specified

drought category, it allows one to forecast categorical obser-

vations (Hao et al. a, b, ).

Although ENSO related variables, such as SST

anomalies, geopotential height, and SOI, are associated

with drought occurrence and variability of precipitation, it

may not have concurrent effects on the hydroclimate in

inland areas but may show time lag effects on the predictand

(Cordery & McCall ). Therefore, the linearity between

predictors and predictand is less able to capture physical

mechanisms such that long-term forecasting may not be

successful (Mishra & Singh ; Hao et al. c). A piece-

wise nonlinear regression model can be used to consider the

nonlinear relationship between predictors and predictand,

and forecast nonstationary drought index by partitioning

the time series (Mohseni et al. ; Vanli & Kozat ).

Although piecewise nonlinear regression has been

applied to forecast drought under global warming, partition-

ing is a subjective matter and the representative slope

governing predictors-predictor relationship is not derived

(Mohseni et al. ). In addition, to capture nonstationarity

and periodicity of time series, long historical observations

are required (Barros & Bowden ). As machine learning
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models have gained attention due to their effective non-

linear representativeness, stand-alone machine learning

models or machine learning (e.g., Self-Organizing Map

(SOM)) coupled with multivariate regression models have

been used to improve forecasting skill (Barros & Bowden

; Lin & Wu ). Therefore, the popularity of a

stand-alone regression model for drought forecasting has

been reduced (Fung et al. ).

Machine learning models. Nonlinear relationships and

temporal dependencies (lag effects) between hydrologic

variables have posed limitations on statistical models that

have the hypothesis of linearity (Cordery & McCall ;

Mishra & Singh ; Hao et al. ). However, machine

learning models successfully find nonlinear patterns

between predictors and predictand due to their learning

capability stemming from their model structure and non-

linear functions in neurons (Mishra & Singh ;

Belayneh & Adamowski ; Hao et al. ). Therefore,

machine learning models, including Artificial Neural Net-

works (ANNs), Fuzzy-Logic (FL), and Support Vector

Machines (SVMs), have been applied to various studies

related with pattern classification and forecasting (Kim &

Valdés ; Mishra & Desai ; Mishra et al. ;

Bacanli et al. ; Belayneh & Adamowski ; Özger

et al. ; Hao et al. ). Structures and traits of machine

learning models (i.e., ANNs, FL, and SVMs) are discussed in

Appendix 2D of supplement file-2.

To improve drought forecasting skills of machine learn-

ing models, wavelet transform is integrated into Fuzzy-Logic

(Wavelet-FL), ANNs (Wavelet-ANNs) and SVMs (Wavelet-

SVMs) (Kim & Valdés ; Özger et al. ; Belayneh

et al. ; Deo et al. b). The wavelet transform decom-

poses time series into each frequency band and eliminates

noise, such that signals which have significant frequencies

can be selectively used in drought forecasting. Kim &

Valdés () applied Wavelet-ANNs in forecasting PDSI

for the Conchos River basin of northern Mexico. They

showed that data preprocessing with wavelet transform

improved the forecasting accuracy (RMSE and hit rates)

for varying lead-time (from 1 to 12 months) compared with

conventional ANNs. As one expects, however, the forecast-

ing accuracy degrades as a lead-time increases. Özger et al.

() applied Wavelet-FL to forecasting the Palmer modified
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
drought index (PMDI) and showed that Wavelet-FL

forecasted acceptable accuracy with a coefficient of determi-

nation of 0.8 at a 12-month lead-time. Belayneh et al. ()

applied ARIMA, ANN, support vector regression (SVR),

Wavelet-ANNs, and Wavelet-SVMs for the forecasting of

SPI in the Awash River basin in Ethiopia. They showed

that the machine learning models outperformed the time

series model and the preprocessing of data using wavelet

transforms increased the forecasting accuracy compared

with conventional machine learning models.
Dynamical drought forecasting models

Near-real-time drought forecasting or early warning has

been implemented by using coupled general circulation

models (CGCMs) which can enable future climate projec-

tions based on ocean-atmosphere-land physical processes

(Delworth et al. ; Yuan & Wood ). To forecast cli-

mate and weather, CGCMs have been used by a wide

array of climate forecast systems, such as National Centers

for Environmental Prediction (NCEP) Climate Forecast

System Version 2 (CFSv2), Canadian Coupled Climate

Model Versions 3 and 4 (CanCM3, CanCM4), and Euro-

pean Center for Medium Range Weather Forecasting

(ECMWF) seasonal forecast system 4 (SYS4) (Molteni

et al. ; Yuan & Wood ; Saha et al. ). While stat-

istical forecasting models forecast future climate or drought

in the range of observed values and suffer from reflecting the

nonstationary nature of climate systems, climate models

based on CGCMs are relaxed from those limitations. How-

ever, climate models have systematic biases and coarse

spatial resolutions and are largely influenced by initial con-

ditions as well (Doblas-Reyes et al. ; Hao et al. ;

Krinner & Flanner ). To forecast reliable agricultural

and hydrological droughts, terrestrial water budgets with

the least errors and fine resolutions should be estimated by

hydrological models forced by climate models (Wanders &

Wood ). Therefore, to improve the performance of dyna-

mical drought forecasting models, climate models are

required to be post-processed. We will discuss how climate

models are post-processed for improving forecasting skills

in Appendix 2E of supplement file-2. Then limitations of

multimodel ensemble forecasts and dynamical forecasting
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models coupling hydrologic models with climate models are

discussed in the following subsections.

Multimodel ensemble forecast. Increases in the understand-

ing of climate systems and additional observations (e.g.,

remote sensing measurements) enable better forecasting

from climate models. However, their forecasts of tempera-

ture and precipitation for extratropical areas are not

satisfactory due to the unrevealed chaotic nature of complex

ocean-atmospheric circulation systems (Kumar et al. ;

Yuan & Wood ). Furthermore, climate forecasts from

an individual climate model are sensitive to initial con-

ditions of oceanic or atmospheric state (Doblas-Reyes

et al. ). Beyond the bias correction and downscaling

methods mentioned in Appendix 2E of supplement file-2,

the inter-model integration approach, which is referred to

as the multimodel ensemble, has been adopted to improve

sub-seasonal to annual climate forecasting (Palmer et al.

; Kirtman et al. ; Wanders & Wood ).

Multimodel ensemble models aim to compensate for

errors of individual climate models and quantify uncertain-

ties by merging multiple climate models with different

initial conditions. North American Multimodel Ensemble

(NMME) (Kirtman et al. ) and the Development of a

European Multimodel Ensemble System for Seasonal-to-

Interannual Prediction (DEMETER) system (Palmer et al.

) are representative multimodel ensemble forecasting

systems. To improve multimodel ensemble forecasting,

besides simple ensemble mean, weighted ensemble mean

using step-wise regression or multiple regression, and Baye-

sian Modeling Averaging (BMA) have been applied

(Krishnamurti et al. ; Ma et al. ; Wanders &

Wood ). Whereas different ensemble weighing methods

result in different degrees of gain in climate forecasting

skills, it can be generalized that multimodel ensemble

models outperform any other single climate model. Besides,

multimodel ensemble models show statistically significant

forecasting skills for 1 to 2 months of lead-time (Mo &

Lyon ). However, a challenge that remains in multimo-

del ensemble is to increase its forecasting skill. Lorenz

et al. () explained the low forecasting skills of the

Climate Forecasting System (CFS) of NMME by pointing

out a significant increase in the accuracy of drought fore-

casts when replacing the forecasted CFS with observed
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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variables when the probability of USDM intensification is

forecasted.

Multimodel ensemble models enhance the forecasting of

drought onset and enable probabilistic drought forecasts

compared to single climate models. However, it was also

found that an increase in the hit rate (increase in detectabil-

ity) accompanied an increase in the false alarm rate

(decrease in reliability) (Yuan & Wood ). Turco et al.

() evaluated the forecast accuracy and reliability of

ECMWF SYS4 for drought (SPEI6) in August from 1981

to 2010 across Europe. The ECMW SYS4 forecasted the

spatial patterns of SPEI6 and drought occurrence conditions

(e.g., from extreme to normal) close to the observations up

to a 2-month lead-time. Although the CC reduces as a

lead-time increases, it showed greater than 0.6 of median

up to a 2-month lead-time. Besides, the probability of

forecast of drought occurrences, which are less than �0.8

of SPEI, was less than the observed one. The hit rate, in gen-

eral, is greater than the false alarm rate but an increase in

the false alarm rate along with an increase in the hit rate

is detected as well. Forecasting skills of dynamical models

are strongly affected by the strength of ENSO teleconnec-

tion and climate models are likely to over-represent the

SST-drought relationship (Cohen & Jones ; Yuan &

Wood ). Therefore, the asymmetric behavior between

detectability and reliability might be caused by internal

atmospheric variability and less nonlinear SST-drought

relationship in climate models (Yuan & Wood ; Mo &

Lyon ). Furthermore, the global drought onset detect-

ability by multimodel ensemble is ∼30% on average

(Yuan & Wood ). Therefore, ‘whether seasonal forecast-

ing of drought onset at regional scales is essentially a

stochastic forecasting problem’ is an open question (Yuan

& Wood ).

Coupling hydrological models for drought forecasting. Soil

moisture, streamflow, and groundwater level are important

drought indicators for agricultural and hydrological drought

forecasting (Hao et al. ). Based on the long memory

span of drought indicators, the ESP method can be used

for their forecasting. The ESP implements a hydrologic

model by forcing it with randomly sampled atmospheric for-

cings (e.g., precipitation, temperature, and wind speed) (Day

; Shukla et al. ; Hao et al. ). However, the
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forecasting skill of ESP generally loses its statistical signifi-

cance after a 1-month lead-time. A fallback method then

uses forecasts from climate models/multimodel ensemble

method to drive hydrologic models or crop growth simu-

lation models, including the Variable Infiltration Capacity

(VIC) model, the Soil & Water Assessment Tool (SWAT),

and the Community Land Model (CLM) (Mo & Lettenmaier

; Shafiee-Jood et al. ; Yuan et al. ; Infanti & Kirt-

man ). In a recent study, Sehgal et al. () and Sehgal

& Sridhar () evaluated the accuracy of water budget and

drought indices (percentile of surface and total soil moist-

ure) which were forecasted by using SWAT with the input

of NCEP CFSv2 for the South Atlantic-Gulf region in the

U.S. Each forecasted water budget component (i.e., SM,

runoff) and percentile of SM had high accuracy but caution

was required, since the accuracy degraded after a 1-month

lead-time (Sehgal et al. ; Sehgal & Sridhar ). Kang

& Sridhar () evaluated weekly drought forecasting

using SWAT and VIC with CFSv2 as forcing. They found

that forecast accuracy degraded after a 2-month lead-time

due to an increase in uncertainty of CFSv2 and showed

that overall MSDI has a better agreement with the USDM

drought severity map than did univariate drought indices

(e.g., Standardized Soil Moisture Index (SSI) and Standar-

dized Baseflow Index (SBI)). Besides, to reflect more

realistic surface-groundwater exchange into a land-surface

model, Kang & Sridhar () applied the VIC model

integrated with the Modular Three-Dimensional Finite-

Difference Ground-Water Flow model (MODFLOW) and

assessed droughts using MSDI in the Chesapeake Bay water-

shed in the U.S. They showed that the integrated version of

the VIC model improved the assessment of drought charac-

teristics when compared to the original VIC model. This

suggests that land-atmospheric models may have gaps to

reflect more realistic physical phenomena for better drought

forecasting.

The reliability of dynamical climate forecast (CF) influ-

ences the hydroclimate forecast from hydrological models.

Besides that, the forecasting skill of a hydrological model is

largely influenced by initial hydrological conditions

(IHCs), such that their forecasting skill varies with when

(season) and where (hydrological regime) forecasting is

undergone (Maurer et al. ; Wood & Lettenmaier

; Shukla & Lettenmaier ; Mahanama et al. ;
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
Hao et al. ). Ma et al. () forecasted seasonal soil

moisture drought using a distributed time-variant gain

model (DTVGM) hydrologic model with bias-corrected

and downscaled NMME as a forcing, which is referred to

as NMME-DTVGM, in the upper Han River basin in

China. They showed that the NMME-DTVGM was affected

by IHCs and the forecast skill of NMME by explaining the

regional and seasonal variation of accuracy in forecasts

of intensity and detectability of soil moisture drought.

Although IHCs generally include snowpack, antecedent

soil moisture, groundwater, and water storage in reservoirs,

a number of studies mainly focused on the roles of snow

water equivalent (SWE) and SM in assessing the forecast

skill of hydrological models (Li et al. ; Mahanama

et al. ; Shukla et al. ; Hao et al. ). Wood &

Lettenmaier () found that the forecast skill is largely

affected by IHCs (SWE and SM) during the transition

period from wet to dry seasons. In contrast, CF mainly

influenced the forecast skill during the transition period

from dry to wet seasons. Mahanama et al. () evaluated

the effect of IHCs on streamflow forecast across the contig-

uous United States (CONUS) and observed that streamflow

forecast was mainly influenced by SWE during snow melt-

ing seasons and SM exerted statistically significant effects

on the skill during fall and winter seasons. Shukla & Let-

tenmaier () assessed the effect of IHCs and CF on the

seasonal forecasts of cumulative runoff (CR) and SM by

using VIC models in different seasons at different lead

times and across the CONUS. They found that IHCs domi-

nated CR forecasts during winter and spring in the Souris-

Red-Rainy, Upper Mississippi, and Great Lakes regions. In

the western U.S. (Pacific Northwest, California, Great

Basin, and Lower Colorado), during spring (MAM) and

summer (mainly June) months, IHCs provided forecast

skill for CR forecast up to the 6-month lead-time. In the

eastern U.S. (New England, Mid-Atlantic, the northeast of

South Atlantic-Gulf, and Ohio), IHCs affected the CR fore-

cast at less than 2-month lead-time during winter and

spring seasons. After the lead-time of which IHCs signifi-

cantly affected CR forecast, CF started to influence the

CR forecast. However, in Tennessee, Lower Mississippi,

and the west of the South Atlantic-Gulf regions CR fore-

casts were dominated by CF at all lead times. IHCs

generally dominated SM forecasts at a 1-month lead-time
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across the CONUS. However, some regions in the midwest

and western U.S. showed SM forecasts were influenced by

IHCs up to the lead-time of 5 months when forecasting

began in winter or spring seasons.

Understanding the effect of IHCs on the hydroclimate

forecast is important, since it allows a forecaster to put

weight on the decisive contributor (either IHCs or CF)

such that improved forecast skill can be obtained. Further-

more, it is found that forecast initialized in the summer

season with dry IHCs is mainly affected by IHCs. Besides,

the level of impact of IHCs in the summer season

significantly varies at different lead times. It suggests that

properties or signals of IHCs largely affect hydroclimate

forecasts during drought events (Shukla et al. ).
Hybrid statistical-dynamical forecasting models

Rationales and limitations of statistical and dynamical fore-

casting methods were explained in the previous sections of

stochastic, statistical, and dynamical drought forecasting

models. The prominent limitations of statistical methods

are due to the nonlinear relationship between drought

indicators and SST teleconnections and the nonstationary

nature of climate systems (Mishra & Singh ; Fung

et al. ). In contrast, dynamical models lack long-term

forecastability and stochastic nature of ocean-atmosphere

circulation and show high variability of forecasting skill in

space and time, in sequence, leading to low forecast skill

of hydrological models (Madadgar et al. ). For better

drought forecasting, it is important to make optimal use of

complementary relationships between statistical and dyna-

mical models (Madadgar et al. ; Hao et al. ).

Hybrid statistical-dynamical forecasting modeling frame-

work is to merge forecasts from statistical and dynamical

models (Madadgar et al. ; Hao et al. ). Since the

conveyance of uncertainty of forecasts benefits the decision-

making process, regression methods, Bayesian posterior

distribution, and BMA have been widely used as merging

methods to facilitate probabilistic forecasts (Schepen et al.

; Schepen & Wang ; Hao et al. ; Strazzo et al.

). The Bayes theorem-based merging methods have

gained attention, since they reduce the uncertainty of forecast

and improve out-of-sample forecastability (Xu et al. ).
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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Hybrid statistical-dynamical models have shown better

forecasting skills than either statistical or dynamical

methods alone (Schepen et al. ; Schepen & Wang

; Madadgar et al. ; Xu et al. ; Strazzo et al.

). For example, Xu et al. () forecasted SPI6 in

China by using BMA to merge forecasts from statistical

models (ESP, ANN, SVM, Wavelet-ANN, and Wavelet-

SVM) and climate models (NMME). They showed that

their hybrid model outperformed single statistical and dyna-

mical models by enabling skillful long-term forecasting and

reduced the false alarm rate of drought onset by 25% com-

pared with dynamical models. Madadgar et al. ()

applied the Expected Advice (EA) algorithm (Cheng &

Aghakouchak ) to merge statistical (Bayesian copula

functions) and dynamical (NMME) forecast models to fore-

cast precipitation anomalies and infer the degree of wetness

and dryness in the southwestern U.S. They evaluated the

accuracy of forecasts using the level of correspondence to

the spatial extent of the observed negative anomalies of pre-

cipitation and showed that the developed hybrid model

outperformed both single models and the improved forecast-

ing skills up to ∼50% compared to the dynamical model,

especially in extremely dry years from 2014 to 2015.

Forecasting skills of dynamical models and hybrid models

are affected by how significant the dependence structure

between ocean-atmosphere-land and local hydroclimate

variables and reliable model parameterization are estab-

lished. Therefore, long historic and spatially dense

observations are important for reliable drought forecasting.

Attempts to improve hybrid statistical-dynamical model

performance have been made by exploring new merging

techniques that can best complement statistical and dynami-

cal models. In this context, a Bayesian post-processing

technique, the so-called calibration, bridging, and merging

(CBaM) method (Schepen et al. ; Schepen & Wang

), was developed, which successfully enhanced climate

forecasting of multimodel ensemble models in the hybrid

statistical-dynamical modeling framework (Schepen et al.

; Schepen & Wang ; Strazzo et al. ). The cali-

bration module is a statistical model that establishes a

relationship between dynamical forecasts and observations

to correct dynamical model forecasts. The bridging module

is similar to the calibration component but relates the dyna-

mical model and the SST anomaly teleconnection, such as
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ENSO, PDO and, IOD, to overcome the failure of dynami-

cal models in representing the SST teleconnection and

hydroclimate variability. The merging module combines

forecasts from the calibration and bridge modules by

using BMA. Therefore, the improved forecasting skill of

hybrid statistical-dynamical model provides more reliable

forcing variables for better drought forecasting. Therefore,

it is also an important research area to explore optimal mer-

ging methods of integrating statistical and dynamical

models.
Figure 2 | Evapotranspiration per unit leaf area as a function of leaf water potential (ψ l )

when soil moisture is plenty (solid curve) and when soil moisture is reduced by

drought condition (dashed line) (McDowell et al. 2008).
DROUGHT AND TREE MORTALITY

Drought does not only directly alter atmosphere and terres-

trial water budgets via the water cycle system connected by

precipitation and evapotranspiration, but also has impacts

on productivity and survival of forest which affect carbon

cycles and climate (Pan & Wood ; McDowell et al.

; van Mantgem et al. ; Allen et al. ; Williams

et al. ). Terrestrial ecosystems regulate land-surface

albedo, net radiation, evapotranspiration, and soil moisture

such that regional and global climates are characterized by

it (Sud et al. ; Bonan et al. ). A representative

example is Amazonian deforestation and its impacts on

the regional increase in surface temperature and decrease

in precipitation, evapotranspiration, and runoff (Nobre

et al. ; Bonan et al. ; Gash & Nobre ). As

global mean temperature increases and severe large-scale

droughts are accompanied, water scarcity and high tempera-

ture predispose trees/forests to die-off (McDowell et al.

; Allen et al. ; Williams et al. ). Therefore, to

prevent large-scale tree mortality and reduce its detrimental

feedback on climate, understanding the mechanisms of tree

mortality influenced by drought is important.

Causative mechanisms of tree mortality

Hydraulic failure

When transpiration (E) occurs through leaves, the water

loss is compensated for by absorbing water from soil

and transporting water through the xylem to the leaves,

where water diffuses into the atmosphere. The movement
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
of water in the xylem is driven by the difference in the

water potentials between the rhizosphere and leaf (Sperry

et al. , ; McDowell et al. ). A mathematical

expression of E is expressed as:

E ¼ K(ψs � ψ l � ρwgh) (1)

where K is the hydraulic conductance specified by leaf of a

plant; ψs and ψ l are the soil water potential and leaf water

potential, respectively; ρw is the density of water; g is the

gravitational acceleration; and h is the height of the stem.

The increase in temperature and dry atmospheric con-

ditions raise atmospheric water demand. However, under

dry conditions, limited water supply from the rhizosphere

causes the vapor-pressure deficit (VPD): a more greatly

reduced soil water potential (ψs) leads to higher VPD

(McDowell et al. ; Williams et al. ; Klein ).

The increase of E reduces the leaf water potential (ψ l) as

long as the hydraulic conductance specified by the leaf of

a plant (K) remains constant (Figure 2) (Sperry et al. ;

McDowell et al. ). However, after surpassing a certain

point of ψ l, air intrudes into the xylem through pit pores,

in sequence, the cavitation and embolization of xylem

initiate. When the xylem is 100% embolized, K becomes

zero and its corresponding E and ψ l are called Ecrit and

ψcrit, respectively (Sperry et al. ; McDowell et al.

). When ψ l exceeds ψcrit, hydraulic failure occurs such
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that trees die. Since, under drought conditions, ψs is lowered

and trees have a small margin of safety to ψcrit (dashed line

in Figure 2), trees are prone to die-off (Sperry et al. ;

McDowell et al. ). Therefore, when drought intensity/

severity is high, hydraulic failure is likely to bring up tree

die-off (McDowell et al. ). However, the vulnerability

to hydraulic failure varies with the xylem structure of

species, biomes and edaphic characteristics (e.g. soil texture,

structure, and porosity) (McDowell et al. ; Klein ).

Carbon starvation

To avoid hydraulic failure, trees regulate E not to reach

Ecrit by controlling stomatal conductance (Gs). Trees have

distinct patterns in regulating E or ψ l, and the patterns cat-

egorize the trees into isohydric and anisohydric species

(Sperry et al. , ; McDowell et al. ; Allen et al.

; Klein ; Roman et al. ; Hochberg et al. ).

Isohydric species maintain relatively constant ψ l regardless

of ψs (McDowell et al. ; Breshears et al. ; Klein

; Roman et al. ; Hochberg et al. ). Some

examples of isohydric trees are black walnut, populus

balsamifera, prunus simonii, and piñon (McDowell et al.

; West et al. ; Attia et al. ; Roman et al. ).

Anisohydric species modulate ψ l as a function of ψs and

maintain an overall higher Gs than isohydric species do

(McDowell et al. ; Klein ). Anisohydric species

are exemplified by juniper, eucalyptus, sunflower, sugar

maple, and populus balsamifera (McDowell et al. ;

Attia et al. ; Roman et al. ).

Isohydric species close stomata not to drop ψ l below

the midday leaf water potential when ψs decreases. In

contrast, anisohydric species continue transpiration as

long as extractable water remains. The early shutdown of

stomatal conductance leads to the ceasing of photosynthesis

and carbon uptakes, such that reserved carbohydrates are

used for maintaining metabolism, root production, and res-

piration. Therefore, isohydric species are predisposed to

mortality mainly due to carbon starvation. On the other

hand, anisohydric species tend to elongate the carbon assim-

ilation process up to far negative ψ l, which is likely to cause

cavitation in the xylem. As a consequence, anisohydric

species are predisposed to mortality due to hydraulic failure.

In this context, one can induce the effect of drought
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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duration and intensity on the mortality of trees as follows:

(1) severe drought leads to steep decreasing slope of ψs

and die-off of anisohydric species due to hydraulic failure

in the early stage of drought; (2) longer persistent drought

leads to shallow decreasing slope of ψs and leads to the

mortality of isohydric species due to carbon starvation and

die-off of anisohydric species follows.

Threats of biotic agent

Trees, which suffer or have been suffering from drought, are

susceptible to the threats of biotic agents (e.g., insects

and pathogens) due to embolized xylem and reduced ability

to maintain homeostasis (McDowell et al. ; McDowell

). To protect trees from biotic agents, trees produce

defensive bio-chemicals, such as resin (McDowell et al.

; Allen et al. ). However, carbon starving during

or after drought lowers productivity in producing the

defensive materials but increases the production of volatile

compounds, such as ethanol, which attract biotic agents

(McDowell et al. ; Allen et al. ; McDowell ).

Biotic agents accelerate the occlusion of xylem by injecting

fungi inside trees and facilitate the depletion of reserved

carbohydrates, since trees have to produce more defensive

chemical compounds and allocate them (McDowell et al.

; Allen et al. ).

Furthermore, drought, which accompanies high temp-

eratures, increases growing seasons of biotic agents and, in

turn, amplifies the population of biotic agents (McDowell

et al. ). When carbon starved trees have synchronous

periods of high population of biotic agents, tree mortality

increases. Besides the effect of biotic agents, wildfires have

caused tree mortality by combustion and damaging tissues

of trees (McDowell et al. ; Williams et al. ). The

expected rise of global temperature increases the population

of biotic agents and occurrences of wildfires which contrib-

ute to tree mortality. Although hydraulic failure, carbon

starvation, and attack of biotic agents are primary mechan-

isms of tree mortality during drought, tree mortality is also

influenced by dominant species, age, and recovery function

after damage (Keane et al. ; Choat et al. ). Therefore,

forecasting tree mortality is a complex task with high uncer-

tainty. We will discuss the forecastability of tree mortality in

the following.
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Dynamic vegetation models to forecast tree mortality

To forecast drought-driven tree mortality, it is necessary to

understand tree mortality mechanisms at an individual

tree and extend the understanding to probabilistic mortality

risk factors at large scales (Hartmann et al. ). Even

though tree mortality causative mechanisms are elucidated,

survival and succumbing to drought depend on xylem

structure, root distribution, age, and stand density of trees

(Hickler et al. ; Brodribb et al. ). Since tree mortality

is affected by species of trees and competition with other

trees, incorporating biomass diversity and individual tree

physiology into tree mortality forecasting models is impor-

tant (Aubry-Kientz et al. ). Many dynamic vegetation

models (DVMs), such as Lund-Potsdam-Jena (LPJ), General

Ecosystem Simulator (referred to as GUESS), SILVA,

ForClim, and LANDIS-II, have been used to forecast tree

mortality (Scheller & Mladenoff ; Mette et al. ;

Bircher et al. ; Bugmann et al. ). DVMs can be

categorized into three modeling frameworks following

theoretical models, empirical models, and mechanistic

(hydraulic) models (Bugmann et al. ).
Theoretical models

Theoretical models, which are based on mathematical

formulae rather than empirical relationships, include the

self-thinning rule, and process-based models which charac-

terize the functioning of stages of phenology (Yoda ;

Li et al. ; Hickler et al. ; Hülsmann et al. ).

The self-thinning rule relates the average tree biomass to

stand density using a power-law described as:

BM ¼ ζργ (2)

where BM is the average biomass; ρ is the stand density;

and ζ and γ are the thinning coefficients where �3/2 is con-

ventionally taken for γ.

The self-thinning rule is a macroscopic approach such

that it lacks specific causal mechanisms of how individual

trees respond and acclimate to the spatial arrangement of

community (Li et al. ). Other representative methods

in this category are process-based models represented by
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
‘forest gap models,’ including ForClim, JABOWA (named

after last names of authors: Janick, Botkin and Wallis),

GUESS, Ecosystem Demography model (ED), and LPJ

dynamical global dynamical vegetation model (Botkin

et al. ; Bugmann ; Smith et al. ; Hickler et al.

; McDowell et al. ; Bugmann et al. ).

Process-based models, which are based on carbon

balance between assimilation and allocation (or deduction)

for growth and maintaining homeostasis, are implemented

on independent patches which are characterized by plant

functional types (PFT) (Smith et al. ; Fischer et al.

; Bugmann et al. ). PFT implicitly represents

allometric responses (growth and physiology related with

biomass) and primary production under limited soil water

and light, and allows one to group trees based on similar

type, such as height of matured tree, crown structure (e.g.,

length, diameter and projection area) and shade tolerance

(Smith et al. ; Fischer et al. ). On each patch, pro-

cesses of tree phenology, which are compartmented with

tree growth, regeneration, competition, and mortality, are

estimated at a time step of a year by specified equations for

each process as a function of PFT-specific coefficients, soil

water content, temperature, leaf area index (LAI) and light

(Fischer et al. ). Chaste et al. () applied LPJ-LMfire

in the boreal forests of Canada to estimate the potential

change in dominant biomass (e.g., Abies, Picea, Pinus, and

Populus) under global warming scenarios. The LPJ-LMfire

is an extended model of LPJ to incorporate wildfire emis-

sions, intensity, spread, and fire-driven tree mortality. They

showed the reduction of biomass and the change of taxa

(from conifer to broadleaf trees) in the southern boreal

regions under the Representative Concentration Pathway

(RCP) 8.5 scenario. ForClim models have been widely used

in forecasting structures and functioning of forests due to

their reliability in estimating forest dynamics (e.g., Bugmann

; Bircher et al. ; García-Valdés et al. ; Huber

et al. ; Thrippleton et al. ). Since process-based

models have a large number of parameters, knowing influen-

tial processes and parameters is beneficial for model

calibration and model development. However, Huber et al.

() showed that process-based models were not domi-

nated by a single process and parameter and described that

the sensitivity of influential parameters varied following

species, assemblages of species, phenology, and site-specific
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properties. Therefore, identifying the sensitive parameters in

all states of systems of interest will improve the applicability

of the model for a wide range of species and states of systems

(Huber et al. ). To forecast drought-driven tree mortality

with least uncertainty, modeling at regional scales integrated

with both empirical and forest inventory data is required

(McDowell et al. ; Vanoni et al. ). McDowell et al.

() applied ED, which is a process-based regional-scale

model (Moorcroft et al. ), to forecast the mortality of

needle-leaf trees in the southwest U.S. by 2100. When

McDowell et al. () compared the likelihood of

mortality of needle-leaf evergreen trees (Pinus edulis and

Juniperus monosperma) obtained from the empirical correla-

tive model, ED, and dynamic global vegetation models

(DGVMs), all models consistently forecasted extensive loss

of the conifer trees, while DGVMs underestimated the tree

mortality. The underestimation of DGVMs stemmed from

their lack of some process modules that accounted for out-

breaks of insects/pathogens, rising frequency of wildfire,

and failure of a succession of trees (McDowell et al. ).

Although process-based models can take climate change

into consideration (Reyer et al. ), individual tree mor-

tality is defined when a random number drawn from

Poisson process random sampling with an expectation of

PFT-based reproduction rate of a patch at the previous year

is below a background threshold. Therefore, they could not

consider individual physiology and hydraulic failure mech-

anisms which are critical in drought conditions (Smith

et al. ).

Empirical models

Empirical models forecast tree mortality, based on a statisti-

cally driven growth-mortality relationship (Cailleret et al.

; Bugmann et al. ). Empirical models base their

hypotheses accordingly (Bigler & Bugmann ; Cailleret

et al. , ; Hülsmann et al. ): tree ring-width data

can represent individual physiology, including productivity

and carbon availability; rates of radial stem growth are

affected by available water, temperature, and abiotic factors;

most dying trees show reduced growth rates before dieback.

On the other hand, the robustness of the hypothesis of

models is degraded by sampling errors and variability of

survival strategy of species to stress factors (Cailleret et al.
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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). For example, dry-tolerant species live longer even

when growth rates are decreased and unspecified height

for cutting to measure tree size also adds to uncertainties.

Besides, windthrow, wildfire, outbreak of biotic agents,

and flooding (waterlogging) predispose trees to die-off

suddenly irrespective of tree growth (Hülsmann et al.

). Despite those concerns, empirical models have been

widely used to forecast tree mortality as a pragmatic alterna-

tive to process-based models (Adams et al. ; Hülsmann

et al. ). Empirical models relate mortality status (survival

¼ 0 or dieback¼ 1) to ring-width (diameter measurement at

breast height (DBH)) using logistic regression (Cailleret

et al. ; Hülsmann et al. ) as:

pi,Δt¼1 ¼ logit�1(Xiθ) ¼ e(Xiθ)

1þ e(Xiθ)
(3)

where pi,Δt¼1 represents the probability of mortality at a

1-month lead-time for tree i; Xi are the predictors; and θ

denotes the parameters.

The annual probability of mortality can be projected to a

mortality period of Δt years as:

pi,Δt ¼ 1� (1� pi,Δt)
Δt (4)

Then, pi,Δt is fitted to the observed mortality status to

estimate parameter θ. Hülsmann et al. () incorporated

mean annual precipitation and temperature into predictors

to improve forecasting skill.

However, most of the theoretical and empirical models

fail to represent observed regional patterns of forest, since

they ignore biomass diversity and individual tree physiology,

and lack of mechanistic representation (i.e., hydraulic

failure) (Aubry-Kientz et al. ; Bugmann et al. ). Fur-

thermore, they are inaccurate in forecasting the timing

of tree die-off (Bigler & Bugmann ). Process-based

and empirical models have relative differences to each

other such that complementary relationships can be estab-

lished (Adams et al. ). While process-based models

depict processes of tree development as causal phenological

feedbacks to environmental stress, empirical models rely on

a correlative relationship between mortality and biomass

(Smith et al. ; Cailleret et al. ; Fischer et al. ;
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Hülsmann et al. ). Therefore, process-based models

represent more comprehensive causal mechanisms using

multiple compartmentalized processes, whereas they have

higher uncertainties due to many associated parameters

(Adams et al. ; Fischer et al. ). In contrast, empirical

models have relatively smaller uncertainty but they are likely

to result in severe bias when extrapolation is beyond the

observed range of variability (Adams et al. ). To utilize

the advantages of both models, empirical models and pro-

cess-based models can be merged. For example, Hülsmann

et al. () used an empirical model in the process of

mortality calculation in the process-bases model (ForClim)

and improved the forecast skill. Thrippleton et al. ()

evaluated the impacts of merging empirical models (e.g.,

growth-based and competition-based models) with ForClim

and showed the importance of merging a proper empirical

model when forecasting forest dynamics at regional scales

by comparing the accuracy in forecasts of ForClim merged

with different empirical models in Europe: the growth-

based models brought more consistent improvement in

ForClim than using competition-based models which lack

variables directly affected by the harsh environment.

The prominent limitation in the field of dynamic

forecasting tree mortality is that mechanistic causal algor-

ithms, which explain hydraulic failure and its association

with carbon starvation, are not fully incorporated in

forecasting models due to the difficulty in demonstrating

mortality caused by hydraulic failure in nature (Adams

et al. ; Bugmann et al. ). To forecast tree mortality

under drought conditions, incorporating the mechanistic

causal algorithms is important, and it enables one to forecast

when, where, and how trees will die (Brodribb et al. ).

Mechanistic (hydraulic) models

Mechanistic models simulate tree mortality based on the

interaction between soil water availability and stomatal

regulation to secure water in trees (Martin-StPaul et al.

; Brodribb et al. ). Since mechanistic or hydraulic

models utilize the vulnerability of xylem (how much safety

margin trees have) of each species against water stress

conditions, they allow one to track dysfunctions of hydraulic

systems of trees and forecast time of tree dieback (Brodribb

et al. ). As shown in Figure 2, the safety of margin is
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
decreased as soil water contents reduce. However, different

species have different safety margins, and differently coordi-

nate stomatal closure once embolism is initiated. Besides,

trees acclimate to change in the environment such that

trees are likely to have more drought-tolerance and greater

safety of margin (Martin-StPaul et al. ; Larter et al.

). Therefore, for the sake of successful hydraulic model-

ing, thorough data meta-analysis should be done for each

species in different climates (Martin-StPaul et al. ).

Data meta-analysis implies processes as follows: monitoring

cavitation of xylem by excision, x-ray tomography or optical

devices (Figure 3(a)); establishing relationship of loss of

hydraulic conductivity (or cumulative volumes of embo-

lisms) as a function of available water in trees (ψ l)

(Figure 3(b)); finding threshold of cumulative volumes of

embolism which lead trees dieback (Cochard et al. ;

Choat et al. ; Martin-StPaul et al. ; Brodribb et al.

). For example, 50% of embolism triggers die-off of con-

ifer and angiosperms are predisposed to death after 88% of

embolism (Brodribb et al. ).

Hydraulic flow models have been used to estimate

forest mortality under contemporary drought conditions,

not future conditions (Sperry et al. ; Anderegg et al.

). For forecasting purposes, SurEau was developed to

imply future variation of available soil water reserve in

mechanistic models (Martin-StPaul et al. ; Brodribb

et al. ; Cochard ). SurEau establishes an empirical

relationship between the percent of loss of plant hydraulic

conductance (PLC) and water reserved in trees by fitting

the collected embolism data to a sigmoid function as:

PLC ¼ 1
1þ exp [(α=25)(ψ l � ψeb)]

(5)

where α is a shape parameter of sigmoid function; ψ l means

water potential of xylem or leaf; ψeb denotes water potential

causing embolism corresponding to embolism resistance.

For example, ψeb of angiosperms is the magnitude of water

potential causing 88% embolism.

The estimated PLC at a certain ψ l is used in the calcu-

lation of hydraulic conductance of leaf (K), water release

from apoplast pathway (cavitation; Wap) and symplast path-

way (Wsy). Then, soil water reserve (WR) is estimated by

summing up previous WR values and a balance between E



Figure 3 | (a) Optically observed leaf water potential where xylem cavitation occurs (colored location), (b) cumulative embolisms against water potential in trees (green curve). Blue

(orange) dashed line represents water potential corresponding to 50% (88%) of embolism. Gray hatched area represents a range of tree mortality likely to occur in case of

Quercus robur plant (Brodribb et al. 2019). Please refer to the online version of this paper to see this figure in color: http://dx.doi.org/10.2166/wcc.2020.239.
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and Wap and Wsy as:

WRtþ1 ¼ WRt � EþWap þWsy (6)

where E is the transpiration calculated by:

E ¼ Emax × f(ψ l) × LA (7)

where Emax is the maximum rate of transpiration; f(ψ l) is

stomatal regulation function (slope of the linear part of a

sigmoid function); and LA is a plant leaf area.

The estimated WR is used as extractable soil water to

calculate ψs. Finally, the estimated ψs, K, and E are used

in Equation (1) for which in turn a new ψ l is calculated

for the next time step. Therefore, the time of tree die-off

can be forecasted by finding the instance where 100% of

embolism occurs. It is confirmed that mechanistic models

estimate ψ l and ψs which are regulated by the xylem cavita-

tion. For more details on calculational processes, reference

is made to Martin-StPaul et al. (). Brodribb et al. ()

used SurEau to forecast mortality of Fagus sylvatica forest

in central France by 2100 and showed tree mortality

would abruptly increase after 2020 with an accompanying

reduction in genetic diversity. Cochard () elucidated

that trees reached the time of tree die-off earlier when heat-

waves occurred together with drought by showing impacts

of temperature on VPD, hydraulic conductance of leaf (K),

and leaf cuticular conductance through simulation using

SurEau. The interesting finding of Cochard () is that an
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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occurrence of heatwaves after drought onset (already under

water-stress condition) leads to tree die-off significantly ear-

lier than the case of simultaneous onset of heatwaves and

drought. Mechanistic models require the knowledge of physi-

ology about individual species and extensive data collection.

However, once reliable data inventory is established, this fra-

mework for tree mortality modeling is efficient to forecast

which species will die under drought conditions.
SOIL DEGRADATION AND TREE DIE-OFF

Besides direct impacts of drought on tree mortality, soil degra-

dation and waterlogging (flooding and/or irrigation) can

cause tree die-off. Natural climate variability like drought

and anthropogenic activities on agriculture and ecosystems

accelerate desertification which represents land degradation

(Dregne & Chou ). Reduced vegetation covers and soil

compaction contribute to land degradation by facilitating

wind erosion of fine soil grains and organic minerals from sur-

face soil and diminishing water infiltration and water holding

capacity of the soil (Belnap ; Castellano & Valone ;

D’Odorico et al. ). Although the aforementioned desertifi-

cation contributors bring out a hostile rhizosphere against

plant growth, salinization exerts drought-like hydraulic failure

on plants (Munns ; D’Odorico et al. ; Kath et al. ).

Salinization can be caused by over-irrigation or water-

logging which derive higher water table and accumulation

of salinity in the root zone of soil (Dregne & Chou ;

Thomas & Middleton ). However, in dry conditions,

http://dx.doi.org/10.2166/wcc.2020.239
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removal of vegetation (increased seepage), lowered ground-

water level, and remobilization of soluble salinity from soil

profile to near-surface through capillary exfiltration cause

salinization (Munns ; D’Odorico et al. ; Kath et al.

). Saline soil reduces water potential in the rhizosphere

and retards water uptake by trees (D’Odorico et al. ;

Kath et al. ). In the early stage of exposure to saline

soil, trees suffer from reduced water uptake due to osmotic

effects. However, as the intrusion of salt increases in plant

tissues, the density of salinity in a plant rises to a toxic

level such that cell processes stop carbon assimilation and

growth (Munns ; D’Odorico et al. ).

Kath et al. () investigated the impacts of salinity and

changes in groundwater level on buffering effects of ground-

water to the die-off of riverine forests. They concluded that

when riverine forests were connected to shallow ground-

water systems during drought, tree mortality increased due

to salinization, rather than buffering trees from dieback.

Trees which survive after going through drought may not

have enough vascular functions andmetabolisms to efficiently

maintain homeostasis and fend outer stress. Therefore, in

poorly managed irrigation over lands, drought termination

may increase the level of salinization and predispose the wea-

kened trees to die-off rather than prospering trees.
FUTURE PROSPECTS

Countless endeavors to improve the accuracy in forecasts

have developed various drought and tree mortality forecast-

ing methods. However, most of the drought and tree

mortality forecasting models have room to advance one

step further. This study makes a list of elements to improve

forecasting skills for drought and tree mortality under global

warming.

Forecasting of droughts

Perspective of modeling

Most statistical drought forecasting models, including sto-

chastic models, show acceptable forecasting skills at lead

times of less than 6 months. Machine learning models

merged with wavelet extend lead-time up to 12 months.
://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
Forecasting skill of dynamical models degrades after a

lead-time of 1 month. Under global warming, long-term

drought forecasting with quantified uncertainties will help

decision/policy makers establish a long-term drought mitiga-

tion plan. Entropy spectral analysis shows eligibility for

long-term forecasting through application to various

research areas, including geology, hydrology, and meteorol-

ogy (Singh , ; Cui & Singh ). Entropy spectral

analysis does not impose any assumptions on unknown

time series, while it identifies significant spectra with a

high degree of resolution and minimizes bias of estimates

(Krstanovic & Singh a, b). Entropy spectral analysis

integrates stochastic model development and spectral analy-

sis such that it is expected to forecast drought index, which

is composed of periodic and stochastic components

(Padmanabhan & Rao ). However, entropy spectral

analysis was developed under the stationary assumption.

Therefore, entropy-based forecasting methods, which can

reflect second-order nonstationarity, will contribute to

improving long-term drought forecasting either by them-

selves or merging with dynamical models. While

forecasting drought index (hazard) has a long history of

research, forecasting drought impact has gained attention

only recently and it provides pragmatic drought prepared-

ness information to policy makers and stakeholders

(Sutanto et al. ). Drought impact forecasting can be

implemented based on the established statistical relation-

ship (drought impact function) between drought indices

and drought impact data (Bachmair et al. ; Sutanto

et al. ). Drought impact forecasting has usually been

implemented for regions and categorized groups of impact.

For robust drought impact forecasting, the completeness

and long period of drought impact database (e.g., European

Drought Impact report Inventory (EDII) for Germany and

Drought Impact Reporter (DIP) for the U.S.) are the most

important (Sutanto et al. ).

Perspective of data

The framework for drought forecasting modeling is primarily

based on the SST teleconnection to regional climate vari-

ables. Since the SST teleconnection varies at interannual-to-

multidecadal periods, records from only instrumental gauge

networks cannot reveal patterns in decadal-to-multidecadal



622 J. Han & V. P. Singh | Forecasting of droughts and tree mortality under global warming Journal of Water and Climate Change | 11.3 | 2020

Downloaded fr
by guest
on 10 April 202
periods. To characterize the variability of hydroclimate, which

manifests a strong persistence of either wet or dry periods, at

least 100–200 years of data are required (Thyer et al. ).

Paleoclimate reconstruction compensates for the limitation

of a short period of instrumental records. Cook et al. ()

developed a paleoclimatic reconstruction of modified PDSI

across the CONUS known as Living Blended Drought Atlas

(LBDA). However, its uncertainties are highly variable at tem-

poral and spatial scales due to the variation of acquisition of

tree-ring data (Ho et al. ). Therefore, developing accurate

paleoclimatic drought index maps can improve the under-

standing of hydroclimatic patterns with SST teleconnection.

To improve hydrological forecasting associated with

dynamical models, meteorological forcing data need high

reliability. However, tropical areas and developing countries

in particular have sparse instrumental gauge networks, and

even the density of the global meteorological gauge network

has reduced in recent decades. Remote sensing data can be

used in the areas which have gauge sparsity in order to improve

hydroclimate monitoring. Furthermore, to better understand

the hydraulic traits of the physiology of trees at regional

or global scales, soil moisture and tree health monitoring

with spatiotemporally fine resolutions are essential. Therefore,

airborne equipped with a hyperspectral sensing tool will

supplement in-situ observations, such as x-ray tomography

and optical observation (Brodribb et al. ). However, since

remotely sensed data has a systematic bias, reducing errors in

the data by merging in-situ data is another research area.

Forecasting of tree mortality

Forecasting tree mortality has been done over areas colo-

nized with the same species since common PFT facilitates

parameterizing in DVMs. Since drought is likely to be

more severe and have a larger areal extent under global

warming, forecasting tree mortality at larger scales is necess-

ary to understand drought implications on tree mortality in

the future. Although process-based models (i.e., dynamic

global vegetation models (DGVMs)) have been used for

forecasting at continental-scale, their parameterization was

done for too-coarse scales by using only widely distributed

major species (Hickler et al. ). Therefore, DGVMs are

not suitable to represent the regional-scale variation of tree

mortality. Furthermore, since tree mortality is primarily
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/600/716909/jwc0110600.pdf
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attributed to hydraulic failure under drought conditions,

mechanistic models may provide more accurate forecasts.

Further studies to extend the application of mechanistic

models to larger scales will improve forecasting tree mor-

tality under global warming. Besides, a spatiotemporally

extensive data-meta analysis should be done by using var-

ious monitoring measures (in-situ and remote sensing) to

improve mechanistic forecasting models.
CONCLUSIONS

This study has reviewed forecasting methods for drought

and tree mortality. Causative mechanisms of drought and

tree mortality have been discussed, and implications of

global warming for those causative mechanisms have also

been elucidated.

Under global warming, temperature-driven hydrological

processes and multiple hydrologic variables in drought assess-

ment have been emphasized. Then, multivariate drought

indices (e.g., self-calibrated Palmer Drought Severity Index

(PDSI) with Penman-Monteith (pm) (sc_PDSI_pm)) which

avoid the overestimation of potential evaporation (PE) and

facilitate regional comparison have been developed. However,

one needs to bear in mind that methods of PE calculation,

quality of hydro-meteorological data, and selection of base

period make a significant difference in drought assessment

even when using the same drought index.

For statistical drought forecasting, models are required

to be free from the stationarity of modeling frameworks

such that they can consider the nonlinearity and nonstatio-

narity nature of teleconnection and evolution of drought

under global warming. Once long enough period obser-

vations that can convey a nonstationarity pattern are

prepared, machine learning methods combined with wavelet

transform and coupla-conditional probability methods are

expected to provide acceptable forecasting skills.

Although dynamic drought forecasting models, based

on general circulation models (GCMs) and multimodel

ensemble models, inherently embed nonlinearity and non-

stationarity, a linear correlation between SST anomalies

and drought is likely to be over-represented in the dynamic

models and overlook stochastic processes in the

models. Therefore, to improve drought forecasts, hybrid
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statistical-dynamic forecasting models were developed.

Although their integrative processes improve probabilistic

forecasting, those do not provide a standard rule for blend-

ing the benefits from statistical and dynamic models.

Severe and long-lasting droughts increase tree mortality

due to hydraulic failure, carbon starvation, and threats of

biotic agents. Whereas process-based and empirical tree

mortality forecast models lack the effects of hydraulic failure

that are the most important mechanisms under drought

conditions, mechanistic (hydraulic) tree mortality models

consider xylem cavitation and regulation of stomatal closure

following the dynamic soil water reserve. Although mechan-

istic models require extensive data collection to establish

embolism-water content relationships, they are expected

to forecast tree mortality in drought conditions best. Tree

die-off can last for an extended period after termination of

drought due to the salinization of soil caused by the lowered

groundwater level and inadequate irrigation.

Reliable forecasts of drought and tree mortality are

essential for establishing drought mitigation plans and

understanding environmental effects from ecosystems that

are susceptible to climate change. Establishing densely

populated observational networks, data assimilation with

remote sensing data, and paleoclimatic reconstruction data

help the practitioner to assess, monitor, and forecast drought

and tree mortality with higher accuracy. Long-term drought

forecasting (e.g., greater than 12 months of lead-time) and

tree mortality forecasting at regional scales by using mechan-

istic models benefit monitoring and forecasting drought and

drought-driven ecological degradation. Furthermore, U.S.

Drought Monitor (USDM) is a good representation of

improved drought early warning systems by cohesively coordi-

nating drought research from multilevel governances (e.g.,

tribal, local, state, and federal partnerships). Like this, further

improvement of forecasting drought and tree mortality can be

accomplished by an intergovernmental and global collabor-

ation of scientists and policymakers.
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