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ABSTRACT

Regular monitoring of inland water bodies is essential to identify the areas of deteriorating water quality and to take measures to curb the

impairment. The present study aims to develop a semi-analytical model for estimating Trophic State Index (TSI) from Sentinel 2 (S2) imagery. A

semi-analytical algorithm, QAA-v6, is parameterized for S2 data (referred to as QAA-S2) based on the correlation between the retrieved

inherent optical properties (IOPs) from S2 imagery and the measured TSI data of Milford Lake in the USA. The accuracy of estimation of

TSI by this modified model from three different lakes located in USA and from one lake in India has increased by almost 50%, when compared

with that of QAA-v6. A correlation analysis of the retrieved IOPs from QAA-S2 using the outputs of three atmospheric correction processors

(ACPs) (namely C2RCC, Acolite and Sen2Cor) was carried out and C2RCC gave the least mean absolute percentage error (MAPE,8%) for TSI

estimation. TSI estimation using single-scattering albedo (u) at B5 and B6 bands of S2 was reasonable (MAPE,12%) to mark them as com-

putationally efficient estimators of TSI. These results indicate the usefulness and transferability of the QAA-S2 to the various parts of the globe

for estimating TSI.
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HIGHLIGHTS

• A parameterized semi-analytical model (QAA-S2) is proposed for the estimation of TSI from Sentinel 2 imagery.

• C2RCC-retrieved reflectance data provide the best results for the model; three atmospheric correction processors, namely C2RCC, Acolite

and Sen2Cor, are compared.

• Single-scattering albedo at B5 and B6 of S2L1C and indices derived from backscattering coefficients are identified as good estimators

for TSI.
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GRAPHICAL ABSTRACT
INTRODUCTION

Remote sensing has been of interest to researchers and environmentalists owing to its ability to get a synoptic view and a real-

time source of information about the topic of interest (García 2021). The potential of satellite remote sensing has been effec-
tively used for water quality monitoring of oceans. Retrieving of bathymetric information, water colour, temperature, salinity
and concentration of optically active constituents (OACs) from oceans is carried out competently with the aid of ocean moni-

toring satellites. Satellite remote sensing has been used on coastal waters and estuaries for wetland mapping, shoreline
changes (Cham et al. 2020), bathymetric studies and submerged vegetation studies. However, its application in the area of
water pollution monitoring is still in the developing stage and has not reached satisfactory levels.

The models for retrieving information about water quality from satellite imagery can be grouped into empirical, semi-
analytical and analytical. Semi-analytical algorithms lie midway between the empirical models and analytical models. The
Quasi-Analytical Algorithm (QAA), developed by Lee et al. (2002), is a semi-analytical model that estimates the concen-
trations of OACs (namely Chlorophyll-a (Chl-a), Coloured Dissolved Organic Matter (CDOM) and non-algal particles

(NAPs)) present in a water body from the above-surface remote sensing reflectance (Rrs) sensed from it. In that algorithm,
the radiative transfer equations (RTEs) are used to retrieve the inherent optical properties (IOPs) of OACs from Rrs (Zhu
& Yu 2013). Ocean monitoring satellites like MODIS and MERIS have been developed with the spectral resolutions necess-

ary for these algorithms and they have been effectively used as a real-time water quality monitoring tool for oceanic water
bodies. But the spatial resolution of these satellite imagery is inadequate to capture the variability in inland water bodies.
The other challenges in using the QAA for coastal and inland water bodies are the complex uncorrelated relationships
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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between the constituents like sediments, organic and inorganic matter present in them and their unpredictable temporal and

spatial variabilities.
Another major limitation in using satellite imagery as input in the QAA is their atmospheric interference that accounts for

80–90% of the received signal. The errors in the retrieval of the corrected spectrum greatly influence the accuracy of the

model. The inability of the spatial resolution of ocean colour sensors to capture the variability in inland water bodies and
the absence of fine spectral bands required for the QAA in multispectral land monitoring satellite missions have limited
the employment of this algorithm for inland quality monitoring. Most of the studies used in situ spectral measurements
for the development and validation of the QAA for inland water bodies (Warren et al. 2019). Hence, it is the need of the

hour to parametrize the QAA to suit the resolutions of multispectral satellite imagery without compromising its efficiency.
The QAA is a set of analytical and empirical steps developed from in situ measurements and online databases (Inter-

national Ocean Colour Coordinating Group (IOCCG) synthetic data and NASA Bio-Optical Marine Algorithm Data Set

(NOMAD) databases) of Rrs and IOPs. The algorithm generalizes the spectral behaviour of the OACs and any deviation
from this behaviour affects the accuracy of the model. A thorough knowledge of the spectral behaviour, composition and
origin of the OAC is necessary for the accurate application of the algorithm. In other words, the concentration, composition

and inter-relationship of OACs are to be well understood. Hence, the partitioning of the IOPs from the total IOP is a major
uncertainty in this method (Watanabe et al. 2016; Li et al. 2017). Instead of using the individual concentrations of OAC as the
parameter for quality monitoring, the Trophic State Index (TSI), an overall index representing the impact of all the constitu-

ents present in the water body, can be utilized as the quality indicator. Theoretically, it should be correlated to the total IOPs
of the water body. The TSI was developed by Carlson (1977) and has been adopted by ecologists and limnologists as a tool for
monitoring and managing inland water bodies (Papoutsa et al. 2014). Using the TSI as the water quality parameter helps in
evading the drawback of the extensive data required for the portioning of the total IOP into that of the respective OACs. The

correlation between the total IOP of the water body and the TSI may be utilized for parametrizing QAA.
The TSI can be computed from log-transformed values of Secchi depth (SD), Total Nitrogen (TN), Total Phosphorus (TP)

or Chlorophyll-a (Chl-a). Though all the four parameters are correlated, only SD and Chl-a are optically active and detectable

by remote sensing techniques. Retrieval of Chl-a by QAA requires Rrs at 412 nm (unavailable in S2) and 443 nm (blue band).
Studies on the efficiency of atmospheric correction processors (ACPs) have mentioned the higher uncertainties in the retrie-
val of the blue band (Warren et al. 2019; Renosh et al. 2020). Hence, it is better to avoid these bands while using satellite

imageries for QAAs on water bodies. SD is highly correlated to turbidity and suspended matter, both of which are detectable
from the red bands (Zheng & DiGiacomo 2017). Hence, TSI(SD) (TSI derived from SD) would be correlated to IOPs at these
bands. Thus, the possibility of a relation between TSI(SD) (hereafter mentioned as TSI) and IOPs (namely absorption coeffi-
cient ‘a’, backscattering coefficient ‘b’ and single scattering albedo ‘u’) is worth exploring. A few studies have attempted to use

remote sensing for quantifying TSI with airborne sensors, Landsat imagery and IRS LISS imagery (Papoutsa et al. 2014).
However, they were focused on developing multiple regression models between the TSI and top of atmosphere (TOA) reflec-
tance data of the study area, and these models had limited transferability to other areas. Moreover, the possibility of deriving

TSI by semi-analytical methods has been rarely explored.
Sentinel 2 (S2), commissioned in 2016, has been of interest to researchers because of its improved spatial, spectral and tem-

poral resolutions suitable for monitoring of inland water bodies. The red-edge bands (B5-704 and B6-740 nm), absent in most

other terrestrial satellites, is an added advantage of S2 and the potential of these bands for water quality monitoring has not
been adequately explored.

From these discussions, it is revealed that a semi-analytical algorithm for estimating the TSI of an inland water body from

S2 imagery has not been previously developed and/or validated. Also, the QAA has not been parametrized for S2 imagery.
Hence, the objective of the present study is to develop a model for mapping the trophic status (TSI) of an inland water body by
using the semi-analytically derived IOP from Sentinel 2 Level 1C (S2L1C) imagery. The study focuses on parameterizing
QAA for S2L1C data so that the capabilities of S2 may be utilized for estimating the quality of inland water bodies. As

the QAA requires bottom of atmosphere (BOA) reflectance and the S2L1C gives the TOA reflectance, a suitable ACP that
would provide the closest above-surface (BOA) reflectance data needs to be identified. BOA reflectance (Rrs) from three
ACPs, namely Case 2 Regional Coast Colour (C2RCC), Acolite and Sentinel 2 Correction (Sen2Cor), are used as inputs in

the model and the difference in the retrieved IOPs using these three datasets is analysed to explore the effect of the ACP
on the efficiency of the algorithm.
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MATERIALS AND METHODS

Study area

The area chosen for study is Milford Lake, Kansas, USA (Figure 1(a)) which is a man-made reservoir, fed by the Republican

River. It has a surface area of 64 km2 and a catchment area of 6,200 km2. The catchment consists of cropland (51%), grass-
land (36%) and urban area (13%). The lake has been categorized by the Kansas Department of Health and Environment
(KDHE) as a water body that needs restoration of water quality (Nejadhashemi et al. 2009). Nutrients from fertilizer

runoff are the major cause of the water quality deterioration of the lake.
Three lakes in the USA (Conroe Lake, Canyon Lake and Texoma Lake) (Figure 1(b)–1(d)) and a lake in India (Vembanad

Lake, Kerala) (Figure 1(e)) were chosen for validation. The lakes in the USA were chosen based on the availability of turbidity

measurements from the USGS dataset and cloud-free S2 L1C imagery.
The area chosen for study from India is the Vembanad Lake located in Kerala. The lake is the longest (96 km) in India, the

largest in Kerala and one of the three protected Ramsar sites in Kerala. Various studies conducted on the environmental

status of the lake have revealed its deteriorating condition due to anthropogenic activities. In situ measurements were
taken from two regions of this lake: Kochi Kayal in the north and Punnamada Kayal in the south (Figure 1(e)).
Figure 1 | Study area.

://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf



Table 1 | Details of study area, dates of sample collection and satellite sensing date

Study area Surface area of lake (km2) No. of sample points Date of sample collection Sensing date of image

Milford Lake, Kansas 64 26 10 July 2018 9 July 2018
26 9 August 2018 3 August 2018
13 16 October 2018 22 October 2018
13 17 October 2018

Texoma Lake, Texas 360 6 3–4 August 2020 2 August 2020

Conroe Lake, Texas 84 7 4 February 2020 6 February 2020

Canyon Lake, California 1.55 3 12 June 2020 1 June 2019

Kochi Kayal 2,033a 24 26 January 2021 26 January 2021

Punnamada Kayal 16 13 March 2021 14 March 2021

aSurface area of the Vembanad Lake.
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The details of these lakes with the dates of sample collection, satellite sensing date and the number of sample points are
given in Table 1.
Satellite data

S2L1C imagery was used for the study. S2 is a multispectral satellite mission commissioned by the European Space Agency

(ESA) in July 2015. The imagery provides radiometrically and geometrically corrected TOA reflectance in 13 bands: four in
the visible region, six in the near-infrared (NIR) region and three in the short-wave infrared (SWIR) region. The bands in the
visible region, B2–B4 and the NIR band B8 have a spatial resolution of 10 m. Bands B5–B7 have 20 m spatial resolution,

whereas B1, B9 and B10 have 60 m spatial resolution. The bands B8A and B9 are water vapour retrieval bands. Three
bands in red-edge B5–B7 (central wavelength at 704, 740 and 780 nm) with a spatial resolution of 20 m is an advantage of
S2L1C imagery. The high temporal resolution of 5 days (2–3 days for mid-latitudes) combined with its better spatial resolution
and free availability has made it an extremely useful resource for research purposes. Sentinel data are freely downloadable at

Copernicus Open Access Hub (https://scihub.copernicus.eu; accessed 21 June 2021).
The pre-processing and analysis of the imagery were carried out by using SeNtinel Application Platform (SNAP) software

(version 8.0.2) developed by the ESA. SNAP consists of several open-source toolboxes and bundled packages for processing

MERIS, Sentinel and Landsat imageries. The pre-processing steps include resampling the imagery to 10 m spatial resolution
and clipping the area of interest from the downloaded images.

Three ACPs were used in this study: C2RCC, Acolite and Sen2Cor. Sen2Cor and C2RCC are available as plugins in SNAP.

Acolite is a stand-alone processor.
Water quality data

Water quality data of all the lakes in the USA were downloaded from the USGS National Water Information System (https://
nwis.waterdata.usgs.gov; accessed 21 December 2020). The in situ measurements of Milford Lake were used for the devel-

opment of the model. The data from other lakes are used for validation.
A field campaign was carried out to obtain turbidity and spectral measurements from Kochi Kayal and Punnamada Kayal,

Kerala. Water samples from 26 points in Kochi Kayal and 16 points from Punnamada Kayal were collected in PET bottles and
stored in ice bags until they were tested in the laboratory. Turbidity readings were calculated using Eutech ECTN-100IR. The

geographic coordinates and in situ spectral measurements were taken at the sample locations using SVC HR 512i spectro-
radiometer. The wavelength range of the instrument is from 350 to 1,050 nm with a nominal spectral resolution of less
than 1.5 nm. The spectral measurements in radiance (sr�1) and reflectance% are obtained as outputs from the instrument.

The reflectance spectrum was used for the study. Measurements were carried out as per protocol and readings were taken
from 10.30 a.m. to 12.00 p.m. and then from 2.00 p.m. to 3.30 p.m. on the days of measurement. Three to four readings
were taken at each point. The averaged spectrum at each point was then convoluted to simulated S2 bands by the following
om http://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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equation:

Rrs(Bi) ¼
Ð lmax

lmin
SRF(l) � Rrs(l)dlÐ lmax

lmin
SRF(l)dl

, (1)

where Rrs (Bi) is the simulated band reflectance of the Bith band of S2L1C; λmin and λmax are the starting and ending wave-
lengths of band Bi and Rrs is the reflectance measured by the spectroradiometer at λ, SRF is the spectral response function of

S2L1C downloaded from ESA document library (https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-
library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses; accessed 15 April 2021). The simulated
spectrum was then compared with the atmospherically corrected BOA spectrum obtained from the three processors to
assess their accuracy.
METHODS

Atmospheric correction processor

C2RCC developed by Doerffer & Schiller (2007) was available in S2 toolbox under the thematic water processing menu of

SNAP. The C2RCC processor uses artificial neural networks (ANNs) based on a large database of simulated water-leaving
radiances and related TOA radiances. Around 5 million cases generated from in situ measurements obtained from
NOMAD database, Coastcolour database and simulated results from the radiative transfer model (HYDROLIGHT) were

used by Doerffer & Schiller (2007) for developing the C2RCC model (Brockmann et al. 2016). The water-leaving reflectance
in six bands (B1–B6) is available as the output from the processor.

Acolite is a stand-alone processor for S2 and Landsat 5/7/8. In this model, Rayleigh correction is based on a lookup table
generated by 6SV (Second Simulation of the Satellite Signal in the Solar Spectrum, Vermote) and the aerosol correction is

carried out by the Dark Spectrum Fitting (DSF) or Exponential (EXP) method (Vanhellemont & Ruddick 2016). The output
from Acolite can be viewed and analysed in SNAP.

The Sen2Cor processor is based on Dense Dark Vegetation (DDV) and it is developed for land products. The algorithm

estimates the aerosol thickness using the dark vegetation pixels at 550 nm based on the correlation between B12 (SWIR)
and visible bands. L2A images provided by Sentinel use the Sen2Cor algorithm for atmospheric correction (Main-Knorn
et al. 2017).

Deriving IOP from satellite reflectance

IOPs (absorption coefficient a and backscattering coefficient b) at various bands were derived by a semi-analytical approach
from the BOA reflectance (Rrs) of S2L1C imagery atmospherically corrected by the three processors. Three separate models,
one for each ACP, were developed by inputting the Rrs obtained from each processor. The basic steps of QAA version 6 (Lee

et al. 2002) were chosen for the model. The above-surface reflectance (Rrs) was converted to below-surface reflectance (rrs)
(Equation (2)). rrs has a robust non-linear relationship with single-scattering albedo, u(λ) represented by Equation (3)
(Gordon 1988). The constants go and g1 used in Equation (3) were that for inland water bodies (Lee et al. 2002).

The next step was the retrieval of a(λo), where λo is the reference wavelength at which the contribution of absorption coef-
ficient of water (aw) is greater than that of the other constituents present in water. 560 nm was used as λo for oceans, but
longer wavelengths of 665,740 or 778 nm were found to be suitable for inland and coastal waters (Watanabe et al. 2016).
Lee et al. (2002) considered 670 nm as λo if Rrs(670). 0.0015 sr�1. In this study, all the red bands, B4 (665 nm), B5
(704 nm) and B6 (740 nm) were tested as λo in the model. a(λo) was derived by using the empirical relation proposed in
QAA-v6 (Equation (5)).

Total backscattering coefficient b(λo) was derived from Equation (4) using the values of a(λo) and u(λo). bp(λ) follows

a power law spectral shape (Zheng & DiGiacomo 2017) and this power law relationship between backscattering coeffi-
cients (Equation (6)) is used to calculate bp(λ) at all the bands. The exponent (η) in the power relation of b is computed
by Equation (7). Lee et al. (2002) recommend the ratio of ((rrs(443))=(rrs(560))) in Equation (7). Modifying the exponent

(η) in the power relation of backscattering coefficients has improved the accuracy of estimation of IOP in many studies
(Ogashawara et al. 2016; Watanabe et al. 2016). Rodrigues et al. (2018) recommended 665 nm as λ1 in his study con-
ducted in a Brazilian river. In our study, five ratios of rrs(λ), i.e., at 443/560, 443/665, 665/704, 665/740 and 443/704
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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are attempted in Equation (7). Total absorption coefficients a(λ) are then computed by using the values of u(λ) and b(λ)
from Equation (4).

rrs(l) ¼ Rrs(l)
0:52þ 1:7Rrs(l)

(2)

where Rrs(λ) is the above-surface reflectance at any wavelength λ and rrs(λ) is the below-surface reflectance at any wave-
length λ (Equation (2))

u(l) ¼
�g0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 � 4g1 � rrs(l)

q
2g1

(3)

where u(λ) is the single-scattering albedo, go¼ 0.0895 and g1¼ 0.125 (Equation (3))

u(l) ¼ b(l)
a(l)þ b(l)

(4)

where a(λ)¼ aw(λ)þ ap(λ); b(λ)¼ bw(λ)þ bp(λ); a(λ) is the total absorption coefficient at any wavelength λ and b(λ) is the
total backscattering coefficient at any wavelength λ. Subscript ‘w’ for water and subscript ‘p’ for particulate.

a(670) ¼ aw(670)þ 0:39
Rrs(670)

Rrs(443)þ Rrs(490)
(5)

where Rrs(670) ¼ Rrs(B4), Rrs(443) ¼ Rrs(B1), Rrs(490) ¼ Rrs(B2)

b(l) ¼ bw(l)þ bp(lo)
lo
l

� �h

(6)

h ¼ 2 1� 1:2� exp �0:9
rrs(l1)
rrs(l2)

� �� �
(7)

Indices for trophic status

The TSI (Carlson 1977) is used in this study for quantifying the water quality and it is computed by Equation (8). The USGS
measurements available for the study did not include SD. The good regression between turbidity and SD was validated in

various studies (Heddam 2016). Hence, the turbidity readings were used in this study to calculate SD based on the empirical
relation (Equation (9)) developed by Myre & Shaw (2006) (r2. 0.99).

TSI ¼ 10� 6� ln(SD)
ln2

� �
(8)

SD ¼ 244:13� turbidity�0:662, where SD is in cmand turbidity in FNU: (9)

Development of model

The methodology adopted in this study for the development of the model is shown in Figure 2 and summarized below.

• S2L1C imagery of the study area (Milford Lake) was downloaded and pre-processed. It was atmospherically corrected by

three ACPs, namely C2RCC, Acolite and Sen2Cor.

• Independent models were developed for each ACP. The output (Rrs) from each ACP was used as the input in the algorithm.
QAA-v6 is the basic algorithm used. This algorithm was parametrized for S2L1C imagery (QAA-S2) based on the corre-

lation of derived IOPs (a, b and u) and their indices with TSI.

• The correlation analysis was carried out to study the relationship between the IOPs (a, b and u) derived from the corrected
S2L1C imagery of Milford Lake and TSI. The correlation of the indices, a/b, a/(aþ b), ratios (BR) of a at various bands
om http://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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Figure 2 | Methodology for development of the model.

Journal of Hydroinformatics Vol 24 No 2, 451

Downloaded from http
by guest
on 09 April 2024
(aBR), ratios of b at various bands (bBR), the normalized difference (ND) of a between various bands (aND) and normalized

difference of b between various bands (bND) were also studied. Normally, ND and BR indices enhance the characteristic
spectral variations in an imagery and are hence used in this study. λo and η were parameterized based on the correlation
of the indices and TSI. TSI derived from the turbidity readings was used for this study. The Pearson correlation coefficient
(r) given by Equation (10) was used to assess the degree of correlation.

r ¼
Pn

i¼1 (xi � �x)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xI � �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (yI � �y)2

q ð10Þ

where x and y are variables, whose correlation is studied.

• The BOA reflectance spectrum obtained from each ACP was compared with the simulated spectrum derived from the in
situ spectral measurements to assess the efficiency of each ACP. The ACP whose spectrum was closest with the simulated
spectrum was identified.

• The regression relations with r2. 0.7 were validated with data from validation sites.
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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• The accuracy of the derived relations was measured by mean absolute error (MAE) (Equation (11)) and mean absolute per-

centage error (MAPE) (Equation (12)). Indices suitable for estimating TSI were identified based on MAE and MAPE.

MAE ¼
PN

i¼1 jymi � ypij
N

(11)

MAPE ¼ MAE
ymi

% (12)

where ym and yp are the measured and estimated variables, respectively.

RESULTS AND DISCUSSION

The primary step for using any satellite data is to remove the atmospheric interference. Three ACPs were used in the present
study to obtain the BOA reflectance (Rrs) from TOA reflectance data of S2L1C imagery. The basic algorithm used for the
development of the model was QAA-v6 which was parametrized by modifying the reference wavelength, λo, and the expo-

nent, η, in the power relation of backscattering coefficients. Lee et al. (2002) recommend 670 nm for λo, if Rrs(670).
0.15 sr�1. In the present study, the bands B4, B5 and B6 with central wavelengths at 665, 704 and 740 nm, respectively,
were tested as λo. Shifting λo to B5 and B6 did not show significant variation in the performance of the model. Hence,

the B4 band was fixed as λo. For the computation of b(λ), ratios of rrs at various bands were attempted in the equation of
η (Equation (7)). η is represented in the body of the paper as h(l1=l2) and in the figures as f(l1=l2), where λ1 and λ2 are
the central wavelengths of the bands whose rrs is considered for computing η. The parameterized algorithm is named as

QAA-S2.
Rrs obtained from the three ACPs were used as inputs in the model and their performance was assessed by the correlation

of the derived IOPs and their indices with TSI. For the sake of simplicity of representation, the models are referred to with the
name of the ACP whose data are used as input in the model, namely C2RCC model, Acolite model and Sen2Cor model. The

correlation results for the three models with the various η functions are shown in Figure 5 (C2RCC), Figure 6 (Acolite) and
Figure 7 (Sen2Cor) that are discussed in subsequent sections.
Single-scattering albedo (u)

Single-scattering albedo denotes the scattering efficiency of particulate matter to the total extinction of electromagnetic
energy, which is equivalent to b=(aþ b). However, in a semi-analytical model, it is computed from rrs (Equation (3)). A cor-
relation of r. 0.8 for u versus TSI is observed at all the red bands (B4, B5 and B6) in the C2RCC model, and at B4 and B5 in

the Acolite model (Figure 3).
The reflectance from the red bands is mainly contributed by the scattering of light by particulate matter present in the water

body and is proportional to the concentration of suspended matter (Zheng & DiGiacomo 2017). This good correlation of red

bands with TSI indicates the retrieval efficiency of the red bands of these ACPs. The good linear correlations between u(B5)
and TSI for C2RCC and Acolite models are shown in Figure 4. The slope of u(B5) versus TSI for Acolite model is observed to
be steeper than that of the C2RCC model. This implies a larger window of spread for u(B5) to represent the variations in TSI
in the C2RCC model and hence, a better depiction of the fine variations of TSI.
Figure 3 | Correlation of u with TSI.
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Figure 4 | TSI versus u(B5).

Figure 5 | (a–f) Correlation coefficients of different indices* (derived from the C2RCC model) with TSI. *The different indices are as follows:
aBR: ratios (BR) of a at various bands, bBR: ratios of b at various bands; aND normalized difference (ND) between a at various bands and bND
normalized difference (ND) between b at various bands.
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C2RCC model

The correlation analysis of a and b with TSI at various bands (Figure 5(a) and 5(b)) reveals that a at green (B3) and red bands

(B4, B5 and B6) are well correlated to TSI (the red bands having a negative correlation). The correlation coefficient of b is
around 0.8 for all the bands and for all values of η tested in this study. However, no such good correlations are observed for
a/b or a=(aþ b) for all bands with TSI.
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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Lee et al. (2002) recommended a reflectance ratio at 443 and 560 nm for η in QAA-v6. However, a poor correlation is

observed when η(443/560) is used in the C2RCC model. Among the indices developed from a, namely aBR24, aBR25, aBR26,
aBR35, aBR36, aBR45 (Figure 5(c)) and aND35, aND36, aND45 (Figure 5(d)) show a correlation (r. 0.8) with TSI. In the case of
backscattering coefficient, the correlations of all BR and ND indices with TSI (Figure 5(e) and 5(f)) are observed to be

good (r. 0.85) when η is calculated with red bands. The C2RCC model gives the best correlation (r. 0.9) for all ND and
BR indices except for bBR12 and bND12 when η(665/740) is used.

Acolite model

When Rrs values obtained from the Acolite processor were used as input in the model, the correlations of a and b with TSI are
similar to that of the C2RCC model (Figure 6(a) and 6(b)).

The correlations of awith TSI at the green and red bands are good (r. 0.7) and that of b is at approximately 0.8 for all the bands

irrespective of the tested η values. However, the correlation of the indices with TSI is not as good as the C2RCC model. A corre-
lation above 0.7 is visible only for aBR25, aBR35, aND25 and aND35 when η(665/704) and η(665/740) are used in the model
(Figure 6(c) and 6(d)). Both ND and BR indices of b fail to give any good correlation with TSI (r, 0.5) (Figure 6(e) and 6(f)).

Sen2Cor

When Rrs from Sen2Cor processor is used as input in the model, the correlation of a with TSI is above 0.6 only for B2 and B3
bands (Figure 7(a)), whereas for the red bands the correlation of a is observed to be poor. However, the correlation of b at all
Figure 6 | (a–f) Correlation coefficients of different indices (derived from the Acolite model) with TSI.
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Figure 7 | (a–f) Correlation coefficients of different indices (derived from the Sen2Cor model) with TSI.
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the red bands is found to be good (r≅ 0.8) (Figure 7(b)). When aBR is tested for correlation with TSI, only those with B2 and

B3 show r. 0.8. The correlations of all aND, bBR and bND indices are found to be poor (Figure 7(d)–7(f)).
The poor correlation of all the indices developed from the Sen2Cor model may be an indication of the inaccuracy in the

corrected BOA spectrum. Sen2Cor is a land-based ACP which uses DDV for identifying the aerosol contribution to the reflec-

tance sensed by the sensor. A lack of sufficient dark vegetation pixels in the scene for estimation of aerosol thickness may
have produced the errors in the BOA reflectance spectrum for the study area. Studies on the Sen2Cor performance for
water bodies have not shown very dependable results (Pereira-Sandoval et al. 2019; Warren et al. 2019). Now, a question

arises as to why this ACP was included in the comparison. The Sen2Cor algorithm is tested here because the Level 2A pro-
ducts of Sentinel 2 (S2L2A) are the S2L1C imagery atmospherically corrected by the Sen2Cor algorithm.

The inferences from the correlation analysis of the three models are summarized in the following.

One of the objectives of this study is the parametrization of η used for deriving b. Lee et al. (2002) recommended the ratio
(rrs(443)=rrs(560)) in Equation (7), but this study did not give good results with the above ratio. Instead, the use of reflectance
at the red bands gave better results. Correlations of IOP and their indices with TSI is best when η is derived using the reflec-
tance ratio (rrs(665)=rrs(740)) for both C2RCC and Acolite models. Pereira-Sandoval et al. (2019) had evaluated various ACPs

for S2 imagery and reported the inaccuracy of all the algorithms in retrieving the B1 band (443 nm). This limitation of the
ACPs may be the reason for the poor correlation of the models when the B1 band is used for deriving η. Hence, this
study recommends (rrs(665)=rrs(740)) for deriving η in this semi-analytical model (QAA-S2) that uses S2L1C data.

The observations from this study also establish that the ACP is as important as the algorithm for the accurate performance
of any retrieval model based on the satellite imagery. The results from the C2RCC model are found to be the best in this study,
with bND and bBR indices displaying the potential to be considered as tools for estimating TSI from S2L1C imagery. The
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf
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efficiency of C2RCC has been validated in various studies (Sherjah & Sajikumar 2021). The Acolite model shows good cor-

relation with TSI only for aBR index with B2 and B3 with B5 bands. However, the correlation of u(B5) with TSI is fairly good
for both the models to be used as an estimator for TSI. The indices from the Sen2Cor model fail to show any good correlation
with TSI.

Spectrum comparison

The inconsistency in the behaviour of the three models when QAA-S2 is used can only be explained by the difference in the
efficiency of the ACPs in retrieving Rrs from TOA reflectance. To evaluate the performance of each ACP, the simulated spec-

trum derived from the in situ measurements taken at Kochi Kayal and Punnamada Kayal were compared to the BOA
spectrum of S2L1C imagery obtained from each ACP for these regions. In situ spectrum measured from the two areas are
shown in Figures 8 and 9.

S2L1C imagery of 26 and 28 January 2021 (in situ measurements done on 26 January 2021) had to be merged as the Kochi
Kayal area lies in two tiles of imagery. S2L1C imagery for Punnamada Kayal was available for 14 March 2021 (in situ
measurements were done on 13 March 2021). Atmospherically corrected spectrums from the three ACPs, the simulated
S2 spectrum and the TOA spectrum for Kochi Kayal and Punnamada Kayal are shown in Figures 10 and 11, respectively.

The BOA spectrum obtained from the C2RCC and the Acolite processors match with the simulated spectrum from Kochi
Kayal (Figure 10(a)–10(d)) even though Rrs obtained from the corrected imagery is lower than the in situ values. Rrs for all the
bands in the Sen2Cor corrected spectrum is higher than that of the simulated spectrum (Figure 10(c)). The typical peak at B3

is not observed in the Sen2Cor corrected spectrum.
The BOA spectrum obtained from the C2RCC and the Acolite processors for some of the sample points on Punnamada

Lake showed deviations from the simulated spectrum (Figure 11(a), 11(b) and 11(d)). In situ spectrum measured from the
Figure 8 | In situ spectral readings from Kochi Kayal.

Figure 9 | In situ spectral readings from Punnamada Kayal.
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Figure 10 | Atmospherically corrected spectrum from three processors (a–c), simulated spectrum (d) and TOA spectrum (e) – Kochi Kayal.
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Kochi and Punnamada areas (Figures 8 and 9) did not vary much, so the variations between the simulated and the BOA spec-
trum can be explained only by the difference in the TOA reflectance spectrum captured from the two areas (Figures 10(e) and
11(e)).

High TOA reflectance is observed at B8A and B9 (water vapour retrieval bands) and also at B11 (SWIR) for the points
which show erroneous values for the BOA spectrum from Punnamada Kayal. These sampling points are located on
narrow streams. The intended purpose of the B11 band (1,610 nm) is snow and cloud separation and it is sensitive to

lignin, starch and forest (ESA Standard Document 2015). The adjacency effect of the neighbouring land pixels may be
the cause of this high TOA reflectance and it may also be the reason for errors in the corrected BOA spectrum
(Pereira-Sandoval et al. 2019). It is observed that the C2RCC processor shows errors in the corrected spectrum when

TOA reflectance at B8A goes above 0.04 sr�1 and that at B11 is above 0.01 sr�1. The C2RCC corrected spectrum obtained
for such pixels display low Rrs values at B3, B4 and B5 (Figure 11(a)). The peak of the BOA spectrum shifts from B3 to
B2 for those points.

The corrected spectrum from the Acolite shows very low Rrs values for all points (10 times less) (Figure 11(b)). These

erroneous Rrs values would lead to inaccuracy in the results from any retrieval algorithm from the imagery. The BOA spec-
trums from the Sen2Cor processor for both Kochi and Punnamada areas (Figures 10(c) and 11(c)) do not match with the
simulated spectrum. The deviations in the Sen2Cor corrected spectrum from the simulated spectrum explain the weak cor-

relation of IOPs and their indices (derived from Sen2Cor data) with TSI. S2L2A are level 2 products of S2 that are
atmospherically corrected by the Sen2Cor algorithm and caution should be exercised while using them for any water
body analysis.
://iwa.silverchair.com/jh/article-pdf/24/2/444/1030506/jh0240444.pdf



Figure 11 | Atmospherically corrected spectrum from three processors (a–c), simulated spectrum (d) and TOA spectrum (e) – Punnamada
Kayal.
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Validation

The correlation analysis of the three models with the data from Milford Lake has helped us to identify the indices which have
the potential for estimating TSI. The indices which have a correlation of r2. 0.7 with TSI were used to estimate TSI from the

validation sites (Table 2 for the C2RCC model and Table 3 for the Acolite model).
‘Measured TSI’ was computed from the turbidity readings of water samples collected from the sample locations. ‘Estimated

TSI’ was computed using QAA-S2 derived indices from the corrected S2L1C imagery of the respective regions. The validation

result for each lake is shown separately to comprehend the results and figure out the possible cause for nonconformity. The
MAPEs for the estimated TSI for the validation sites are shown in Figures 12 and 13 for the C2RCC model and Figure 15 for
the Acolite model.

Validation results of the C2RCC model

TSI could be estimated from Kochi Kayal with a reasonable accuracy using the aND and aBR indices (MAE, 8; MAPE≅ 9%)
and using the bND and bBR indices with an MAE of 5 (MAPE≅ 7.5%). TSI estimation from Punnamada could not achieve the
same accuracy because of inaccuracy in the corrected spectrum from C2RCC. It is observed that deviations from actual values

were high for the sample points on narrow streams. When the sample points from the narrow streams were excluded, the
MAE and MAPE were reduced to 3 and 6%, respectively. This indicates that the cause of error in the estimation of TSI is
due to the adjacency effect of the neighbouring land pixels.
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Table 2 | Indices and their regression equations for the C2RCC model

aBR BR15 BR16 BR24 BR25 BR36 BR45

R2 0.77 0.78 0.82 0.79 0.78 0.78

Slope 3.95 10.27 8.24 6.69 6.69 68.32

Intercept 51.12 52.83 48.81 52.18 52.18 2.41

aND ND35 ND36 ND45 u(B5) u(B6)

R2 0.73 0.78 0.75 0.71 0.74

Slope 30.39 41.22 126.83 41.16 76.59

Intercept 71.37 90.55 71.11 56.49 58.39

bBR BR13 BR14 BR15 BR23 BR24 BR25 BR26 BR34 BR35 BR36 BR45 BR46 BR56

R2 0.86 0.85 0.85 0.71 0.80 0.81 0.81 0.85 0.85 0.85 0.85 0.85 0.85

Slope �253.3 �104.8 �82.1 �367.8 �143.0 �110.4 �90.3 �375.4 �251.9 �190.1 �1376 �684.4 �1673

Intercept 461.5 293.1 264.9 542.7 323.2 288.1 265.1 586.9 456.7 389.3 1604.2 904.9 1900.8

bND ND13 ND14 ND15 ND16 ND24 ND25 ND26 ND34 ND35 ND36 ND45 ND46 ND56

R2 0.86 0.86 0.86 0.86 0.81 0.82 0.82 0.85 0.85 0.85 0.85 0.85 0.85

Slope �819.4 �511.8 �465.9 �437.5 �555.9 �494.4 �456.2 �1060 �809.2 �682.2 �3077 �1685 �3668

Intercept 245.5 254.4 259.4 264.0 224.5 231.7 237.3 238.0 240.6 242.9 236.9 236.9 235.2
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Table 3 | Indices and their regression equations for the Acolite model

a BR25 BR35 ND25 ND35 u (B5)

R2 0.81 0.78 0.76 0.74 0.74

Slope 14.18 31.50 76.07 74.99 128.71

Intercept 34.42 30.55 38.61 62.57 41.62

Figure 12 | (a–d) Mean absolute percentage error for TSI estimation using indices developed from the C2RCC model.

Figure 13 | TSI estimation from u (C2RCC model).
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TSI estimation from the Conroe Lake is the most accurate (MAE≅ 2; MAPE, 2%). The MAPE of around 8% (MAE, 5) is
observed for the Texoma Lake and around 13% (MAE≅ 9) for the Canyon Lake. It may be noted that the Canyon Lake is a
small lake of surface area of 1.55 km2 only. The adjacency of land may have influenced the radiance sensed from the water

body by the satellite. The error of TSI estimation for the Punnamada Lake and the Canyon Lake is the highest when the TSI is
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estimated with aND45 and aBR45 (Figure 12(a) and 12(b)), and with bBR23 and bND23 (Figure 12(c) and 12(d)) indicating that the

error in the corrected spectrum is greater in these bands. From Figure 11(a) and 11(d), it is observed that Rrs at B3, B4 and B5
bands of the C2RCC retrieved spectrum are lesser than that of the simulated spectrum. Hence, it can be inferred that the
lesser accuracy of estimation from some of these lakes is because of the inability of the ACP to consider the adjacency

effect of the land pixels. The accuracy of estimation with the backscattering coefficients is better in the C2RCC model
(MAE≅ 5; MAPE, 7%) (Figure 12(c) and 12(d)).

To evaluate the influence of parameterization of η on the accuracy, the TSI is estimated with the regression relations
derived from the original QAA-v6. The MAPE for the estimated TSI (using bND and bBR indices) reduces when QAA-S2 is

used instead of QAA-v6 (Table 4). The higher MAPE in TSI estimation for Punnamada Kayal is also reduced when QAA-
S2 is used, though it is not as good as for the other lakes, owing to the reasons stated earlier. These results confirm the
improved performance of the parametrized algorithm.

TSI was estimated using u(B5) and u(B6) indices with an average MAE of 5 (MAPE, 9%) from all the sites (Figure 13 and
Table 4). The reasonable accuracy of estimation using u(B5) is depicted in Figure 14, which displays the measured and esti-
mated TSI plotted against a 1:1 line. u(B5) and u(B6) could estimate TSI with good accuracy (MAPE ,12%) from all the

lakes. Though the accuracy of estimation is better with bND and bBR indices derived from QAA-S2, u is computationally sim-
pler than bND and bBR indices. Hence, u can be marked as the computationally efficient estimators of TSI.
Validation results of the Acolite model

The Acolite model gave good correlations with TSI only for aBR and aND indices with B2, B3 and B5 bands. However, the
accuracy of estimation of TSI was not as good as the C2RCC model (Figure 15).

The u(B5) index is a better estimator for TSI using the Acolite model also. TSI estimation from Punnamada Lake is also not

good using the Acolite-derived indices. The BOA reflectance spectrum for the sample points could not be obtained for the
Texoma Lake and the Canyon Lake from the Acolite processor. The Acolite processor extracts the water pixels from the ima-
gery by considering a threshold reflectance at 1,600 nm (B11) as 0.0215. Most of the sample points from these two lakes were

excluded from water pixels due to high reflectance at the B11 band.
Table 4 | Comparison of the MAPE for the TSI estimated using different indices

Sl. No Site BND and bBR (QAA-v6) (%) bND and bBR (QAA-S2) (%) u (%)

1 Kochi Kayal 9 7.5 6.7

2 Punnamada Kayal 68 34 9.5

3 Conroe Lake 7.8 1.7 3.2

4 Texoma Lake 13 7.7 10.6

5 Canyon Lake 42.5 13 12

Average 28 13.5 8.4

Figure 14 | Measured versus estimated TSI using u(B5).
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Figure 15 | Mean absolute error in TSI estimation using the Acolite model.
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The better accuracy of TSI estimation using the C2RCC-derived indices establishes the C2RCC processor as a better ACP

for S2 imagery containing inland water bodies. The relations developed from u(B5), u(B6), bND and bBR have demonstrated
their effectiveness and transferability to different areas of the globe with reasonable accuracy. The u(B5) and u(B6) are ident-
ified as simple and effective indices for estimating TSI. These indices can be utilized to obtain a synoptic view of the TSI of the
area of study from their S2 imagery. The synoptic view of spatial and temporal variations in TSI would help in identifying the

critical areas of poor water quality and make their regular monitoring simpler and economically feasible.

CONCLUSION

The real-time monitoring of inland water bodies is possible only if the information about their eutrophic status can be
obtained from satellite data. This study proposes a semi-analytical model for estimating the eutrophic status of an inland
water body (based on the TSI) from S2L1C imagery of the area.

• The exponent η (power relation for backscattering coefficients) in QAA-v6 is parameterized by modifying wavelengths used
in the ‘below-surface reflectance’ ratio. The parametrized model, QAA-S2, has increased the accuracy of estimation by

almost 50% for most of the lakes and hence, it can be considered as an appropriate tool for TSI estimation from S2 imagery.

• Based on the comparative analysis of three ACPs, namely C2RCC, Acolite and Sen2Cor, the C2RCC is recommended for
QAA-S2.

• Single-scattering albedo (u) at the red-edge bands of S2L1C are identified as computationally efficient estimators for TSI

from their ability to estimate TSI within a MAPE of 12% for all the lakes.

• Normalized Difference (ND) and ratios (BR) of backscattering coefficient (b) could also estimate the TSI with good accu-
racy (MAE, 5 and MAPE, 8%) except from the regions with close proximity to land.

• These indices can be utilized to estimate TSI from S2L1C imagery to get a synoptic view of water quality of an inland water
body. The spatial and temporal synoptic views of variations in TSI can make the identification of the critical areas with poor
water quality easier and make their regular monitoring economically viable.

TSI estimation from the pixels with close proximity to land shows deviations from the measured values. The adjacency
effect of the neighbouring land pixels is found to have a strong influence on the retrieval accuracy of the ACPs, which in

turn impacts the TSI estimation from these pixels. ACPs with the ability to detect and correct the adjacency effect of neigh-
bouring pixels may be tried in the model to improve the accuracy for pixels close to land.

Future scope for research

This study used IOP derived semi-analytically from corrected S2 reflectance data for estimating TSI. However, these derived
IOPs were not validated with their in situ measurements.

This model could be further improved to estimate the TSI based on Chlorophyll-a if blue bands could be retrieved with
more accuracy and also 412 nm band could be included in the terrestrial satellite missions. More research may be dedicated
to explore the utilization of backscattering coefficients and the red-edge bands for water quality monitoring.
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