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ABSTRACT
Global climate models (GCMs) are developed to simulate past climate and produce projections of

climate in future. Their roles in ascertaining regional issues and possible solutions in water resources

planning/management are appreciated across the world. However, there is substantial uncertainty in

the future projections of GCM(s) for practical and regional implementation which has attracted

criticism by the water resources planners. The present paper aims at reviewing the selection of GCMs

and focusing on performance indicators, ranking of GCMs and ensembling of GCMs and covering

different geographical regions. In addition, this paper also proposes future research directions.
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INTRODUCTION
Global climate models (GCMs) are numerical models

describing natural mechanisms in the atmosphere, land sur-

face and ocean. GCMs represent the climate system

adopting a 3D grid with horizontal coarse resolution of

250–600 km over the world, and 10–20 vertical layers in the

atmosphere as well as around 30 layers in the oceans. They

are developed to indicate atmospheric physics, dynamics

and to simulate past climate for analysing future climate

changes. GCMs follow conservation laws (momentum,

mass, energy, moisture), fluid dynamics, equation of state

and more. Some of the parameters and boundary conditions

considered in GCMs are rotation speed of the Earth, thermo-

dynamic and radiation constants of atmospheric gases and

clouds, surface elevation, total mass of the atmosphere and

its composition, soil type and surface albedo (Schmidt et al.
). However, lack of complete information about atmos-

pheric processes, approximations during numerical

modelling, spatio-temporal scales, coarser or finer resolution,

different feedback mechanisms (cloud and solar radiation,

greenhouse gases, aerosols, natural and anthropogenic

sources, ocean circulation, water vapour and warming, ice

and snow albedo), and different perspectives (physical para-

meterisations, initialisations, and model structures) are the

causes of uncertainties that lead to either overestimation or

underestimation of values of the considered climate variable,

as compared to the observed variables. This inadvertently

results in different outcomes for different GCMs for the

same forcing (Sood & Smakhtin ; Jain et al. ).

Mandal et al. () identified six uncertainty causes,

namely, (i) selection process of GCMs, (ii) choice of

GCMs, (iii) emission scenarios, (iv) downscaling models,

(v) hydrologic model parameters and (vi) model structures.

Liu et al. (), as part of their studies on headwater catch-

ment in China, demonstrated that uncertainty levels
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associated with GCM outputs were crucial for assessing their

impact on climate change. Bosshard et al. () found that

GCMs were the dominant uncertainty source. Xuan et al.

(), based on their studies in Zhejiang Province, in South-

east China, concluded that most GCMs were not able to

predict the observed spatial patterns, due to insufficient resol-

ution. Benedict et al. () analysed spatial resolution of

GCMs and global hydrological models for the Rhine and Mis-

sissippi basins. Higher resolution GCMs yielded improved

precipitation budget for the Rhine whereas no substantial

improvement was found for the Mississippi. Above all, lack

of precise observed data to assess the simulating ability of

GCMs is another concern (https://www.tau.ac.il/∼colin/
courses/CChange/CC5.pdf; https://www.climate.gov/maps-

data/primer/climate-models; https://www.ipcc-data.org/

guidelines/pages/gcm_guide.html). Keeping this in view,

Tian et al. () suggested uncertainty assessment along the

whole climate modelling chain.

Hughes et al. () discussed the cause of inherent errors

and uncertainties occurring due to simplification of highly

complex atmospheric physics in GCMs. They found multi-

model ensemble (MME)was a goodfit for the situation in com-

parison to individual GCMs mainly due to compensation of

individual errors. Ahmed et al. (), as part of their study

over Pakistan, presented similar views. Yan et al. (), as

part of their study on Xinjiang Basin, China, suggested an

MME to minimise the biases and uncertainties of future cli-

mate simulations which is available as supplementary data.

Tebaldi&Knutti () observed ‘combiningmodels generally

increases the skill, reliability and consistency of model fore-

casts’. Hughes et al. () suggested all GCMs in MME for

effective representation of climate change whereas Basharin

et al. () suggested choosingGCMs forMME that described

the present climate more precisely, which would facilitate

decision-makers in using the predictions effectively. However,

Bannister et al. () cautioned ‘MME does not consider the

relative strengths and weaknesses of eachmodel as an ensem-

ble invariably hides the substantial variations between the

individual models’. They warned ‘If the GCMs collectively

misrepresent some component of the forcing or partially

cancel each other out, then the future natural variability in

an ensemble will be inherently suppressed’. Complimentarily,

Raghavan et al. (), as part of their studies on South East

Asia, expressed ‘although the ensemble mean of the models
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
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is a better representation of the observed climate, the spread

among the individual models is large’. Another problem is

that some GCMs partly work with the same code; in other

words, similar components of ocean and atmosphere results

in identical forecasts (Raju & Nagesh Kumar ) and this

maymislead the process ofMME.More information on uncer-

tainty andMMEs is available in Knutti et al. (), Najafi et al.

(), Weiland et al. (), Knutti & Sedlácek (), Miao

et al. (), Northrop & Chandler (), Lutz et al. (),

Song & Chung (), You et al. (), Salman et al. ()

and Jobst et al. (). Duan et al. () carried out an exten-

sive review on multi-model analysis that provides guidelines

for robust climate change research. In totality, researchers

question the reliability and simulating ability of GCMs due

to the uncertainties involved at every level of modelling, as

explained earlier (Wilby & Harris ; Mujumdar &

Nagesh Kumar ).

Basharin et al. () observed significant improvements

in Coupled Model Intercomparison Project 5 (CMIP5)-

GCM simulations as compared to its previous generation

of Coupled Model Intercomparison Project 3 (CMIP3)-

GCMs in terms of ‘effect of aerosols, the interaction at the

land–ice boundary, stratosphere–troposphere interactions,

the carbon cycle, runoff, and biochemical interactions

between ecosystems and other processes’. Interestingly, the

Coupled Model Intercomparison Project 6 (CMIP6) rep-

resents a considerable expansion over CMIP5, in terms of

(a) 100 distinct climate models from 40 different modelling

groups, (b) eight future scenarios representing Shared Socio-

economic Pathways (SSPs) and (c) different experiments

conducted. CMIP6 models have a remarkably higher cli-

mate sensitivity than those of CMIP5 (Tokarska et al.

; https://www.carbonbrief.org/cmip6-the-next-gener-

ation-of-climate-models-explained). However, Jain et al.

() were critical about GCMs’ development and

suggested focusing on the improvement of GCMs that

should perform relatively efficiently over many regions of

the world. They discouraged expanding GCMs that may

not compete strongly in continental/regional scales.

Similar views regarding the number of GCMs are expressed

by Allan Hollander (http://climate.calcommons.org/article/

why-so-many-climate-models). Details about developed

centre/institution and name of global climate models are

available at: CMIP3 (http://www.ipcc-data.org/sim/gcm_
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monthly/SRES_AR4/index.html#Acknowledge), CMIP5

(https://pcmdi.llnl.gov/mips/cmip5/availability.html) and

CMIP6 (https://www.wcrp-climate.org/wgcm-cmip/wgcm-

cmip6).

Pierce et al. () raised questions related to the effect

of choosing different GCMs for regional climate studies, on

downscaled outcomes and the relevance of a blueprint for

selecting GCMs (Legates & McCabe ; Mujumdar &

Nagesh Kumar ; Bhattacharjee & Zaitchik ; Raju

& Nagesh Kumar ). Hargreaves & Annan () dis-

cussed the origin of GCMs in detail, interpretation and

evaluation of ensemble and intricacies in climate modelling.

They raised concern about the gap between actual and

potential performances and limited benefits irrespective of

substantial investment. Sikder et al. () opined that

GCMs were yet to be improved for prime-time operationali-

sation of multiscale water management decisions. Knutti

() explained the necessity of evaluating GCMs and

opined that skilful simulations of the past might not produce

skilful predictions of the future. However, Knutti () also

cautioned that lack of past skill in simulation might also

translate to lack of skill in future predictions. Hence, it is

important to analyse each chosen GCM(s) for its efficacy

to assess how realistic GCM results are in comparison

with observed records of climate (https://www.climate.

gov/maps-data/primer/climate-models). Otieno & Anyah

() suggested a cautious approach while choosing

GCMs. Zhang & Yan () recommended assessing the

effectiveness of GCM to simulate conservation-based cli-

mate zones. Cook et al. () opined that selecting an

appropriate GCM for the intended application and its per-

formance, ascertaining differences in temporal scale and

spatial scale outputs, and inferring results for engineering

design are essential. Hence, performance evaluation of

GCMs for selection of the best GCM or suitable GCM(s)

is essential and leads to confidence of the policymakers

and planners for using them for impact assessment studies

and other purposes (Perez et al. ; Aloysius et al. ).

The present paper is aimed at reviewing the selection of

GCMs, focusing on performance indicators, ranking of GCMs,

and related ensembling of GCMs covering different geographi-

cal regions. In addition, MME of GCMs without explicit

evaluation covering different geographical regions is also pre-

sented. Even though these topics are separately discussed, they
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
are interrelated to a considerable extent. The period chosen is

from 2006 to 2020 with the selected literature review focusing

on CMIP5 and CMIP3 repositories. Efforts are made to discuss

only representative studies to effectively focus on the theme.

The present paper describes the general structure for selec-

tion of GCMs, literature review on performance measures,

ranking and ensembling of GCMs covering different geo-

graphical regions, MME without explicit evaluation of

GCMs, observation and discussions, followed by summary

and conclusions. Acronyms and performance measures used

in this paper are presented in Tables A1 and A2 of the Appen-

dix, respectively, which is available as supplementary data.
GENERAL STRUCTURE FOR SELECTION OF THE
BEST GCM OR AN ENSEMBLE OF GCMS

After reviewing more than 200 papers on climate modelling,

the modelling procedure observed for selection of the best/

suitable/ensembling of GCMs is found as follows (irrespec-

tive of geographical region):

1. Selection of appropriate climate variables for the chosen

region.

2. Selection of appropriate X number of GCMs from either

CMIP3orCMIP5 repositoryY [X�Y] for the chosen region.

3. Collection of observed and simulated values of X GCMs

for the chosen climate variable.

4. Identification of evaluation criteria/metrics/indicators to

ascertain the simulating ability of X GCMs with observed

data.

5. Comparison of outputs ofXGCMs with observed data for

historic time period in terms of chosen evaluation criteria.

6. Selection of suitable GCM(s) that represent the climate

system from X based on (5).

7. Formulate ensemble mechanism if required either with

subset of suitable GCMs (from (6)) or with full GCM

ensemble.
PERFORMANCE INDICATORS, RANKING OF GCMS
AND RELATED ENSEMBLING OF GCMS

Performance indicator is a metric tomeasure how efficiently a

GCM simulates observed data (Gómez-Navarro et al. ).

http://www.ipcc-data.org/sim/gcm_monthly/SRES_AR4/index.html&num;Acknowledge
https://pcmdi.llnl.gov/mips/cmip5/availability.html
https://pcmdi.llnl.gov/mips/cmip5/availability.html
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.climate.gov/maps-data/primer/climate-models
https://www.climate.gov/maps-data/primer/climate-models
https://www.climate.gov/maps-data/primer/climate-models
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Meaningful indicators are required to evaluateGCMs (Tebaldi

& Knutti ; Knutti et al. ; Raju & Nagesh Kumar

b). Gleckler et al. () suggested developing metrics to

characterise the GCM performance. This may facilitate identi-

fication of optimal subsets of GCMs for various applications.

Guilyardi et al. () viewed that metrics ‘should be concise,

physically informative, societally relevant & easy to under-

stand, compute and compare’. Gu et al. () expected that

metrics should (a) have the ability to distinguish between

good performance and poor performance, and (b) be compu-

tationally efficient, bounded and dimensionless. Similar views

were presented byMoise &Delage () andMcMahon et al.

(). Fahimi et al. () summarised various evaluation

indicators employed by various researchers in hydrological

modelling. The following sections present studies over differ-

ent geographical areas.

China

Gu et al. () evaluated 27 CMIP5-GCMs for seasonal and

annual surface air temperature and precipitation for five cli-

mate-based regions of China. Mielke measures, M1, M2 and

M3 were explored to evaluate GCMs. The GCMs, BCC-

CSM1.1(m), CanESM2, CMCC-CMS and CMCC-CM were

preferred for precipitation, while the GCMs, CMCC, BCC-

CSM1.1(m), IPSL-CM5A-MR, NCAR and MPI were pre-

ferred for temperature. Fine resolution improved the GCM

simulating ability especially for temperature. Bao & Feng

() conducted a similar study using 16 CMIP5-GCMs

for the Yellow River and Yangtze River basins in China for

precipitation, evaporation and water vapour transport.

Most GCMs had a tendency to overestimate precipitation

in the Yellow River basin. However, simulating capability

of GCMs was satisfactory in the Yangtze River basin. Jiang

et al. () evaluated 77 GCMs from Third Assessment

Report (TAR), CMIP3 and CMIP5 in simulating the mean

state and year-to-year climate variability over China and

the East Asian monsoon. Simulating ability of GCMs

improved from TAR to CMIP3 for both temperature and pre-

cipitation. However, simulating ability remained stable for

temperature and decreased for precipitation for CMIP5

from CMIP3.

Bannister et al. () evaluated 47 CMIP5-GCMs for

Sichuan basin in China for mean temperature, minimum
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
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temperature and maximum temperature with performance

indicator skill score (SS). They also formulated MME with

all GCMs with equal weightage. MIROC4h, IPSL-CM5A-

MR, CESM1(FASTCHEM), MPI-ESM-MR and MIROC5

were the top five GCMs for mean temperature; MIROC4h,

GISS-E2-R-CC and GISS-E2-H-CC in the case of minimum

temperature and CESM1(BGC), CCSM4 and CESM1

(FASTCHEM) for maximum temperature. However, SS of

MME was substantially lower than SS of the top GCMs

for mean temperature, maximum temperature and minimum

temperature. They concluded that determining the best

overall GCM was difficult. Wu et al. () evaluated six

CMIP5-GCMs for the Huaihe River basin in China for vari-

able precipitation. Indicators used were standard deviation

(σ), deterministic coefficient (DC), correlation coefficient

(CC), relative error (RE) and root mean square error

(RMSE). MME was performed by arithmetic mean (MME-

AM) and backpropagation neural network (MME-BP). The

relative order of simulation ability of GCMs on precipitation

process was BNU-ESM, MME-AM, CNRM-CM5, MRI-

CGCM3, MIROC-ESM, BCC-CSM1.1 and MPI-ESM-LR.

He et al. () evaluated nine CMIP5-GCMs, BCC-

CSM1.1(m), CMCC-CMS, CNRM-CM5, FGOALS-g2,

GFDL-ESM2G, INM-CM4, IPSL-CM5A-MR, HadGEM2-

AO and MPI-ESM-MR over China for temperature. RMSE

and CC were employed as indicators to evaluate GCMs.

GCMs, CMCC-CMS and MPI-ESM-MR, had higher capa-

bility in simulating spatial pattern and its decadal change

of climate zones. An MME with seven GCMs (except

FGOALS-g2 and INM-CM4) was formulated which was

found preferable to that of any single GCM. They preferred

MME to reduce uncertainty of GCMs.

Chhin & Yoden () evaluated 43 GCMs with 36

performance metrics for the Indo-China region for precipi-

tation. They provided different patterns of ensemble

average. Optimal ensemble subsets significantly improved

the monthly precipitation, as compared to full model ensem-

ble as well as best single GCM during the historical period.

Indian subcontinent

Jena et al. () evaluated 20 CMIP5-GCMs for the Indian

summer monsoon and CCSM4, CESM1(CAM5), GFDL-

CM3 and GFDL-ESM2G were the preferred GCMs. Sarthi
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et al. () evaluated 34 CMIP5-GCMs for the Indian

summer monsoon with indicators, Taylor diagram, SS, CC

and RMSE. The GCMs, MPI-ESM-MR, CESM1(WACCM),

CESM1(CAM5), CESM1(BGC), BCC-CSM1.1(m) and

CCSM4, captured precipitation effectively. Jain et al. ()

evaluated 28 CMIP5-GCMs for the Indian summer mon-

soon with indicator pattern correlation (PC). All GCMs

simulated seasonal mean surface air temperatures well

whereas performance was relatively poor for precipitation.

MIROC-4h was preferred as compared to the other GCMs.

Raju & Nagesh Kumar (b) evaluated precipitation for

73 grid points for Indian conditions. Eleven GCMs of

CMIP3 repository with indicators, CC, average absolute rela-

tive error (AARE), normalised root mean square error

(NRMSE), absolute normalised mean bias error (ANMBE)

and SS were considered. Weights of indicators were

obtained by entropy method; equal weights of indicators

were also used. PROMETHEE-2 (Preference Ranking

Organisation METHod of Enrichment Evaluation) was

employed to compute preference of GCMs. Ranking of

GCMs for Cauvery, Godavari, Mahanadi and Krishna

river basins was also performed. No single GCM was

found suitable for any of the Indian conditions and river

basins. An ensemble of HadGEM1, MPI-ECHAM4,

HadCM3, BCCR-BCCM2.0, MIROC3 and GFDL2.0 was

suggested for India; ensembles of GFDL2.0, CGCM2,

GISS, HadCM3 for Cauvery river basin; GFDL2.0,

MIROC3, BCCR, HadCM3, CGCM2, GFDL2.1 for Goda-

vari river basin; GFDL2.0, HadCM3, GFDL2.1, CGCM2,

ECHAM for Mahanadi river basin; and GFDL2.0, BCCR,

CGCM2, MIROC3, GISS for Krishna river basin.

Raju & Nagesh Kumar (a) evaluated precipitation

and temperature for 11 GCMs of CMIP3 repository for

India as well as Krishna and Mahanadi basins with the indi-

cator SS. Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) was employed to prioritise GCMs.

Ensemble of GFDL2.1, BCCR-BCCM2.0, MIROC3,

HadCM3, INGV-ECHAM4 and GFDL2.0 was found prefer-

able for India. The result of this study was contrary to the

study of Raju & Nagesh Kumar (b) as the ensemble

suggested was altogether different. This may be due to the

additional variable (i.e., temperature) used, the chosen

number of indicators and the chosen decision-making

technique.
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
Anandhi & Nanjundiah () evaluated 19 CMIP3-

GCMs for daily precipitation for the Indian region consist-

ing of six zones with indicator SS for three categories,

annual, June–October and non-monsoon seasons

(JFMAMND: January to May, November, December). No

single GCM has been diagnosed as suitable for all categories

and zones. Raju et al. () evaluated 36 CMIP5-GCMs for

India for maximum temperature and minimum temperature.

Indicators chosen were CC, NRMSE and SS. Compromise

programming (CP) technique was employed to prioritise

GCMs; group decision-making for facilitating aggregate

ranking for India. They also proposed MME, which they

claimed simple and effective. Meher et al. () evaluated

13 CMIP3-GCMs and 42 CMIP5 for the Western Himalayan

region for precipitation. Signal-to-noise ratio, mean annual

cycle, spatial patterns, trends and annual cycles of interann-

ual variability were the employed indicators. CMIP3-GCMs,

GFDL-CM2.1, GFDL-CM2.0 and MIROC3.2 (hires), and

CMIP5-GCMs, INM-CM4, MIROC5 and CESM1(BGC),

were graded as the most competent. Interestingly, some of

the coarser resolution GCMs were found to have improved

skills, compared to the finer resolution GCMs.

Panjwani et al. () evaluated 12 CMIP5-GCMs for

India for precipitation, minimum temperature and maxi-

mum temperature. They employed fuzzy analytic hierarchy

process (FAHP) and reliability index to assess their ability.

Indicators employed were agreement index (AI), RMSE

and CC. FAHP was found suitable to rank GCMs.

NorESM1-M for maximum temperature; MIROC5, GFDL-

CM3, FIO-ESM and IPSL-CM5A-LR for minimum

temperature; IPSL-CM5A-LR, GFDL-ESM2M, HadGEM2,

MIROC5 and CSIRO for precipitation were found suitable.

Pandey et al. () evaluated 24 CMIP5-GCMs for Upper

Narmada river basin (UNB), India. Six climate variables

were chosen. Indicators were SS, RMSE and total index

(TI). Three GCMs, MIROC5, CNRM-CM5 and MPI-ESM-

LR, were suitable GCMs. Sreelatha & Raj () evaluated

average temperature for Telangana region, South India.

Indicators chosen were SS, CC, normalised root mean

square deviation (NRMSD, Nash–Sutcliffe efficiency

(NSE), and absolute normalised mean bias deviation

(ANMBD). CP and group decision-making were considered

for ranking pattern. MIROC5, CNRM-CM5, ACCESS1.0

and BCC-CSM1.1(m) were found to be suitable GCMs.
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Khan et al. () evaluated 31 CMIP5-GCMs for the

variables precipitation, minimum temperature and maxi-

mum temperature for Pakistan. The chosen main indicator

was symmetrical uncertainty (SU). Six GCMs, MIROC5,

HadGEM2-ES, HadGEM2-CC, CMCC-CM, CESM1(BGC)

and ACCESS1.3, were the top ranked GCMs and they pro-

posed the same for MME. Mahmood et al. () used CC

and RMSE to evaluate five CMIP5-GCMs for Jhelum River

basin, Pakistan and India, for precipitation. GCMs were

found to lack the capability of capturing variation in the pre-

cipitation pattern. Latif et al. () evaluated 36 CMIP5-

GCMs for the Indo-Pakistan subcontinent for precipitation.

The indicator chosen was partial correlation (PAC). Three

GCMs, HadGEM2-AO, CNRM-CM5, and CCSM4 were

found relevant and expected relatively reliable future

projections.

Ahmed et al. () evaluated 20 CMIP5-GCMs for pre-

cipitation over Pakistan. Spatial indicators chosen were

Goodman–Kruskal’s lambda, Kling–Gupta efficiency, Map-

curves, fractional skill score (FSS), spatial efficiency metric

and Cramer’s V. GFDL-ESM2G, GFDL-CM3, CESM1

(CAM5) and NorESM1-M were preferred and used for

MME, performed with random forest (RF) and mean. RF-

based MME was preferred. They advocated the use of an

ensembling approach that would reduce uncertainties in cli-

mate projections. Ahmed et al. () applied wavelet-based

skill score (WSS), SU and CP for ranking 20 CMIP5-GCMs

for precipitation and for minimum and maximum

temperature over Pakistan. SU preferred CESM1(CAM5),

HadGEM2-AO, NorESM1-M and HadGEM2-ES; CP pre-

ferred CESM1(CAM5), HadGEM2-AO, NorESM1-M and

GFDL-CM3; WSS preferred CCSM4, CESM1(CAM5),

GFDL-ESM2G and HadGEM2-ES. MME of better perform-

ing GCMs captured return periods associated with observed

moderate and severe droughts. Ahmed et al. () evalu-

ated 36 CMIP5-GCMs for precipitation, minimum

temperature and maximum temperature over Pakistan.

They used Taylor skill score (TSS). HadGEM2-AO, CMCC-

CM, CESM1(CAM5) were the preferred GCMs. Optimum

ensemble of 18 top ranked GCMs was suggested.

In summary, for Pakistan, Khan et al. (), Latif et al.

(), Ahmed et al. (), Ahmed et al. () and Ahmed

et al. () considered six, two, three, four and 18 top

ranked GCMs for forming MME, respectively in their
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf

4

studies. Ahmed et al. () carried out an extensive and

informative literature review regarding optimum number

of GCMs for MME.

Middle East (Iran, Iraq, Syria)

Farzaneh et al. () evaluated four CMIP3-GCMs, CCSR,

CGCM2, CSIRO and HadCM3, for the Northern Karoon

region, Iran for precipitation and temperature and found

that HadCM3 was suitable due to more appropriate corre-

lation with the observed data. Afshar et al. () analysed

the Kashafrood mountainous watershed, Iran for precipi-

tation and temperature. They evaluated 14 GCMs of

CMIP5 repository with ratio of the root mean square error

to the standard deviation of measured data (RSR), percent

of bias (PBIAS), NSE and coefficient of determination

(R2). Preferred GCMs were GFDL-ESM2G, IPSL-CM5A-

MR, MIROC-ESM and NorESM1-M.

Zamani & Berndtsson () evaluated 20 CMIP5-

GCMs for temperature and precipitation. TOPSIS was

applied to rank GCMs for Bakhtegan (BKH), Zard River

(ZR), and Ghareso (GH) in west and southwest Iran. Indi-

cators were NRMSE, TSS, Brier score (BS) and SS.

MIROC-ESM, MPI-ESM-MR, MPI-ESM-LR and GFDL-

ESM2M were preferred for the ZR basin; BCC-CSM1.1,

CanESM2, MIROC5 and ACCESS1.0 for the BKH basin;

BCC-CSM1.1, CanESM2, ACCESS1.0 and NorESM1-M

for the GH basin.

Abbasian et al. () evaluated 37 CMIP5-GCMs for

Iran for precipitation and temperature. Evaluation statistics

were Kolmogorov–Smirnov (KS) statistic, CC, NSE, mean

bias, RMSE and Sen’s slope estimator. CMCC-CMS and

MRI-CGCM3 were preferred GCMs. Ehteram et al. ()

evaluated five CMIP3-GCMs for the Dez basin, Iran for pre-

cipitation and temperature. They used indicators RMSE,

mean absolute error (MAE) and CC. HadCM3 was the pre-

ferred GCM.

Doulabian et al. () evaluated 25 CMIP5-GCMs for

precipitation and surface air temperature (SAT) for six

synoptic stations in Iran. Indicators chosen were RMSE

and SS. They suggested suitable GCMs for each station, vari-

able and indicator. GCMs performed better in simulating

SAT compared to precipitation. As part of the literature

review, they also discussed various studies related to Iran.
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Homsi et al. () evaluated 20 CMIP5-GCMs for pre-

cipitation for a case study of Syria. The indicator chosen was

occurrence frequency of GCM. Employed ranking tech-

niques were SU and multicriteria decision technique.

HadGEM2-AO, CSIRO-Mk3.6.0, NorESM1-M and

CESM1(CAM5) were the preferred GCMs. RF-based ensem-

bling algorithm was performed to generate MME with four

selected GCMs. Khayyun et al. () evaluated 20

CMIP5-GCMs for precipitation for a case study of Iraq

with SU as the indicator. Four GCMs, HadGEM2-AO,

HadGEM2-ES, CSIRO-Mk3.6.0 and MIROC5, were found

to be suitable.

South Asia, East Asia and South East Asia

Le & Bae () evaluated 14 CMIP3-GCMs for temperature

and precipitation for the South Korean peninsula. Indicators

were CC and RMSE. CNRM-CM5, HadCM3, CSIRO-Mk3.0,

IPSL-CM4, NCAR-CCSM3, CCCMA- CGCM3_T47 were

the preferred GCMs. Prasanna () studied 12 CMIP5-

GCMs for their capability over South Asia using mean and

coefficient of variation (Cv). NORESM, MPI-ESM, GISS,

GFDL-ESM2M, CanESM, MIROC5, HadGEM2-ES,

CNRM and ACCESS were the preferred GCMs.

Tan et al. () chose six CMIP5-GCMs out of 18 for

Johor River basin, Malaysia for projection of precipitation

and temperature for hydrological impact assessment.

They strongly discouraged the use of projections produced

by a single GCM. Hussain et al. () evaluated 20 CMIP5-

GCMs for Rajang River basin (RRB), Sarawak, Malaysia

for precipitation. Indicators used were MAE, RMSE, CC

and normalised standard deviation (NSD). GFDL-

ESM2M, ACCESS1.3 and ACCESS1.0 were the preferred

GCMs and discouraged the use of a single GCM for cli-

mate change assessment. An overview of recent studies

over the South and South East Asian region was also pro-

vided by Hussain et al. (). Noor et al. () evaluated

58 CMIP5-GCMs for Malaysia for projection of precipi-

tation. Ratio of standard deviations (rSD), FSS, NRMSE,

modified index of agreement and PBIAS were the indi-

cators employed to evaluate GCMs. Four GCMs,

HadGEM2-ES, CCSM4, BCC_CSM1.1(m) and CSIRO-

Mk3.6.0 were preferred. MME of four GCMs was per-

formed with RF.
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
Ruan et al. () analysed 34 CMIP5-GCMs for precipi-

tation over the Lower Mekong basin, South East Asia. They

used improved rank score method that aggregates RMSE,

PBIAS, BS, linear correlation coefficient, Sen’s slope,

Mann–Kendall (MK) statistic and the significance score

(SIS). The top five preferred GCMs were MPI-ESM-LR,

IPSL-CM5A-MR, CMCC-CMS, CESM1(CAM5) and BNU-

ESM. Raghavan et al. () analysed ten CMIP5-GCMs

for South East Asia for precipitation. Indicators were

annual cycles, mean climatological spatial distributions,

regional area averages, RMSE, CC, empirical orthogonal

function (EOFs) and interannual variability. No GCM was

suitable for the chosen case study. Kamworapan &

Surussavadee () evaluated 40 CMIP5-GCMs for precipi-

tation and temperature in South East Asia. They employed

19 different performance metrics which included RMSE.

The ability of the preferred GCM was correlated with six

best GCM-ensemble and 40 GCM-ensemble for four cat-

egories. They recommended CNRM-CM5-2 and 6-GCM-

ensemble for climate studies in South East Asia. Sridhar

et al. () discussed the choice of GCMs for the case

study of Mekong basin for precipitation and temperature.

MIROC was preferred for the later part of the century.

IPSL and GFDL were preferred through the year 2040 for

projection of variables.

Australia

Perkins et al. () evaluated 14 GCMs of CMIP3 for pre-

cipitation, 13 for minimum temperature and ten for

maximum temperature for 12 regions of Australia employing

SS to evaluate the efficacy of GCMs. MIROC-m, CSIRO and

ECHO-G were the top three GCMs for all three chosen vari-

ables. They suggested omitting weak GCMs from MME as

these strongly biased the skill of MME. Suppiah et al.

() judged the performance of 23 GCMs for mean sea

level pressure, precipitation and temperature over the

Australian continent. Indicators were RMSE and spatial

correlation (SC) thresholds; accordingly, they identified 15

GCMs. Smith & Chandler () evaluated 22 GCMs for

precipitation for Australia.

Johnson & Sharma () proposed variable conver-

gence score (VCS) for Australia, which was used to test

the outputs of nine CMIP5-GCMs, eight climate variables
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and two emission scenarios. Pressure, temperature and

humidity had high VCS that influence the climate in Austra-

lia. Johnson et al. () evaluated 23 CMIP3-GCMs for

Southeastern Australia. Wavelet-based skill scores (WSS)

were used to compare GCM performance for sea surface

temperature, precipitation and surface pressure anomaly.

MPI-ECHAM5 was found to have the best performance

for all the chosen climate variables. Fu et al. () evaluated

25 CMIP3-GCMs for Southeastern Australia for air tempera-

ture, mean sea level pressure and precipitation. They used %

RE, NRMSE, CC, trend magnitude, MK test, EOF, BS and

SIS as indicators. Aggregation of all ranks for each GCM

for each variable in the form of rank score (RS) was com-

puted. CSIRO, MIROC-m and IPSL-CM4 were found to be

suitable. They also compared 25 CMIP3-GCMs with 40

CMIP5-GCMs. Out of 65 GCMs, CMIP3-GCM was found

to be the best. Wang et al. () evaluated 28 CMIP5-

GCMs for variable temperature. They used indicator, TSS

and selected the seven best GCMs and used the same for

MME for New South Wales (NSW) wheat belt in Southeast-

ern Australia. Comparison of two MME approaches,

arithmetic mean (AM) and independence weighted mean

(IWM) was made.

Africa

Hughes et al. () studied nine CMIP3-GCMs for their effi-

cacy to simulate precipitation for 15 catchments in five

regions of Africa. Evaluation measures included seasonal

skill, statistical skill and serial correlation skill. GISS,

CNRM and MPI were found to be more skilful with some

exceptions. However, differences were observed in skills of

GCMs between inland regions and coastal areas. They

suggested these GCMs for exploring as ensembles. Aloysius

et al. () evaluated 25 CMIP5-GCMs for Central Africa

for precipitation, mean surface air temperature, minimum

surface air temperature and maximum surface air tempera-

ture. Mean square error (MSE), spatial pattern correlation

(SPC) coefficient, spatial skill score were the indicators. It

was observed that GCMs simulate temperature better than

precipitation. Agyekum et al. () evaluated 18 CMIP5-

GCMs for precipitation in the Volta basin, West African

region. Indicators were σ, CC, RMSE. CESM1(BGC),

CCSM4, NorESM1-M, MPI-ESM-MR, and ensemble mean
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of all the 18 GCMs performed relatively well with small

biases over most parts of the basin.

Ongoma et al. () evaluated 22 CMIP5-GCMs for his-

torical simulations of precipitation for East Africa. CC, σ,

bias, PBIAS, RMSE and trend were the indicators. Perform-

ances of individual GCMs varied. Eight GCMs, MICROC5,

INM-CM4, EC-Earth, CSIRO-Mk3.6.0, CNRM-CM5,

CMCC-CESM, CESM1(CAM5) and CanESM2, performed

relatively well. However, they suggested improvement in

rainfall-related process in GCMs. MME of all GCMs was

formulated by assigning equal weights to all GCMs and it

was found that individual GCMs performed better than

MME. Similar views were expressed by Joubert & Hewitson

() for Southern Africa.
Europe

Jury et al. () evaluated a total of 81 realisations of 20

CMIP5-GCMs for reproducing near-surface variables for

European domain of the Coordinated Regional Climate

Downscaling Experiment (EURO-CORDEX). The indicator

was model performance index (MPI). MIROC4 h was found

to be suitable for the chosen region. Basharin et al. ()

evaluated 12 CMIP5-GCMs for the European region for

precipitation and temperature. GCMs well reproduced his-

torical tendencies of regional warming. CNRM-CM5,

GFDL-CM3, HadGEM2-ES, MIROC5, CanESM2 and

MPI-ESM-LR were the preferred GCMs.
America

Walsh et al. () analysed 15 CMIP3-GCMs for seasonal

cycle of precipitation, mean sea level pressure and tempera-

ture in Alaska and Greenland, North America with RMSE

as the indicator. No single GCM outperformed the other

GCMs for either all regions or all variables. GFDL-CM2.1,

MPI-ECHAM5, MIROC3 and HadCM3 were the preferred

GCMs for future projections. They also suggested a subset

of GCMs to narrow down uncertainty as well as for projec-

tions that were more robust. Radić & Clarke () evaluated

22 CMIP3-GCMs for number of climate variables. Indi-

cators were RMSE, model variability index (MVI) and

model climate performance index (MCPI). MRI-CGCM2.3.2,
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ECHAM5–MPI-OM and MIROC3.2 (hires) were the top three

ranked GCMs.

Anandhi et al. () evaluated 41 GCMs/realisations of

CMIP3 repository for the Catskill Mountain watersheds,

New York, having variable snow water equivalent with the

indicatorSS. GFDL2.0was found suitable. They also classified

GCMs into three groups based on SS, high (0.83–0.93),

medium (0.72–0.83) and low (0.26–0.72). Rupp et al. ()

evaluated 41 CMIP5-GCMs and 24 CMIP3-GCMs for the

Pacific Northwest and surrounding regions in the US. Climate

variables chosen were precipitation and temperature. Metrics

were amplitude of seasonal cycle, long-term persistence,

annual- to decadal-scale variance, diurnal temperature range,

variance of mean seasonal spatial patterns, correlation and

regional teleconnections to El Niño Southern Oscillation

(ENSO). CNRM-CM5, CESM1(CAM5) and CanESM2

favoured CMIP5-GCMs and few differences existed between

CMIP5 and CMIP3 with respect to the analysed statistics.

Gulizia & Camillonia () evaluated 19 CMIP5-GCMs

and 19 CMIP3-GCMs as well as a MME of eight GCMs for

South America. Variables were summer precipitation, winter

precipitation and annual precipitation. Indicators were

RMSE, SC, RE and relative bias. Best representation of the

observed patterns in most seasons and regions was reflected

in MME. However, MIROC4h of CMIP5 and MIROC3.2

(hires) of CMIP3 repository is better performed than the

ensemble in some regions and seasons. Venkataraman et al.

() analysed 21 CMIP5-GCMs for climate variables,

minimum surface air temperature, maximum surface air

temperature, average surface air temperature and monthly

precipitation in the state of Texas. Performance indicators

chosen were MAE and NSD. GCMs simulated historical

temperature better than precipitation. They suggested MME

of all 21 GCMs as compared to subset of GCMs.

Bhowmik et al. () evaluated ten CMIP5-GCMs for

conterminous United States with variable precipitation

having indicator RMSE. ACCESS and BCC-CSM emerged

as preferred GCMs. They proposed MME using equal

weighting, percentile and non-percentile-based optimal

weighting. Sensitivity analysis on ranking was also per-

formed. Ahmadalipour et al. () evaluated 20 CMIP5-

GCMs for temperature and precipitation in the Columbia

River basin (CRB) in the Pacific Northwest US. Indicators

used were (i) mean, (ii) σ , (iii) Cv, (iv) relative change
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
(variability), (v) Mann–Kendall (MK) trend and (vi) KS

test. GCMs in the order of decreasing ranking were

BCC_CSM1.1, GFDL-ESM2M, CCSM4, GFDL-ESM2G,

MIROC5, CanESM2, IPSL-CM5A-MR, IPSL-CM5B-LR,

IPSL-CM5A-LR and MIROC-ESM. Cheng et al. ()

evaluated six CMIP5-GCMs and their ensemble mean for

Athabasca River basin, Canada for precipitation, minimum

temperature and maximum temperature. Ensemble mean

did not outperform any GCM even though its overall accu-

racy was higher. It was suggested that GCMs be integrated

according to accuracy variations. Bhowmik et al. () eval-

uated ten CMIP5-GCMs for climate regions of the

conterminous United States for projection of precipitation.

No GCM was found to be dominant and a MME of ten

GCMs using equal weighting, percentile and non-percen-

tile-based optimal weighting was developed. Anandhi et al.

() evaluated 20 CMIP3-GCMs for New York City. Vari-

ables analysed were precipitation, minimum temperature,

maximum temperature, average temperature and wind

speed. The indicator used was SS. No single GCMwas ident-

ified as superior because different GCMs reacted differently

for different variables.

Other regions

Moise & Delage () evaluated 23 CMIP3-GCMs for the

South Pacific Convergence Zone for precipitation. Indi-

cators chosen were location metric and shape metric. It

was observed that a group of GCMs performed well for

one metric and not so well for the other metric. However,

GFDL-CM2.0, CCSM3 and PCM were found consistent

over both metrics.

Errasti et al. () evaluated 24 CMIP3-GCMs for the

Iberian Peninsula. Variables considered were precipitation,

temperature and mean sea level pressure; the indicator

used was SS. HadGEM1, BCCR-BCM2.0, GFDL-CM2.1,

MPI-ECHAM5 and MIROC3.2 (hires) occupied top pos-

itions. Barfus & Bernhofer () evaluated 12 CMIP3-

GCMs for the Arabian Peninsula for tropospheric stability.

Indicators used were cross totals index, sweat, k-index,

show alter index, vertical and total totals index. No GCM

was found to outperform other GCMs.

Su et al. () analysed performance of 24 CMIP5-

GCMs over the eastern Tibetan Plateau for temperature
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and precipitation. Climatological patterns and spatial vari-

ations of the observed temperature were reasonably

captured by GCMs. Salunke et al. () evaluated 28

CMIP5-GCMs for surface air temperature and precipitation

for the Himalaya-Tibetan Plateau. They employed PC and

RMSE as indicators for evaluating GCMs. CCSM4,

CESM1(CAM5), EC-Earth and IPSL-CM5A-MR best simu-

lated the surface air temperature, whereas EC-Earth and

MIROC5 best simulated the precipitation with high SPC

values and low RMSE. They suggested improvement in the

resolution and parameterisation schemes. Jia et al. ()

evaluated 33 CMIP5-GCMs for precipitation over the Tibe-

tan Plateau. They used improved rank score method which

is the amalgamation of mean value, σ, SC, temporal corre-

lation coefficient, MK test statistics, BS and SIS. CSIRO-

Mk3.6.0, EC-Earth, MRI-CGCM3, CNRM-CM5 and

CanESM2 were the preferred GCMs.

Perez et al. () evaluated 26 CMIP3-GCMs and 42

CMIP5-GCMs for the North-east Atlantic region. Variables

were precipitation, snow, storm surge and wave height. Indi-

cators used were scatter index (SI) and relative entropy (RE).

Three GCMs, MIROC3.2 (hires), ECHAM5/MPI-OM and

HadGEM2 of CMIP3 and seven CMIP5-GCMs, CMCC-CM,

MPI-ESM-P, HadGEM2-ES, HadGEM2-CC HadGEM2-AO,

ACCESS1.0 and EC-Earth were found to be the best. Ashofteh

et al. () analysed seven CMIP5-GCMs for simulating

runoff in the Aidoghmoush basin, East Azerbaijan. The per-

formance indicators used were NSE, CC, RMSE and MAE.

HadCM3 was the preferred GCM.
Global studies

Reifen & Toumi () evaluated 17 CMIP3-GCMs for pro-

jection of temperature. They recommended MMEs (six

GCMs to 16 GCMs) which produced better prediction capa-

bility than any single GCM. Cai et al. () evaluated 17

CMIP3-GCMs for their simulating capability of temperature

and precipitation. The indicator was SS. No single GCMwas

preferred for the whole world. Some GCMs are better for

certain particular regions. Schaller et al. () preferred

five best CMIP3-GCMs out of 24 for MME worldwide.

They used MME for projection of precipitation and

temperature.
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Macadam et al. () evaluated 17 CMIP3-GCMs for

the variables temperature and temperature anomaly for

worldwide, USA and Europe. The indicator used was SS.

They used the turnover concept to identify the best and

the weakest GCMs. First ranked GCMs for temperature in

the case of worldwide, USA and Europe were GISS-ER,

ECHAM5 and CCSM3, respectively. A similar trend was

observed for temperature anomaly. Watterson et al. ()

explored precipitation, temperature and mean sea level

pressure with non-dimensional arcsin Mielke measure M

as indicator. Twenty-five CMIP5-GCMs and 24 CMIP3-

GCMs were analysed for each continent and worldwide.

Overall, CMIP5 MME represented a modest improvement

in skill over CMIP3 for global land (excluding Antarctica)

and six continents. Mehran et al. () evaluated 34

CMIP5-GCMs for several parts of the world with Global

Precipitation Climatology Project (GPCP) data. CMIP5

simulations and GPCP patterns were in close agreement in

many regions. However, their replication is problematical

over arid regions and certain subcontinental regions.

Grose et al. () evaluated 27 CMIP5-GCMs and 24

CMIP3-GCMs for the western tropical Pacific for projection

of precipitation, temperature and mean sea level pressure.

Indicators used to evaluate GCM performance were

RMSE, SC and σ. CMIP3-GCMs that performed well were

CSIRO-Mk3.5, ECHO-G, GFDL-CM2.0 and MRI-

CGCM2.3.2 whereas CMIP5-GCMs that performed well

were ACCESS1.0, CCSM4, CNRM-CM5 and NorESM1-M.

They cautioned that selection of the best GCMs should

not be perceived as guideline for weighting or sub-setting

GCMs.

McMahon et al. () evaluated 22 GCMs of CMIP3

category for temperature and precipitation for global land

surface data obtained from the Climatic Research Unit. Indi-

cators used were NSE, RMSE and R2. HadCM3, MIROC-m,

MIUB, MPI and MRI were found to be preferred GCMs.

They also provided insights from 15 related papers with

various features. According to them, RMSE was the most

preferred indicator. Baker & Taylor () analysed 34

CMIP5-GCMs for top-of-atmosphere and surface radiative

flux variance with 44 performance indicators for clouds,

and the Earth’s radiant energy system observations and

GISS surface temperature analysis. CESM, ACCESS and

NorESM were the best performing GCMs.
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MULTI-MODEL ENSEMBLE OF GCMS WITHOUT
EXPLICIT EVALUATION

There are several studies where multi-model ensembles were

considered without explicit evaluation of GCMs. The

authors of these studies suggested MMEs based on perform-

ance of GCMs in previous studies, data availability, holistic

understanding of the case study and related analyses. Rel-

evant case studies in this perspective are as follows.
China

Tian et al. () employed four CMIP5-GCMs, BNU-ESM,

GISS-E2-R, MIROC5 and MPI-ESM-LR, for Xiangjiang

river basin in central China. These four GCMs are found to

capture the ‘major features of distribution and variability of

temperature and precipitation throughout China’. Wang

et al. () studied an ensemble of 29 CMIP5-GCMs for

Xiangjiang watershed and Manicouagan-5 watersheds in

China for precipitation, maximum temperature and mini-

mum temperature. They employed several weighting

schemes including reliability ensemble averaging (REA),

upgraded REA, Bayesian model averaging, etc. They assigned

weights to GCM simulations and investigated the impacts of

weights on quantification of hydrological impacts.
Indian subcontinent

Bae et al. () employed MME of three CMIP3-GCMs,

CGCM3_T47, CGCM2.3.2 and CM4 out of nine GCMs for

ascertaining the Asian monsoon region. Das & Umamahesh

() employed REA, Bayesian analysis and delta method for

combining six CMIP5-GCMs for Wainganga River basin,

India for discharge. Abeysingha et al. () used a hybrid-

delta method for combining 22 CMIP5-GCMs projections for

Gomti River basin, India for precipitation, minimum tempera-

ture,maximum temperature and average temperature. Saeed&

Athar () evaluated 22 CMIP3-GCMs for the projection of

temperature and precipitation in Pakistan and suggested

MMEs with all 22 GCMs. Bisht et al. () performed MME

of nine CMIP5-GCMs using the Taylor diagram statistics for

the projection of precipitation and temperature for different

homogeneous monsoon regions of India. MME was proposed
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
based on the competence of GCMs in dealing with the climatic

cycle for different homogeneous regions of India. MME was

found to simulate the seasonal cycle of the regions with reason-

able accuracy compared to IMD data. Vandana et al. ()

used a hybrid-delta ensemble method for combining 16

CMIP3-GCMs for Brahmani River basin, India for precipi-

tation and temperature. All these researchers employed MME

for impact and related studies using hydrological models.

Mustafa et al. () employed MME of 22 CMIP5-GCMs for

a drought-prone study area in Bangladesh.

Middle East (Iran and Iraq)

Osman et al. () projected daily precipitation based on

ensemble of seven CMIP3-GCMs, for three time periods for

a case studyofCentral Iraq. They treated eachGCMprediction

as an equally possible evolution of climate. Zamani et al. ()

developed an MME framework of 14 CMIP3-GCMs for pre-

cipitation and temperature for southwest Iran. They used a

mean observed temperature-precipitation (MOTP) approach

for MME. Saki et al. () considered MME of 14 CMIP5-

GCMs for projecting mean annual precipitation, maximum

temperature and minimum temperature for Isfahan province,

central Iran. They mentioned that selection of 14 GCMs is

mainly due to the availability of the data for the chosen

RCPs. Sayadi et al. () examined the impact of climatic

change on maximum temperature, minimum temperature

and rainfall using MME of 15 CMIP3-GCMs for Doroudzan

catchment, northeast Fars province, Iran for three time

periods. Vaghefi et al. () employed MME of five CMIP5-

GCMs, namely, NorESM1-M, GFDL-ESM2M, MIROC,

IPSL-CM5A-LR, HadGEM2-ES for rainfall, maximum temp-

erature, minimum temperature and occurrences of extreme

temperatures with reference to flooding for Iran. Nourani

et al. () considered CMIP5-GCMs, CanESM2, INM-

CM4, BNU-ESM and their ensembles for projecting tempera-

ture and mean monthly precipitation for Tabriz and Ardabil

in northwest Iran. These GCMs were chosen due to their suc-

cessful application in the case study area.

Canada

Minville et al. () used an ensemble of five CMIP3-GCMs

for Peribonka water resource system, Quebec, Canada. Most
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of these GCMs were used earlier as part of the Atmospheric

Model Inter-Comparison Project. Chen et al. ()

employed five weighting methods, random weights, equal

weights, REA, representation of annual cycle (RAC) in pre-

cipitation and temperature and upgraded REA for MME of

28 CMIP5-GCMs for Manicouagan 5 watershed, centre of

the province of Quebec, Canada. It was observed that

weighting of GCMs had limited impact.

Australia

Schepen & Wang () employed MME of six GCMs for

projecting Australian seasonal rainfall through Bayesian

model averaging (BMA). Yan et al. () considered

MME of seven CMIP5 – third phase of the Paleoclimate

Modeling Intercomparison Project (PMIP3) GCMs,

namely, MRI-CGCM3, MIROC-ESM, MPI-ESM-P, GISS-

E2-R, IPSL-CM5A-LR, CCSM4 and CNRM-CM5 for inter-

preting the Australian monsoon. These GCMs were found

to have a better performance in simulating the Australian

monsoon. Al-Safi & Sarukkalige () formulated MME

of eight CMIP5-GCMs for Richmond River catchment, Aus-

tralia. According to the authors, MME ‘effectively represents

the Australian future climate’. Wang et al. () considered

monthly rainfall and temperature for Australia with the

ensemble of 33 CMIP5-GCMs. Bayesian model averaging

(BMA), support vector machine (SVM), arithmetic ensem-

ble mean (EM) and RF were considered for ensembling.

RF and SVM are found to be preferred MME approaches.

They also classified GCMs into top, middle and bottom cat-

egory based on Taylor skill score observation. Al-Safi &

Sarukkalige () considered MME of eight CMIP5-

GCMs for projecting rainfall and temperature at Harvey,

Beardy and Goulburn catchments, Australia.

Africa

Adhikari & Nejadhashemi () employed an ensemble of

six CMIP5-GCMs, CanESM2, CCSM4, CSIRO-Mk3.6,

IPSL-CM5A-LR, MPI-ESM-LR and MRI-CGCM3, for

Malawi located in southeastern Africa. These GCMs were

chosen due to their capability to predict the seasonal

migration of the Inter-Tropical Convergence Zone that gov-

erns the precipitation in the Greater Horn of Africa.
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Akinsanola & Zhou () proposed MME of four CMIP5-

GCMs, CanESM2, INM-CM4, IPSL-CM5A-MR and

MIROC5, for the West African summer monsoon (WASM)

with respect to the present state and future changes. Selec-

tion of these GCMs were based on ‘their remarkable

performance in reproducing the rainfall characteristics

over West Africa’. Results from the historical period indi-

cated that ensemble mean reasonably reproduced the

characteristics of WASM rainfall.

Europe

Jackson et al. () used ensembling of 13 CMIP3-GCMs for a

case study area 70 km west of London for analysing ground-

water resources in the uncertain perspective. Hagemann

et al. () employed MME of three CMIP3-GCMs,

ECHAM5, IPSL, LMDZ-4 and CNRM-CM3 for precipitation,

temperature and other climate variables along with eight

hydrological models and used the data of WATCH project.

The selection of GCMs was based on the available data. How-

ever, they demonstrated that uncertainty in selection of

hydrology model was larger than that of selection of GCMs.

Claudia et al. () employed four CMIP5-GCMs for case

study of Alto Sabor watershed, northeast Portugal. Saraiva

et al. () studied an ensemble of 21 scenario simulations

driven by four CMIP5-GCMs, MPI-ESM-LR, EC-Earth,

IPSL-CM5A-MR and HadGEM2-ES for the Baltic Sea and

uncertainty in projections was due to GCMs. Niel et al. ()

employed MME of 24 CMIP5-GCMs with 93 simulation runs

for the case study of the Grote Nete catchment and the Dijle

catchment, Belgium, for assessing flow extremes. Amraoui

et al. () employed seven CMIP3-GCMs, ARPV3,

CCCMA-CGCM 3, MRI-CGCM2.3.2, GFDL-CM2.0, GFDL-

CM2.1, GISS and MPI-ECHAM5 for ensembling and projec-

tion of precipitation and other climate variables for the

Somme River basin, northern France.

America

Schuster et al. () used MME of 14 CMIP3-GCMs for pro-

jection of precipitation for the state of Wisconsin, US.

Acharya et al. () used MME of 16 CMIP3-GCMs for pro-

jection of temperature and precipitation for North Platte

River watershed, in the states of Wyoming and Colorado,
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US. Daraio () used MME of 13 CMIP5-GCMs for the

case study of the outer coastal plain of New Jersey, the

Upper Maurice River and the Batsto River, US. Acharya

() employed 36 CMIP5-GCMs for the case study of

Flint River watershed in Northern Alabama, US. Sultana

& Choi () used seven CMIP5-GCMs for an American

river basin, a snow-dominated alpine watershed in Northern

California and GCMs were chosen based on their previous

performance. Mani & Tsai () combined 13 CMIP5-

GCMs for south Arkansas and north Louisiana, US using

hierarchical Bayesian model averaging (HBMA), simple

model averaging (SMA) and REA. HBMA performed mar-

ginally superior to REA and SMA in simulating the

historical mean discharge.
OBSERVATIONS AND DISCUSSION

As discussed earlier, several researchers worked on perform-

ance indicators, ranking of GCMs and ensembling of GCMs

on different aspects. Related observations and discussion are

presented in the following sections.
Number and type of indicators

Observation:Most of these studies did not report the basis of

selecting indicators. Smith & Chandler () concluded

that no universally agreed criterion existed for the assess-

ment of GCMs.

Discussion: The fundamental question arises whether

these many indicators are necessary to evaluate GCMs. Four

perspectives exist in this direction, which are independent of

each other and can be considered as possible alternatives:

1. Any one indicator will suffice for evaluating the perform-

ance ability of GCMs to simulate observed data on the

assumption that all indicators are equally capable. The

indicator can be either SS, based on probability density

functions, or a much simpler indicator such as RMSE,

or any other similar indicator.

2. The indicator can be selected category-wise (example:

one from error, one from correlation coefficient, one

from skill score). If required, a composite indicator can

be formulated.
://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
3. Compute weights of chosen indicators using either a

rating method, analytic hierarchy process (AHP) or

their fuzzy extension. Accordingly, for evaluation, the

highest weighted indicator can be considered.

4. Lastly, the principal component analysis of indicators

can be explored for dimension reduction, to arrive at

(say) two components which will be sufficient and

useful for evaluating the GCMs.

We suggest, these perspectives can be considered as a

future research area.
Handling uncertainty in indicators

Observation: There may be imprecision in observed data

and GCM simulated data leading to imprecision in

the evaluation of GCMs. In addition, interpolation,

averaging procedures and approximations can also cause

imprecision. These inherent uncertainties were ignored by

many researchers (Gu et al. ; Ahmed et al. ).

Discussion: One way of representing uncertainty relates

to probability and another way to fuzzy logic. The first

approach is based on distribution functions and hypothesis,

whereas the second approach is based on membership

functions and natural language. Fuzzy logic is becoming

prominent due to its simple mathematics and seamless

extension with classical logic. For example, crisp-based

decision-making techniques can be easily extended to

fuzzy-based by incorporating membership functions with

classical logic mathematics intact.

One of the remedies is to provide an uncertainty allo-

cation for each indicator in a fuzzy logic framework in the

form of a triangular membership function, as shown in

Figure 1, or trapezoidal, Gaussian, etc. In the triangular

membership function, q represents the most likely value,

whereas p and r represent the extreme values (lower and

upper bounds). For example, let the evaluation indicator

have most likely value of 0.6 for a GCM; by assuming devi-

ation of (say) ±10%, i.e., 0.06. Then the indicator value in

the triangular membership framework is (0.54, 0.6, 0.66),

respectively, representing (p, q, r). If the researcher feels

that all simulated and observed values are precise, data

will be represented as (0.6, 0.6, 0.6). Raju & Nagesh

Kumar (b) used the standard deviation as the uncertain
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measure. However, the uncertainty allocation depends on

the individual choice of the end user. Table 1 presents

hypothetical data representing uncertain allocation of indi-

cators that can be utilised while ranking GCMs. For

example, GCM1, GCM2, GCM N can be any GCM of

CMIP3 or CMIP5 repository.

However, the impact of these variations can be tested as

part of sensitivity analysis, if necessary. Mathematical

expressions for NSE, CC, RMSE and procedure of relevant

computations are presented in Raju & Nagesh Kumar

(b).
Ranking of GCMs

Jain et al. () suggested selection of GCMs which would

work for all climate variables as well as for all seasons.

They cautioned that the outcome would be based on the

chosen diagnostics and GCMs. The following common

observations have emanated from the studied research

papers on ranking of GCMs.
Table 1 | Hypothetical data representing uncertain allocation of indicators

Model

NSE CC

[p q r] [p

GCM 1 0.649 0.806 0.964 0.390

GCM 2 0.670 0.828 0.985 0.436

….. …. …. …. ….

GCM N

om http://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
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Observation:

• No logic of choosing X GCMs from Y

• No unanimity on the choice of GCM selection approach

• No complex ranking techniques to handle imprecision in

data or resulting imprecision in indicators.

Discussion: Simple crisp decision-making techniques

can handle unique value for each indicator. They may not

suffice for the problem when data are imprecise that require

consideration of uncertainty (Raju & Nagesh Kumar a).

Keeping this in view, (a) fuzzy logic-based decision-making

techniques and (b) stochastic-based decision-making tech-

niques are proved to be useful. Some of them are:

(a) Fuzzy-based decision-making techniques
q

0

0

…

• Similarity analysis – GCM with a higher degree of

resemblance relative to a bench marking GCM was

treated as suitable (Chen ). The performance

indicators were expressed by interval valued fuzzy

sets.
RMSE

r] [p q r]

.466 0.578 0.714 0.788 0.863

.534 0.687 0.704 0.778 0.853

. …. …. …. ….
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• Fuzzy Technique for Order Preference by Similarity

to an Ideal Solution (F-TOPSIS) – It is based on the

philosophy that suitable GCM should have the short-

est distance from a positive ideal solution and the

farthest distance from the negative ideal solution.

F-TOPSIS computes positive separation measure

Dþ
i from positive ideal solution, the negative separ-

ation measure D�
i from negative ideal solution, and

the closeness index Ci. The higher the Ci value, the

better the GCM. Here, the payoff matrix can follow

triangular, trapezoidal or any appropriate format

(Opricovic & Tzeng ; Behzadian et al. ).

• Fuzzy VIseKriterijumska Optimizacija I Kompro-

misno Resenje (F-VIKOR) – It is based on

normalised fuzzy difference. F-VIKOR computes sep-

aration measures from the ideal and negative ideal

and the summation operator Qi with the given strat-

egy weight. GCM with lower Qi value was preferred

(Wu et al. ; Ploskas & Papathanasiou ).
Fuzzy-based algorithms discussed here and elsewhere

(Chen & Wang ; Marttunen et al. ; Chu & Yeh ;

Pei et al. ) help to tackle uncertainty in ranking of GCMs.

(b) Stochastic-based decision-making techniques

In this type of approach, mean and standard deviation

play major roles along with other parameters. Notable tech-

niques in this category are extended TOPSIS in stochastic

environment (Xiong & Huan ), stochastic VIKOR

(Tavana et al. ) and Stochastic Preference Ranking

Organization METHod for Enrichment of Evaluations

(PROMETHEE) (Mareschal ; Goodwin et al. ).

Celik et al. () carried out a comprehensive discussion

on stochastic decision-making and probability distribution

functions. They also discussed the relevant potential

research areas. In our opinion, ranking of GCMs can also

be performed in the stochastic decision-making arena

which was not explored by many researchers.
Ensembling of GCMs

Numerous researchers suggested multi-model ensembling of

GCMs. One group of researchers evaluated GCMs based on

performance measures and ranking, whereas other groups of
silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
researchers evaluated GCMs based on their expertise, holistic

understanding about the case study and related results.

Observation: No logic of how many GCMs can be part

of ensembling

Discussion: Limited research work was performed on

this aspect. Some of the relevant and promising studies

worth replicating are as follows.

Raju & Nagesh Kumar () applied cluster analysis in

associationwith cluster validationmethods, namely, F-statistic

and Davies–Bouldin Index for identifying optimal ensemble.

They evaluated 36 CMIP5-GCMs for minimum temperature,

maximum temperature and the combination of maximum

and minimum temperature over India. The indicator was SS.

Optimal clusters for minimum temperature, maximum temp-

erature and the combination of maximum and minimum

temperature scenarios were of two, three and two GCMs,

respectively. Accordingly, respective ensembles of GCMs

suggested were (ACCESS1.3, HadCM3), (HadCM3, IPSL-

CM5A-LR, GFDL-ESM2M) and (MPI-ESM-MR, HadCM3).

Mendlik & Gobiet () developed a subset of represen-

tative GCMs using principal component analysis and cluster

analysis. They studied their methodology using ENSEM-

BLES project. Herger et al. () analysed 81 CMIP5

simulations for identifying ensemble subset K. They proposed

three approaches: (a) random ensemble, (b) performance

ranking ensemble and (c) optimal ensemble. Optimal ensem-

ble approach was found computationally efficient, with

sufficient spread in projections as compared to (a) and (b).

They used RMSE for their computations. More details can

be obtained from Herger et al. ().

Ahmed et al. () employed machine learning algor-

ithms, namely, relevance vector machine (RVM), support

vector machine (SVM), and artificial neural network

(ANN), K-nearest neighbour (KNN) to establish MMEs for

annual, monsoon and winter climate variables and found

that KNN and RVM based MMEs showed better skills.

They also used top ranked approach and bottom ranked

approach to ascertain robustness of MMEs. It is suggested

to refer to Ahmed et al. () for extensive and informative

details regarding machine learning algorithms that can be

used as a guideline for MME of GCMs. Readers can refer

to Ahmed et al. (, , ) regarding various chal-

lenges and extensive discussion and logic of choosing

GCMs from repositories.
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Some data mining algorithms that facilitate clustering of

GCMs are also briefly described below:

• K-means cluster analysis can group GCMs into relatively

homogeneous clusters, that is, GCMs in a cluster expect-

edly more analogous to each other than those in the

other clusters (Raju & Nagesh Kumar , ). In

brief, the procedure of K-means is as follows: (1) initiating

with a random number of clusters and allotment of each

GCM into a cluster; (2) calculation of group average for

each cluster and total error; (3) iteration and classification

of GCMs such that termination criterion can be met; (4)

estimation of total error for K clusters; (5) repeating of

steps 1–4 for various clusters; (6) analysis for optimal K

if required.

• Fuzzy cluster analysis (FCA) is a classifying algorithm

wherein each GCM is related to a cluster with some

degree of membership. The procedure of computations

is similar to that of K-means algorithm. Degree of mem-

bership of each GCM may alter from cluster to cluster

bounded by zero to one, on the philosophy that the

sum of the membership values for each GCM is one

(Raju & Nagesh Kumar ).

• Kohonen artificial neural networks (KANN) is a self-

organising mapping technique comprising competitive

layers that use the learning rule to cluster GCMs. Each

neuron in the output layer is inter-connected to all

those in the input layer by a set of weights (Kohonen

; Raju & Nagesh Kumar , a).

• ELECTRE-TRI assigns GCMs to some predefined

ordered clusters (Rogers et al. ; Raju et al. ).

The limit between two consecutive clusters is demarcated

by a profile. Clusters are mutually exclusive which means

that one GCM cannot be entrusted to two different clus-

ters. Construction and exploitation of an outranking

relation is the basis for allotting GCMs to clusters.

For clustering algorithms, the number of clusters is an

input. However, it is challenging to manually estimate opti-

mum clusters for a set of GCMs. In this context, cluster

validation techniques play a significant role in finding the

optimal number of clusters. Detailed information about

cluster validation techniques and their applications are

available (Halkidi et al. ; Hämäläinen et al. ).

Details of some of the validation indices, Dunn’s,
om http://iwa.silverchair.com/jwcc/article-pdf/11/3/577/716759/jwc0110577.pdf
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Calinski–Harabasz, Davies–Bouldin, Silhouette and exter-

nal validation indices are available in Halkidi et al.

(), Dalton et al. () and Hämäläinen et al. ().

Most of these validation techniques work with inter-cluster

and intra-cluster distances.

To augment the earlier studies on the topic:

• Researchers can use published literature to select suitable

GCMs and ensembling for their study area.

• Research institutions can take the lead, and region-wise

ranking of GCMs may be done (if not done already or out-

comes of previous studies not confirmed) in a robust

manner. These GCMs can be frozen to avoid repetitive

efforts of researchers. Time thus saved, can be utilised

for analysing the projected outcomes and validating them.

• One of the crucial aspects in assessment of GCMs is com-

parison with observed data which may have such

limitations such as, accessibility to all researchers, authen-

ticity, confidence in the data, acquisition procedures and

permissions to use the data. It is suggested to have a cen-

tral database at least for each country where data can be

easily accessible. In our opinion, more accessibility of

data to users may provide better outcomes which may pro-

vide confidence zones to planners for impact studies.
SUMMARY AND CONCLUSIONS

This state-of-the-art review paper has provided insights into

mainly three aspects – performance indicators, ranking of

GCMs and ensembling of GCMs. This study discussed the

role of performance indicators, various types of performance

indicators, necessity of GCM evaluation and relevant chal-

lenges and the basis of MME. Future research directions can

be in terms of handling uncertainty in indicators, and ranking

of GCMs both in fuzzy- and stochastic-based decision-making

perspectives. In addition, various relevant MME-based

approaches that provide optimum ensembling are also pre-

sented. In addition, a number of techniques which facilitate

ranking and ensembling are also part of the paper.

Brief but relevant conclusions are as follows:

1. Most of the researchers opined that selection of suitable

GCM(s) is necessary for impact studies with the under-

standing that past skill assessment of GCM(s) might

help improved projections of climate variables.
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Accordingly, related components such as performance

measures and suitable decision-making technique(s)

played a leading role in the studied papers.

2. Research papers studied here and elsewhere identified a

number of sources of uncertainty which, in fact, effect

the accuracy of projections. MME approaches proposed

by various researchers have been found promising and

replicable in reducing the uncertainties of projections.

Subsets of GCMs/efficient GCMs can be part of MME

that serves the purpose.

It may be noted that the inferences provided in this

review paper are based on interpretation from the reviewed

research papers.
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