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ABSTRACT

The accuracy of medium- and long-term runoff forecasting plays a significant role in several applications involving the management of hydro-

logical resources, such as power generation, water supply and flood mitigation. Numerous studies that adopted combined forecasting

models to enhance runoff forecasting accuracy have been proposed. Nevertheless, some models do not take into account the effects of

different lag periods on the selection of input factors. Based on this, this paper proposed a novel medium- and long-term runoff combined

forecasting model based on different lag periods. In this approach, the factors are initially selected by the time-delay correlation analysis

method of different lag periods and further screened with stepwise regression analysis. Next, an extreme learning machine (ELM) is adopted

to integrate each result obtained from the three single models, including multiple linear regression (MLR), feed-forward back propagation-

neural network (FFBP-NN) and support vector regression (SVR), which is optimized by particle swarm optimization (PSO). To verify the effec-

tiveness and versatility of the proposed combined model, the Lianghekou and Jinping hydrological stations from the Yalong River basin,

China, are utilized as case studies. The experimental results indicate that compared with MLR, FFBP-NN, SVR and ridge regression (RR),

the proposed combined model can better improve the accuracy of medium- and long-term runoff forecasting in the statistical indices of

MAE, MAPE, RMSE, DC, U95 and reliability.

Key words: combined model, delay correlation analysis, extreme learning machine, medium- and long-term runoff forecasting, optimization

algorithm

HIGHLIGHTS

• The delay correlation analysis with different lag periods was used to select the key factors.

• A novel medium- and long-term runoff combined forecasting model based on different lag periods was proposed, which performed better

than other models.

• The lag period of physical factors delay can affect the accuracy of runoff forecasting.
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GRAPHICAL ABSTRACT
INTRODUCTION

With the development of national economy and the adjustment of national water control policy, the gap between the existing
hydrologic medium- and long-term runoff forecasting methods and the demand for production and application have been
further widened. In addition, the increasing amount of hydrological data can introduce redundant and noisy information

to the prediction feature or factor, which may deteriorate the performance of the mid- to long-term runoff prediction (Yue
et al. 2020a). Therefore, runoff prediction is not only a management issue but also a scientific problem, and accurate
runoff forecasts will be of vital importance to the policymakers.

Generally, the models to predict medium- and long-term runoff fall into two main categories: process-driven models
and data-driven models. The process-driven model is based on the conception of hydrology, with which the discharge fore-
casting can be performed by simulation of the runoff variation and river channel evolution. Yet, the runoff process is highly

complex and affected by many factors, such as runoff, atmospheric circulation index, climate and topography (Ekwueme &
Agunwamba 2020). A precise construction of a physics-based model is very difficult to attain as an abundance of this data is
required to fulfill the initial conditions (Yaseen et al. 2019). In comparison, the data-driven model can make the best use of
existing data to achieve a predetermined model structure (Lu et al. 2021).

One of the most important steps in the data-driven model development process is determining the significant input vari-
ables. A subset of compact and informative inputs with the max-relevance and min-redundancy can significantly enhance
the model performance and reduce the demand for training samples (Lyu et al. 2017). However, the determination of a suit-

able set of inputs is challenging due to the time lag of runoff response to the influence of large-scale atmospheric circulation
(Cheng et al. 2019). The existing studies on the lag selection of runoff factors are mainly carried out for 1 or 2 years (Gao
2006; Yang et al. 2013; Li et al. 2019; Yue et al. 2020a). It is generally known that it is difficult to accurately determine

the lag period since runoff flows through different field conditions to reach a point (He et al. 2011). To select the appropriate
lag period, the 6, 12, 18 and 24 months as the different lag periods were considered sufficiently for capturing the input factors.
The methods adopted for factors selection were mainly the correlation coefficient method (Yang et al. 2013; Shan et al. 2015),
stepwise regression analysis (Shan et al. 2015), principal component analysis (PCA) (Lu et al. 2021), kernel principal com-
ponent analysis (KPCA) (Li et al. 2019), mutual information (Lu & Zhou 2014) and partial mutual information (PMI) (He
et al. 2011). Among them, the correlation coefficient method and stepwise regression analysis have the advantages of simpli-
city and quickness, and have been widely used in the field of hydrological prediction. Therefore, in this study, we propose a

combined use of correlation coefficient and stepwise regression to determine the input factors of different lags.
Prediction model design is another important research content in mid- to long-term runoff prediction. A lot of approaches,

including multiple linear regression (MLR) (Schilling &Wolter 2005; Wang et al. 2014), autoregressive (AR) techniques, autore-
gressivemoving average (ARMA), autoregressive integratedmoving average (ARIMA), seasonal autoregressive integratedmoving
average (SARIMA) (Sang et al. 2013; Valipour et al. 2013; Valipour 2015), feed-forward back propagation-neural network (FFBP-
NN) (Wang et al. 2019), support vector regression (SVR) (Wei et al. 2012; Sahoo et al. 2018) andElmanneural network (Chu et al.
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2017), have beenwidespread inmedium- and long-term runoff forecasting.However, due to the intrinsicweaknesses of allmodels,

and the uncertainty and complexity of runoff change, one forecasting model cannot improve runoff accuracy fundamentally, par-
ticularly when runoff data has nonlinear characteristics. Therefore, a combinedmodel is used to exploit and integrate the diversity
of skillful prediction from different models and reduce their uncertainty (Chen et al. 2019; Lu et al. 2021). It is divided into linear

and nonlinear combination prediction, according to the relationship among the combined single-item prediction models. Linear
combination prediction refers to the linear coupling of various single-item prediction methods. However, the possible emergence
of negative weights and other controversial issues restricts the generalization of linear combination prediction to a certain extent.
Nonlinear combinationprediction refers to thenonlinear coupling of various single-itempredictionmethods,which overcome the

limitation of linear combination prediction. The artificial neural networks have some unique and distinguishing features such as
nonlinearity, parallel processing, robustness, adaptability and self-organization (Xu et al. 2021). An extreme learning machine
(ELM) has the capability of approaching any complex continuous function and is easy to fit the nonlinearity of the predicted

objects. It is proposed as a feed-forward neural network with a single hidden layer for determining weights related to the
output. The ELMhas been successfully applied for the estimation of reference evapotranspiration (Liu et al. 2017), river flow fore-
casting (Lima et al. 2016; Yaseen et al. 2019), mid- to long-term runoff forecasting (Yue et al. 2020b), longitudinal dispersion
coefficients in water pipelines (Sabed-Movahed et al. 2020) and fast ionospheric delay (Zhao et al. 2021). Consequently, this
paper proposes a combination prediction method using ELM to predict the medium- and long-term runoff for better prediction
performance and stronger robustness.

The important point for solving the above problems is to select the optimal lag period of key factors that are closely related
to the runoff and design a prediction model. Aiming to determine the optimal lag, this paper takes 6, 12, 18 and 24 months lag
as the different lag periods. Moreover, to solve the problems caused by the low accuracy and poor stability of the single fore-
casting model, a combination prediction method using ELM to predict the medium- and long-term runoff is established, in

which the random input weights and hidden biases in ELM are optimized by particle swarm optimization (PSO). The
main goal of this study is achieved by (1) exploring the influence of atmospheric circulation factors on runoff in different
lag periods and (2) proposing a combination prediction method using ELM to predict the medium- and long-term runoff.
METHODOLOGY

Construction of the combination method using ELM

The traditional combination forecasting methods just combine the forecasting results of several forecasting models together,
average the weight coefficient in individual models or use an optimization algorithm to optimize the weight coefficient (Chen
et al. 2019). A novel combined forecasting method is proposed in this paper, which puts the intermediate forecasting results of

MLR, FFBP-NN and SVR into ELM. In this approach, this paper initially uses the time-delay correlation analysis and step-
wise correlation analysis to select the optimal forecasting factor as the inputs. Then, three single prediction models, namely
MLR, FFBP-NN and SVR, are established and used to predict runoff. And then, ELM was used to combine the intermediate

forecasting results of the three single prediction models. At last, considering that the random input weights and hidden biases
of ELM always have some influence on the training process, we use PSO to optimize the parameters to derive the resultant
forecast. The flowchart of the combined model is shown in Figure 1; from the figure, we can conclude that the proposed

method contains the following four steps.
Step 1. Factors selection. The input characteristic factors of different lag periods are obtained by the time-delay correlation

analysis and stepwise regression analysis. The illustrative diagram is shown in Figure 1(a).

Step 2. Single model learning. The training set was used to train MLR, FFBP-NN and SVR, respectively, to select the par-
ameters of the three models. The three trained models are applied to the training set and the test set, respectively, and the
respective prediction results are obtained, which are used as the training set and test set of the combination forecasting
model. The process of single model learning is represented in Figure 1(b).

Step 3. Combined model forecasting. MLR, FFBP-NN and SVR are regarded as approaches to forecast inflow runoff,
respectively, and their intermediate forecasting results are used as input of ELM, and then train the ELM repeatedly to get
the final forecasting results. Figure 1(c) shows the specific process of the combined model.

Step 4. Parameters optimization. Two parameters in ELM are very important in the forecasting process, so the random
input weights and hidden biases are optimized by PSO, then the output weights could be calculated. Figure 1(d) gives the
schematic diagram of the optimization procedure.
://iwa.silverchair.com/jh/article-pdf/24/2/367/1030588/jh0240367.pdf
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Time-delay correlation analysis and stepwise regression analysis

Time-delay correlation analysis with different lag periods

The time-delay correlation analysis is used to measure the similarity between two different time series and consider a certain
range of time delay (Li et al. 2019). The correlation coefficient shows the intensity of the linear relationship between the two

time series. The numerical range is from �1 to 1, and the closer the absolute value is to 0, indicating that the two sequences
tend to be completely independent, and the closer their absolute values are to 1, indicating that there is a strong correlation
between the two sequences. The calculation formula is as follows:

rk(x1, x2) ¼ ck(x1, x2)
sx1sx2

¼

PNþk

n¼kþ1
(x1(tn)� �x1)(x2(tn�k)� �x2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNþk

n¼kþ1
(x1(tn)� �x1)

2 PNþk

n¼kþ1
(x2(tn�k)� �x2)

2

s (1)
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where k is the lag period (k ¼ 1, 2, 3, � � � , T), T stands for different lag periods, T ¼ 6, 12, 18, and 24 months; rk is the corre-

lation coefficient of two time series x1(tn) and x2(tn) under the time delay k; ck is the covariance of two time series x1(tn) and
x2(tn) under the time delay k; sx1 and sx2 are the mean square deviations of x1(tn) and x2(tn), respectively; �x1 and �x2 are the
mean values of x1(tn) and x2(tn), respectively; and N is the length of time series.

Stepwise regression analysis

The main idea of stepwise regression analysis is to introduce predictors step by step. At each step in the process, after a new
variable is added, a test is made to check if some variables can be deleted without appreciably increasing the residual sum of
squares (RSS). The procedure terminates when the measure is (locally) maximized or when the available improvement falls

below some critical value.

Extreme learning machine

ELM is an innovative machine learning algorithm that is characterized mainly by the fact that there is no need for a tuning of
the model’s internal parameters (i.e., the hidden neurons). In essence, ELM is an improved version of the conventional ANN
model where it is able to solve regression problems with a reduced model execution time. This is because the input weights

and biases are randomly generated so that the output weights have a unique least-squares solution solved by the Moore–Pen-
rose generalized inverse function (Yaseen et al. 2019). The general structure of the ELM model can be visualized in Figure 2.

Mathematically, the ELM model can be summarized by setting up a set of training dataset samples (xi, yi). Where

xi ¼ [xi1, xi2, � � � , xin]T present the predictor variables that are the results of runoff output from different prediction models
and yi ¼ [yi1, yi2, � � � , yim]T are the predicted value of runoff. xi [ Rd and yi [ Rm. The target function is defined as follows:

XM
i¼1

big(wi � xj þ bi) ¼ tj, j ¼ 1, 2, � � � , N (2)

where M is the number of hidden layer neurons; bi stands for the weight factor connecting the ith hidden nodes and output
node; g(wi � xj þ bi) denotes the activation function, wi � xj is the inner product of wi and xj, wi and bi are the hidden node
parameters that are randomly determined; and tj is the network output.

To achieve the training effect, the output error needs to be minimized, which can be expressed as follows:

kH(Ŵi, b̂i)b̂i � Tk ¼ min H(Wi, bi)bi � Tk k (3)

where H is the network hidden layer output, and T is the desired output. Equation (1) is equivalent to the loss minimization
Figure 2 | Architecture of the extreme learning machine model.
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function:

E ¼
XN
j¼1

XM
i¼1

big(wi � xj þ bi)� tj

 !2

(4)

Equation (4) can be converted to solving a linear equation Hb ¼ T , and the output weight can be uniquely determined:

b̂ ¼ HþT (5)

where Hþ is the Moore–Penrose inverse of Hussain (H) matrix.

Particle swarm optimization

PSO is a population-based stochastic optimization technique inspired by the social behavior of bird flocking (Motahari &
Mazandaranizadeh 2017). In PSO, all particles have a fitness value, which is determined by the fitness function. Each particle
can save the best position to be searched, and the particle is also given a speed to determine the search direction and distance.

In the process of searching, the particle tracks two extremes to complete the iteration of a particle search. The optimal sol-
ution of the particle search is called the individual extreme value pBest. The optimal solution of the whole particle swarm
search is called the global extremum gBest.

In the process of iterative optimization, particles constantly update their speed and position through pBest and gBest, that is,

Vmþ1
id ¼ aVm

id þ c1t1(Pm
id �Xm

id)þ c2t2(Pm
gd �Xm

id)

Xmþ1
id ¼ Xm

id þ Vmþ1
id

(6)

where m represents the current number of iterations; c1 and c2 stand for the cognitive and social constants, c1 ¼ c2 ¼ 1:49445;
t1 and t2 show the random variables; a is the inertia term; Vid represents the current particle velocity; Xid stands for the current
particle position; and Pid and Pgd represent the particle neighborhood best and the particle best, respectively.

Evaluation metrics

At present, various performance metrics are used to evaluate the forecasting performance of the model. But there is no single
standard to determine which evaluation metric is the most accurate assessment method. Therefore, to estimate the perform-
ance of the proposed model, the evaluation metrics, such as bias index (BIAS) (Najafzadeh & Sattar 2015; Barzkar et al.
2021), scatter index (SI) (Najafzadeh et al. 2022), mean absolute percentage error (MAPE), root-mean-square error
(RMSE), mean absolute error (MAE) and deterministic coefficient (DC) (Yue et al. 2020a, 2020b), are applied. Among
them, four common evaluation metrics are adopted in this paper, including MAE, MAPE, RMSE and DC. The expressions

are as follows:

MAE ¼ 1
n

Xn
t¼1

jyt � ŷtj (7)

MAPE ¼ 1
n

Xn
t¼1

yt � ŷt
yt

����
���� (8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

(yt � ŷt)
2

vuut (9)

DC ¼ 1�

Pn
t¼1

(yt � ŷt)
2

Pn
t¼1

(yt � �y)2
(10)
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where yt is the observed value of runoff at time t, m3·s�1; ŷt represents the predicted runoff value at time t, m3·s�1; �y represents
the mean of the observed runoff value, m3·s�1 and n is the total number of samples.

The MAPE is the most frequently used statistics index and is employed for examining the error between the predicted value
and the observed value. The RMSE is used to measure the predicted value accuracy. An RMSE value of zero indicates a per-

fect match between the predicted value and the observed value. The MAE is the average of the absolute value of the deviation
between all individual observations and the arithmetic mean, which can accurately reflect the actual prediction error. Like-
wise, the DC provides a measure of the capacity of the model to predict observed values. And, the smaller the values of the
MAE, MAPE and RMSE are, the better forecasting performance is. The higher the DC value shows, the better forecasting

performance is.
STUDY AREA AND DATA SOURCES

Study area

The Yalong River basin is located at 96°520–102°480 E, 26°320–33°580 N, with an area of about 136,000 km2. The river is
1,571 km long with a drop of 3,830 m and is one of the rivers with the most abundant water energy resources in China

(Yue et al. 2020b). The precipitation in the basin increases from north to south, and the east is greater than the west.
The annual precipitation in the Heyuan area is 500–600 mm, and the annual precipitation in the middle and lower
reaches is 900–1,300 mm. The runoff was mainly from precipitation, and the annual variation and regional distribution
of runoff were basically consistent with the variation trend of precipitation. The annual runoff distribution can be

roughly divided into the period from June to October, during which rainfall is the main replenishment and the
water volume accounts for 76.8% of the whole year. The hydrographic stations in the Yalong River basin, Lianghekou
and Jinping are shown in Figure 3.

Data sources

To prove that the combined model proposed in this paper can improve medium- and long-term runoff forecasting accuracy, the
collected datasets include: (1) monthly inflow runoff data of Lianghekou and Jinping stations from January 1960 to December
2011 were provided by the Hydrographic Bureau of the Yangtze River Water Conservancy Commission; (2) 130 atmospheric

circulation index data from the national climate center (https://www.ncc-cma.net/Website/index.php), the length of the
sequence for January 1951–May 2020. And the research period spans over 50 years from January 1962 to December 2011,
which is divided into two parts: a training set (from January 1962 to December 2001) and a forecasting test set (from January

2002 to December 2011) in this study. In relation to this, Figure 4 shows the dataset structure of Lianghekou and Jinping
stations, which were selected as the forecast objects. It can be seen from Figure 4 that the abundance and drought of the
three stations are very similar, indicating that the abundance and drought of the Yalong River basin are basically the same.
In addition, we have done a statistical analysis of the three datasets. The statistical characteristics, including the maximum, mini-

mum, means, standard and median, of the runoff series at the different time period divisions are summarized in Table 1.
RESULTS

Factors selection procedure and result

In our study, considering the time consistency of serial data and the missing term of atmospheric circulation index, the
alternative candidate predictive factors include 95 teleconnection climate factors and antecedent runoff in Lianghekou

and Jinping stations of the Yalong River basin. For the convenience of analysis, they are abbreviated as a1, a2,…, a96.
In addition, due to the lag effect of climate-related factors on runoff (Yue et al. 2020a), this paper took 6, 12, 18 and
24-month lag as the different lag periods. Thus, the input factors are expressed as a1(t� 1), a1(t� 2),…, a1(t� T),…, a96(t� 1),
a96(t� 2),…, a96(t� T ) (T¼ 6, 12, 18, 24), including (96*T ) variables.

The input selection was initially conducted based on the time-delay correlation coefficient with different lag periods
between each factor and runoff. To control the number of primary factors, the maximum correlation coefficient and the absol-
ute value of the correlation coefficient are greater than 0.7. Thus, the input factors of the 6- and 12-month primary elections in

the Lianghekou lag period are shown in Table 2. The primary factors at 18 and 24 months in the screen lag period are shown
in Table 3. The correlation between the above factors and the runoff coefficient has passed the significance test with a con-
fidence level of 95%.
://iwa.silverchair.com/jh/article-pdf/24/2/367/1030588/jh0240367.pdf
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Figure 3 | Location of the study area.
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And then, to eliminate multicollinearity among problem variables, the stepwise regression analysis was applied, and the
results of the significance of the factors are presented in Tables 4–7. Tables 4 and 5 show that the stepwise regression analysis

indicates that the factors selected at 6 and 12 months of the lag period of the Lianghekou hydrological station were both stat-
istically significant in predicting month runoff (sig., 0.05) with significant F values of 260.672 and 200.097 (Ekwueme &
Agunwamba 2020). The factors affecting the change of runoff process of the Lianghekou station when the lag period is 6
months are mainly related to a43, a96, a29, a2, a3, a42 and a36; for a lag period of 12 months, the factors affecting the

runoff change are mainly in connection with a36, a42, a64, a2, a43, a44, a96 and a31 (see the bold values in Table 2). As
can be seen from Tables 6 and 7, the factors selected at 18 and 24 months of the lag period of the Jinping hydrological station
were both statistically significant in predicting monthly runoff (sig., 0.05) with significant F values of 264.787 and 276.324.

The factors affecting the change of runoff process for a lag period of 18 months are mainly associated with a36, a43, a64, a96,
a82, a44, a13 and a33; for a lag period of 24 months, the factors affecting the runoff change are mainly related to a36, a96,
a43, a83, a18, a44, a82 and a33 (see the bold values in Table 3). A similar procedure was implemented to decide the input
om http://iwa.silverchair.com/jh/article-pdf/24/2/367/1030588/jh0240367.pdf
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Table 1 | Statistical indicators of the experimental data

Stations Period of records Samples Numbers

Statistical indicators (m3·s�1)

Max. Min. Mean Std. Median

Lianghekou 1,962.1–2,011.12 All samples 600 2,860.00 108.00 661.65 558.23 445.50
1,962.1–2,001.12 Training 480 2,860.00 108.00 662.87 552.81 446.00
2,012.1–2,011.12 Testing 120 2,800.00 124.00 656.77 581.76 426.50

Jinping 1,962.1–2,011.12 All samples 600 5,480.00 243.00 1,209.33 1,034.72 739.00
1,962.1–2,001.12 Training 480 5,480.00 243.00 1,209.43 1,039.66 739.00
2,012.1–2,011.12 Testing 120 4,660.00 285.00 1,208.89 1,019.01 737.00

Figure 4 | Dataset structure of Lianghekou and Jinping stations.

Table 2 | The results of input variables selected by the time-delay correlation analysis method in the lag period of 6 months and 12 months
for the Lianghekou station

Lag period of 6 months Lag period of 12 months

Serial number Input factors Correlation coefficient Delay time/month Serial number Input factors Correlation coefficient Delay time/month

1 a2 0.7039 1 1 a2 0.7039 1

2 a3 0.7032 1 2 a3 0.7032 1

3 a29 �0.8123 1 3 a8 0.7125 12

4 a30 �0.7554 1 4 a10 0.7064 12

5 a31 0.7421 1 5 a29 �0.8123 1

6 a33 �0.8048 1 6 a30 �0.7554 1

7 a36 0.8124 1 7 a31 0.7477 7

8 a42 0.7886 1 8 a33 �0.8048 1

9 a43 �0.8033 6 9 a36 0.8124 1

10 a44 �0.8004 6 10 a42 0.8059 12

11 a96 0.7261 1 11 a43 �0.8033 6

12 a44 �0.8004 6

13 a64 0.7282 11

14 a96 0.7434 12
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Table 3 | The results of input variables selected by the time-delay correlation analysis method in the lag period of 18 months and 24 months
for the Jinping station

Lag period of 18 months Lag period of 24 months

Serial number Input factors Correlation coefficient Delay time/month Serial number Input factors Correlation coefficient Delay time/month

1 a1 0.7171 1 1 a1 0.7171 1

2 a2 0.7476 1 2 a2 0.7476 1

3 a3 0.7654 1 3 a3 0.7654 1

4 a7 0.7319 1 4 a7 0.7319 1

5 a8 0.7497 1 5 a8 0.7497 1

6 a10 0.7502 1 6 a10 0.7502 1

7 a13 0.7338 1 7 a13 0.7338 1

8 a14 0.7248 1 8 a14 0.7248 1

9 a29 �0.8213 1 9 a18 0.7014 24

10 a30 �0.7673 1 10 a21 0.7068 24

11 a31 0.7459 7 11 a29 �0.8213 1

12 a32 0.7008 14 12 a30 �0.7673 1

13 a33 �0.8055 1 13 a31 0.7550 19

14 a36 0.8374 1 14 a32 �0.7008 14

15 a42 0.8220 1 15 a33 �0.8055 1

16 a43 �0.8127 18 16 a36 0.8374 1

17 a44 �0.8122 7 17 a42 0.8220 1

18 a64 0.7295 11 18 a43 �0.8127 18

19 a82 0.7411 16 19 a44 �0.8122 7

20 a83 0.7127 4 20 a64 0.7295 11

21 a96 0.7912 12 21 a82 0.7411 16

22 a83 0.7127 4

23 a96 0.8159 24

Table 4 | ANOVA of key factors in the lag period of 6 months for the Lianghekou station

ANOVAa

Sum of squares df Mean square F Sig.

Regression 140,936,496.583 7 201,337,85.226 260.672 0.000b

Residual 457,248,77.917 592 77,237.969

Total 186,661,374.500 599

aThe dependent variable: runoff.
bThe predictor variable: (constant), a43, a96, a29, a2, a3, a42, a36.

Table 5 | ANOVA of key factors in the lag period of 12 months for the Lianghekou station

ANOVAa

Sum of squares df Mean square F Sig.

Regression 136,329,141.467 8 17,041,142.683 200.097 0.000b

Residual 50,332,233.033 591 85,164.523

Total 186,661,374.500 599

aThe dependent variable: Runoff.
bThe predictor variable: (constant), a36, a42, a64, a2, a43, a44, a96, a31.
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Table 6 | ANOVA of key factors in the lag period of 18 months for the Jinping station

ANOVAa

Sum of squares df Mean square F Sig.

Regression 501,420,363.068 8 62,677,545.384 264.787 .000b

Residual 139,895,444.557 591 236,709.720

Total 641,315,807.625 599

aThe dependent variable: Runoff.
bThe predictor variable: (constant), a36, a43, a64, a96, a82, a44, a13, a33.

Table 7 | ANOVA of key factors in the lag period of 24 months for the Jinping station

ANOVAa

Sum of squares df Mean square F Sig.

Regression 506,029,414.191 8 63,253,676.774 276.324 .000b

Residual 135,286,393.434 591 228,910.987

Total 641,315,807.625 599

aThe dependent variable: Runoff.
bThe predictor variable: (constant), a36, a96, a43, a83, a18, a44, a82, a33.
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factors for the remaining different lag periods of Lianghekou and Jinping stations. The inputs retained in the final subset of

Lianghekou and Jinping stations are formed in Table 8.

ELM combination method for runoff

Comparison models

To sufficiently demonstrate the superiority of the proposed model for medium- and long-term runoff forecasting, the current
state-of-the-art data-driven models, including MLR, FFBP-NN, SVR and ridge regression (RR), are selected for the compari-
son. MLR is a statistical approach to modeling the relationship between a dependent variable and independent variables for

runoff forecasting; FFBP-NN is a traditional shallow neural network; SVR is based on statistical learning theory and the struc-
tural risk minimization hypothesis to achieve good robustness and efficiency; RR is put forward on the basis of general
regression integrated forecast. Among them, MLR, FFBP-NN and SVR are three single-item prediction models; MLR is a

linear model; and BP and SVR are nonlinear machine learning algorithms constructed based on different theories. The
RR model is one of the traditional combination forecasting methods, which can solve the problem of coefficient selection
of a single model for a linear combination prediction model.
Table 8 | The final selection results of input factors of different lag periods for Lianghekou and Jinping stations

Lag length
(months) Station Selected factors

T¼ 6 Lianghekou a2(t� 1), a3(t� 1), a29(t� 1), a36(t� 1), a42(t� 1), a43(t� 6), a96(t� 1)
Jinping a1(t� 1), a13(t� 1), a14(t� 1), a36(t� 1), a43(t� 6), a44(t� 6), a82(t� 4), a96(t� 1)

T¼ 12 Lianghekou a2(t� 1), a31(t� 7), a36(t� 1), a42(t� 12), a43(t� 6), a44(t� 6), a64(t� 11), a96(t� 12)
Jinping a13(t� 1), a14(t� 1), a29(t� 1), a36(t� 1), a43(t� 7), a44(t� 7), a64(t� 11), a82(t� 4), a96(t� 12)

T¼ 18 Lianghekou a2(t� 1), a3(t� 1), a31(t� 7), a36(t� 1), a43(t� 18), a44(t� 18), a64(t� 11), a82(t� 16)
Jinping a13(t� 1), a33(t� 1), a36(t� 1), a43(t� 18), a44(t� 7), a64(t� 11), a82(t� 16), a96(t� 12)

T¼ 24 Lianghekou a1(t� 24), a3(t� 24), a14(t� 24), a31(t� 7), a36(t� 1), a43(t� 18), a44(t� 18), a64(t� 11), a82(t� 16),
a96(t� 24)

Jinping a18(t� 24), a36(t� 1), a43(t� 18), a44(t� 7), a64(t� 11), a82(t� 16), a83(t� 4), a96(t� 24)
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The different sections of BP and SVR are mainly shown in (1) the optimization goal of the BP algorithm which is based on

the empirical risk minimization criterion to minimize the training error between the network output and the ideal output. It
means that the curves and surfaces fitted by the BP neural network go through the training sample points as much as possible,
which will cause the BP algorithm to rely too much on learning samples and has over-learning problems, so it is difficult to

obtain good generalization ability. The SVR algorithm is based on the structural risk minimization criterion. In order to mini-
mize the expected risk, the empirical risk and the confidence range should be minimized at the same time. In the SVR
learning algorithm for regression, we construct a regression estimation function to minimize the VC dimension of the func-
tion on the premise that the distance from the target value is less than ε. That is, keeping the training error fixed and

minimizing the confidence range, which solves the over-learning problem and has a better ability to generalize the samples.
(2) The idea of the BP algorithm is that the forward propagation of the signal and the backpropagation of the error are carried
out repeatedly, so that the weights are adjusted continuously, so as to ensure that the training error of the network output is

minimized. In essence, it is an iterative learning algorithm based on gradient descent, which has some defects such as slow
learning convergence and easy to fall into local minima. The SVR algorithm reduces the above regression estimation problem
to a convex quadratic programming problem with linear equality constraints and linear inequality constraints, which can

ensure the global optimality of the algorithm and effectively overcome the curse of dimensionality.

Models structure and parameter selection

To verify the versatility and university of the proposed combined method, the stations are used as experiments. The specific
parameters of the two stations have some differences, in the development of FFBP-NN, the training function is ‘tansig’, the

learning function is ‘logsig’, the maximum training times are 1,000, the learning rate is 0.1, the model training adopts LM
algorithm, the momentum factor is 0.9 and the expected error is 0.001. For Lianghekou station, when the lag period is 6
months, networks with 2–15 hidden neurons were evaluated to determine the optimal network. The performance measure,

RMSE, in training and testing, is demonstrated in Figure 5. The improvement of model performance in training was found due
to the increase of hidden neurons, but the performance degrades when hidden neurons were larger than 6. Similar trends
were also generally observed for the testing. Thus, the structure of FFBP-NN is 7-6-1 (neurons in the input layer-neurons

in the hidden layer-neurons in the output layer). A similar procedure was implemented to decide optimal architectures for
different lag periods. Optimal networks for a lag period of 12, 18 and 24 months are 8-7-1, 8-4-1 and 10-11-1, respectively.
For the SVR model, the kernel function is ‘sigmoid’, and we use the GridSearch grid to select the best parameters C

(regularization parameters) and gamma which the traversal gamma is in the interval [0.1, 2] and C is in the interval [0.5, 5]
(Liang et al. 2020). When the lag period is 6, 12, 18 and 24 months, the parameters (C and gamma) of the SVR model are
(3.0, 0.23), (0.5, 0.10), (0.5, 0.10) and (0.5, 0.10), respectively. In the development of ELM, we choose the number of
Figure 5 | Selection of hidden neurons in the lag period of 6 months at the Lianghekou station.
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intermediate nodes in the same way as FFBP-NN. Thus, when the lag period is 6, 12, 18 and 24 months, the structure of ELM is

3-6-1, 3-7-1, 3-7-1 and 3-8-1, respectively; the combined prediction model selects the same structure as ELM.
A similar procedure was implemented to decide optimal architectures for the Jinping station. The optimal architecture of

FFBP-NN, when the lag period is 6, 12, 18 and 24 months, is 8-10-1, 9-7-1, 8-8-1 and 8-11-1, respectively; the optimal par-

ameters (C and gamma) of the SVR model are (0.5, 0.10), (5.0, 0.23), (1.0, 0.10) and (0.5, 0.10), respectively; the structure
of ELM is 3-6-1, 3-6-1, 3-7-1 and 3-8-1, respectively; and the combined prediction model selects the same structure as ELM.

Training results

With the input variables and parameters selected, the runoff was forecasted using MLR, FFBP-NN and SVR, and then applied
ELM to integrate the intermediate results of them. In addition, this experiment compares the presented combined model with

the single models and the traditional combination forecasting method RR during the training period. The results of four evalu-
ation metrics are listed in Table 9, and Table 9 shows the following:

(a) For the Lianghekou station, when the lag period is 6 months, compared with the other models, the presented combined
model has the minimum MAE, MAPE and RMSE, with the values of 113.00, 0.1708 and 203.21 m3·s�1, respectively; the
maximum DC value of 0.8646. Next, for the other three single models, SVR performs better than the other two models,

and MLR performs the worst. When the lag period is 12, 18 and 24 months, the presented combined model with MAE
values of 150.83, 155.64 and 148.09, respectively, is still the most accurate forecasting model. For the other three single
models, there is not a unified law based on the performance metrics. For a lag period of 12 months, based on RMSE and

DC, FFBP-NN performs better than the other two models; based on MAE and MAPE, SVR can get better performance.
For a lag period of 18 months, based on MAE and MAPE, the order of the other three models from good to bad is SVR,
MLR and FFBP-NN; based on RMSE and DC, the order of the other three models from good to bad is SVR, FFBP-NN
and MLR. For a lag period of 24 months, in terms of four evaluation metrics, SVR can get better forecasting results than

the other two models; among them, the performance of FFBP-NN is better based on MAE and MAPE, and the perform-
ance of MLR is better based on RMSE and DC. In the other two combination forecasting methods, ELM has a better
fitting effect than the RR model from a lag period of 6–24 months.

(b) For the Jinping station, the presented combined model with MAPE values of 0.1364, 0.1948, 0.1963 and 0.1891, respect-
ively, from a lag period of 6–24 months can get the most accurate forecasting results. For the other three single models,
there is not a unified law based on the performance metrics. Based on MAE and MAPE, when the lag is 6–24 months, it is

obvious that the value of SVR is lower than the other two single models. Based on RMSE and DC, when the lag period is
6 months, the order of the other three models from good to bad is SVR, FFBP-NN and MLR; when the lag period is 12, 18
and 24 months, FFBP-NN can get better performance, SVR is the second and MLR was the worst. For the other two com-
bined forecasting methods, ELM performs better than the RR model when the lag is 6–24 months.

Runoff forecasting

This section mainly compares the presented combined model with other models in different lag stages of the forecast period
during the test period, including the lag period of 6, 12, 18 and 24 months. The results of the four evaluation criteria are cal-

culated in Table 10. From Table 10, the following result can be obtained:

(a) For the Lianghekou station, when the lag period is 6 months, compared with the other models, the presented combined

model has the minimum MAE, MAPE and RMSE, with the values of 167.35, 0.2719 and 262.55 m3·s�1, respectively; the
maximumDC value of 0.7946. Next, for the other three single models, there is not a unified law based on the performance
metrics; based on MAE, FFBP-NN performs better than the other two models, and SVR gets the worst forecasting results;
based on MAPE, FFBP-NN performs better than the other two models, MLR gets the worst forecasting results; and based

on RMSE and DC, the order of the other three models from good to bad is FFBP-NN, MLR and SVR. When the lag period
is 12, the presented combined model with an MAE value of 180.26 is still the most accurate forecasting model. For the
other three single models, the SVR model has the minimum MAE, MAPE and RMSE, with the values of 181.83, 0.2865

and 308.31 m3·s�1, respectively, and the maximum DC value of 0.7168; the order of the other two models from good to
bad is FFBP-NN and MLR. When the lag period is 18 and 24 months, it is very obvious that the proposed combined
model gets the best forecasting results in terms of the four evaluation metrics. For the other three single models, their
://iwa.silverchair.com/jh/article-pdf/24/2/367/1030588/jh0240367.pdf



Table 9 | Results of four evaluation metrics of the combined model and the three single models during the training period

Station Model

MAE MAPE RMSE (m3·s�1) DC

Lag length (months) Lag length (months) Lag length (months) Lag length (months)

6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24

Lianghe kou MLR 180.06 178.18 181.16 173.39 0.3201 0.2963 0.3087 0.2811 275.17 281.22 278.33 270.20 0.7517 0.7407 0.7460 0.7606
FFBP-NN 142.03 162.34 184.51 167.89 0.2092 0.2369 0.3516 0.2462 238.50 266.25 272.32 271.60 0.8135 0.7675 0.7568 0.7581
SVR 114.50 158.14 157.94 153.21 0.1712 0.2251 0.2301 0.2193 212.07 267.63 265.10 256.88 0.8525 0.7651 0.7696 0.7836
RR 115.30 158.16 163.72 150.63 0.1918 0.2365 0.2747 0.2180 205.13 262.94 262.14 251.66 0.8620 0.7733 0.7747 0.7923
ELM 113.28 155.15 160.33 150.72 0.1742 0.2253 0.2465 0.2209 204.35 260.76 259.70 251.84 0.8631 0.7777 0.7788 0.7920
Proposed model 113.00 150.83 155.64 148.09 0.1708 0.2231 0.2266 0.2108 203.21 253.98 253.10 239.03 0.8646 0.7885 0.7899 0.8127

Jinping MLR 298.23 314.45 311.00 300.52 0.2661 0.2831 0.2744 0.2461 471.79 491.42 481.99 471.58 0.7936 0.7761 0.7846 0.7938
FFBP-NN 232.51 273.22 286.76 260.91 0.2175 0.2275 0.2457 0.2134 387.89 452.02 452.23 418.35 0.8605 0.8106 0.8104 0.8377
SVR 162.68 270.99 269.63 258.92 0.1409 0.2045 0.2029 0.1975 326.60 466.58 460.84 436.41 0.9011 0.7982 0.8031 0.8234
RR 165.89 269.05 271.61 249.07 0.1421 0.2239 0.2279 0.1943 318.76 446.99 438.13 407.66 0.9058 0.8148 0.8220 0.8459
ELM 164.96 259.53 272.78 245.77 0.1383 0.1975 0.2253 0.1965 319.17 443.08 435.21 403.26 0.9056 0.8180 0.8244 0.8492
Proposed model 161.82 253.75 256.19 240.56 0.1364 0.1948 0.1963 0.1891 305.72 438.26 419.00 394.69 0.9134 0.8219 0.8372 0.8556
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Table 10 | Results of four evaluation criteria of the combined model and the three single models during the testing period

Station Model

MAE MAPE RMSE DC

Lag length (months) Lag length (months) Lag length (months) Lag length (months)

6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24

Lianghekou MLR 190.72 202.75 196.02 202.48 0.3568 0.3807 0.3480 0.3486 282.80 325.89 308.11 316.05 0.7617 0.6836 0.7172 0.7024
FFBP-NN 172.32 197.68 229.33 251.46 0.2721 0.3134 0.5083 0.5096 273.12 319.90 328.86 366.48 0.7777 0.6951 0.6778 0.5998
SVR 192.67 181.83 184.76 190.14 0.2936 0.2865 0.3072 0.3008 306.98 308.31 305.04 310.36 0.7192 0.7168 0.7228 0.7130
RR 211.40 188.83 201.32 227.36 0.3573 0.3014 0.3838 0.4429 327.24 308.78 309.88 333.78 0.6809 0.7159 0.7139 0.6681
ELM 208.85 189.47 187.84 226.16 0.3522 0.2988 0.3284 0.3646 321.05 311.08 303.79 365.92 0.6929 0.7117 0.7250 0.6710
Proposed model 167.35 180.26 169.32 193.49 0.2719 0.2745 0.2773 0.3255 262.55 298.34 290.95 306.65 0.7946 0.7348 0.7478 0.7198

Jinping MLR 298.18 316.76 286.40 306.39 0.2624 0.2971 0.2551 0.2668 468.11 501.48 498.95 505.16 0.7872 0.7558 0.7582 0.7522
FFBP-NN 288.64 311.90 295.83 395.12 0.2108 0.2459 0.2140 0.3606 522.96 549.86 522.11 632.33 0.7344 0.7064 0.7353 0.6117
SVR 284.93 268.17 257.93 278.34 0.2239 0.2182 0.1871 0.2113 487.86 476.41 468.00 504.84 0.7689 0.7796 0.7873 0.7525
RR 297.25 288.84 265.33 342.34 0.2323 0.2384 0.2055 0.2908 513.06 508.83 478.94 572.53 0.7444 0.7486 0.7772 0.6817
ELM 295.00 286.51 268.28 324.86 0.2306 0.2261 0.1872 0.2570 512.20 524.54 470.78 570.65 0.7452 0.7328 0.7773 0.6960
Proposed model 249.89 252.42 250.12 252.63 0.1843 0.1922 0.1870 0.2169 434.76 464.28 466.93 440.47 0.8164 0.7907 0.7883 0.8116
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order from good to bad is SVR, MLR and FFBP-NN based on the four evaluation metrics. In the other two combination

forecasting methods, ELM has a better fitting effect than the RR model from a lag period of 6–24 months.
(b) For the Jinping station, when the lag period is 6 months, the proposed combined model with MAE, MAPE, RMSE and DC

values of 249.89, 0.1843, 434.76 m3·s�1 and 0.8164, respectively, can get the most accurate forecasting results. Next, for the

other three single models, there is not a unified law based on the performancemetrics; based onMAE, SVR performs better
than the other twomodels; in terms of theMAPE, FFBP-NN can get better forecasting results; and based on RMSE andDC,
it is very obvious that the value of MLR is better than the other two single models. When the lag period is 12, the presented
combined model gets the best forecasting results compared with the other three single models based on the four evaluation

metrics. For the other three single models, there is not a uniform regularity based on the performance metrics; in terms of
the MAE andMAPE, their order from good to bad is SVR, FFBP-NN andMLR; and based on the RMSE and DC, it is very
obvious that the value of SVR is better than the other two single models, MLR followed, and FFBP-NN is the worst. For a

lag period of 18 and 24 months, the proposed combined model with values of 0.1870 and 0.2169, respectively, is still the
most accurate forecasting model. Next, for the other three single models, there is not a unified law based on the perform-
ance metrics; in terms of the MAE, RMSE and DC, their order from good to bad is SVR, FFBP-NN andMLR; based on the

MAPE, in the lag period of 18months, SVR performs better than the other twomodels, FFBP-NN followed, andMLR is the
worst; and for a lag period of 24 months, their order from good to bad is SVR, MLR and FFBP-NN. For the other two com-
bined forecasting methods, ELM performs better than the RR model when the lag is 6–24 months.

Performance of uncertainty and reliability analyses

To evaluate the performance of the proposed approach, the results of the above two experiments will be further discussed
with uncertainty and reliability analyses.

Uncertainty analysis

The major goal of the uncertainty analysis is to restrict the expected range in which the true value of the outcome of an exper-
iment lies. This estimated range is in the form of an interval and is called the uncertainty interval. It can be estimated based on
the errors calculated for the measurement process of the experiment under consideration. U95 is a type of uncertainty analy-

sis procedure to compute the uncertainty interval (Sabed-Movahed et al. 2020). To be more specific, U95 restricts the
uncertainty of runoff at a 95% confidence level. Thus, the smaller the amount of U95, the more accurate the runoff value.
It is defined as follows:

U95 ¼ 1:96
n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

(yt � ŷt)
2 þ

Xn
t¼1

(yt � �yt)
2

vuut (11)

Reliability analysis

The reliability analysis is a statistical method for measuring the overall consistency of a model. It is designed based on the
amount of random error from the measurement process. The greater the number of cases for which error is less than a certain
threshold, the more reliable the overall consistency of the model will be. Generally, a metric for the reliability analysis is rep-

resented by the following equation:

Reliability ¼
Pn
t¼1

lt

n
�100% (12)

where kt is obtained through two steps. (1) The relative average error (RAE) is defined as a vector whose tth component is
given as follows:

RAEt ¼ yt � ŷt
yt

����
����
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(2) If RAEt � D, then lt ¼ 1; otherwise, lt ¼ 0, where D is the threshold value of runoff forecast. In other words, kt is defined

as the number of times the value of RAE is less than or equal to that of D. The optimum value of D based on Chinese standards
is 0.2 or equivalently is 20%. In this article, we take 20%.

Results of benchmarks analysis

The results of uncertainty and reliability analyses are presented in Table 11. From Table 11, the following result can be
obtained:

(a) For the Lianghekou station, the proposed model represented the lowest value for uncertainty with a 95% confidence level,
with uncertainty values of 52.6423, 54.3781, 54.3454 and 53.8330, respectively, from a lag period of 6–24 months in the
training phase when compared to the other models. Additionally, predictions of runoff provided by the proposed model

were more reliable in comparison with the predictions made by the other models, with reliability values of 68.83, 58.25,
56.67 and 62.71% from a lag period of 6–24 months, respectively. Moreover, the proposed combined model with a 6-
month lag can provide better performance than other lag periods. Similar results were also generally observed for the
testing stage, that is, the proposed model had the lowest uncertainty and the highest reliability when the lag is 6–24

months (see the bold values in Table 11).
(b) For the Jinping station, when compared with the other models, the presented model showed the lowest uncertainty, with

U95 values of 96.8543, 100.8462, 100.1888 and 99.3955, respectively, from a lag period of 6–24 months in the training

phase. Additionally, considering reliability, it is conspicuous that the proposed model, with reliability values of 83.50,
Table 11 | Comparisons of the performance results for the uncertainty and reliability analyses

Station Model

U95 Reliability (%)

Lag length (months) Lag length (months)

6 12 18 24 6 12 18 24

Lianghekou Training datasets
MLR 55.1973 55.4406 55.3238 55.0002 37.92 45.42 42.50 44.58
FFBP-NN 53.8142 54.8461 55.0840 55.0556 59.38 55.63 37.71 47.08
SVR 52.9215 54.8996 54.8013 54.4873 63.75 57.08 57.29 60.00
RR 52.7020 54.7179 54.6872 54.2918 64.58 54.17 46.67 61.04
ELM 52.6777 54.6346 54.5940 54.2987 68.54 58.13 55.83 61.04
Proposed model 52.6423 54.3781 54.3454 53.8330 68.83 58.25 56.67 62.71

Testing datasets
MLR 115.3462 118.9300 117.4029 118.0773 37.50 36.67 44.17 40.00
FFBP-NN 114.5970 118.4087 119.1918 122.6546 45.00 45.00 22.50 25.00
SVR 117.3081 117.4198 117.1465 117.5925 45.83 47.50 45.17 43.17
RR 119.0485 117.4596 117.5518 119.6284 36.67 47.50 35.83 30.00
ELM 118.5077 117.6538 117.0422 122.6010 42.50 45.00 43.33 40.83
Proposed model 113.8033 116.5922 115.9934 117.2807 46.33 48.17 46.17 44.50

Jinping Training datasets
MLR 102.0498 102.7886 102.4304 102.0419 42.92 45.00 44.17 48.75
FFBP-NN 99.1813 101.3313 101.3384 100.1671 55.00 55.63 52.71 57.29
SVR 97.3983 101.8581 101.6487 100.7819 80.63 59.38 61.04 60.00
RR 97.1902 101.1524 100.8418 99.8137 76.46 57.08 55.21 63.33
ELM 97.2009 101.0146 100.7403 99.6705 81.04 63.33 53.54 61.67
Proposed model 96.8543 100.8462 100.1888 99.3955 83.50 63.54 62.92 64.58

Testing datasets
MLR 199.9499 202.5241 202.3238 202.8165 49.17 45.83 50.00 50.83
FFBP-NN 204.2553 206.5045 204.1855 213.9284 67.50 60.00 63.33 40.00
SVR 201.4559 200.5770 199.9422 202.7911 63.33 65.00 65.83 55.00
RR 203.4498 203.1096 200.7696 208.4674 63.33 58.33 64.17 50.00
ELM 203.3838 204.3848 201.6053 208.9196 60.00 60.00 69.17 55.00
Proposed model 197.5251 199.664 199.862 197.9293 77.50 70.00 69.27 58.33
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63.54, 62.92 and 64.58% from a lag period of 6–24 months, respectively, was the most reliable. Moreover, the proposed

combined model with a 6-month lag was able to provide very good performance compared with the other lag periods. In
the testing stage, there were also generally observed similar results, that is, the proposed model had the lowest uncertainty
and the highest reliability when the lag is 6–24 months (see the bold values in Table 11). And, the effect of a lag period of 6

months was the best in terms of different lag periods.
DISCUSSION

Developing medium- and long-term runoff forecasting for water resource planning and management activities, such as water
conservancy infrastructure operation, flood control and reservoir operation, is of great significance. In view of the influence of
different lag periods on runoff and the uncertainty of a single model, a medium- and long-term runoff combined forecasting

model based on different lag periods is proposed in this paper.
The experimental results showed that the input factors of different lag periods affect the prediction accuracy of runoff based

on the analysis of the above results. In addition, the optimal lag period of the Lianghekou is 6 months, and the factors
(Table 12) affecting the change of runoff process are mainly related to the lag time of 1 month of the Area Index of Northern

Hemisphere Subtropical High (5E-360), 1 month of the North Africa Subtropical High-Intensity Index (20 W–60E), 1 month
of the North Africa, Atlantic and North America Subtropical High-Intensity Index (110 W–60E), 1 month of the Central
Intensity of the Northern Hemisphere Polar Vortex (JQ), 1 month of the Tibet Plateau (25N–35N, 80E–100E), 6 months

of the Tibet Plateau (30N–40N, 75E–105E) and 1 month of the antecedent runoff. For the Jinping station, the optimal lag
period is also 6 months. The factors affecting the change of runoff are shown in Table 12, which are no longer listed here.
Among them, the Central Strength of the Northern Hemisphere Polar Vortex (JQ), Tibet Plateau (25N–35N, 80E–100E)

and the antecedent runoff (see the bold values in Table 12) are three identical features of Lianghekou and Jinping stations.
This indicates that we consider not only the influence of atmospheric circulation on runoff, but also the special climatic
impact caused by the geographical location of the Yalong River, such as snow cover on the Tibet Plateau (Xu & Ma 2011).

The experimental results indicate that the proposed combined model performs better than other methods whether it’s
during training or testing. This is mainly because the classic MLR model is relatively easy to construct with the simplest
type of parameters, and it can capture the global trend over an entire input space. Its accuracy, however, is not satisfactory,
which may not meet the requirements of medium- and long-term runoff forecasting. The BP model can identify complex non-

linear relationships between input and output data, and its accuracy is satisfactory for runoff forecasting, but there is a risk of
over-fitting. The SVR model is also appropriate for reproducing the nonlinear problem, which can provide a suitable mapping
between input and output data in a higher-dimensionality feature space to improve the forecasting accuracy. Its parameters
Table 12 | The best input factor in the lag period of 6 months for Lianghekou and Jinping stations

Station Lag time (months) Predictive factors Definition and interpretation

Lianghekou t� 1 a2 Area Index of North Africa Subtropical High (20 W� 60E)
t� 1 a3 North Africa, Atlantic and North America Subtropical High Area Index (110 W� 60E)
t� 1 a29 Polar Vortex Strength Index in Asia Region (Region 1, 60E� 150E)
t� 1 a36 Central Strength of the Northern Hemisphere Polar Vortex (JQ)
t� 1 a42 East Asian Trough Strength (CQ)
t� 6 a43 Tibet Plateau (25N� 35N, 80E–100E)
t� 1 a96 The antecedent runoff

Jinping t� 1 a1 Area Index of the Northern Hemisphere Subtropical High (5E-360)
t� 1 a13 North Africa Subtropical High Intensity Index (20 W–60E)
t� 1 a14 North Africa, Atlantic and North America Subtropical High Intensity Index

(110 W–60E)
t� 1 a36 Central Strength of the Northern Hemisphere Polar Vortex (JQ)
t� 6 a43 Tibet Plateau (25N–35N, 80E–100E)
t� 6 a44 Tibet Plateau (30N–40N, 75E–105E)
t� 4 a82 IOWPA Indian Ocean Warm Pool Area Index
t� 1 a96 The antecedent runoff
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need to be determined carefully since they significantly influence the accuracy of the SVR model (Chu et al. 2017). The RR

model is one of the traditional combination forecasting methods, which can solve the problem of coefficient selection of a
single model for a linear combination prediction model. The possible emergence of negative weights and other controversial
issues restrict the generalization of linear combination prediction to a certain extent (Xu et al. 2021). However, the proposed

combined model is easy to fit the nonlinearity of the predicted objects and meet the requirements of medium- and long-term
runoff forecasting, which overcome the limitation of linear combination prediction.

Based on the accomplished findings, there are still some areas that need to be improved. In future research, more factors
such as vegetation index, topography and electricity generation, especially the humans’ activity, will be introduced to better

describe the changing process of runoff. In the method of selecting key factors, we concentrate on only the linear relationship
and neglect the nonlinear relationship between the impact factors. Thus, we will adopt the PMI method to select the key fac-
tors in the future study, which has the advantages of characterizing relationships of linear and nonlinear among factors. In

addition, the deep learning approaches will be applied to runoff prediction because the shallow network is degenerated for
the medium- and long-term runoff forecasting task.

CONCLUSION

With the rapid development of cascade hydropower stations in a big basin, the actual operation is becoming more and more
in-demand for runoff prediction. Therefore, it is of great significance to develop medium- and long-term runoff forecasting for
water resource planning and management activities such as water conservancy infrastructure operation, flood control, reser-

voir operation and drinking water distribution. Numerous studies that adopted combined forecasting models to enhance
runoff forecasting accuracy have been proposed. Nevertheless, some models do not consider the effects of different lag
periods on the selection of input factors.

Thus, this paper proposed a medium- and long-term runoff combined forecasting model based on different lag periods. The
presented combined model initially uses the lagging correlation coefficient and stepwise regression to extract features as the
optimal input factor. Then, the selected optimal factor is predicted by using three common single models, which include

MLR, FFBP-NN and SVR. And then ELM is utilized to integrate the forecasting results of the three individual models. In
addition, considering that the random input weights and hidden biases of ELM always have some influence on the training
process, we use PSO to optimize the parameters. By simulating and experimenting with the runoff data of Lianghekou and
Jinping stations from the Yalong River basin, and comparing the proposed combined method with the three individual fore-

casting methods and the traditional combination forecasting methods, the major findings of the proposed approaches and
their applications in this paper are: (1) the lag period of physical factors delay can affect the accuracy of runoff forecasting.
And, the optimal lag period of both the Lianghekou and Jinping stations is 6 months. (2) Whether it is during the training or

testing, the proposed combined model performs better than the other three individual models and the traditional combination
method. (3) The proposed combination model can be considered as a very reliable forecasting tool for runoff forecasting.
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