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ABSTRACT

The rainfall–runoff (RR) process in a catchment is non-uniform, complex, dynamic, and non-linear in nature. Although a number of advanced

conceptual and data-driven techniques have been proposed in the past, the accurate estimation of daily runoff still remains a challenging

task. A majority of conceptual models proposed so far suffer from the assumptions of linearity during their modeling. In this paper, novel

hybrid approaches are proposed that are capable of exploiting the strength of both conceptual and data-driven techniques in RR modeling.

A conceptual technique is first used to generate sub-basins’ runoff hydrographs in upstream reaches and then data-driven techniques are

employed for routing them to the outlet of the catchment. The hybrid models’ performances are compared with standalone conceptual

and data-driven models by employing the daily rainfall, runoff, and temperature data derived from the Kentucky River basin, USA. The results

show that the proposed hybrid models, which do not assume the RR process to be a linear process to simulate the flow, outperform their

individual counterparts. It is concluded that in order to achieve improved accuracy in RR modeling, the real-life process needs to be rep-

resented as accurately as possible in the modeling effort rather than making simplified assumptions.
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HIGHLIGHTS

• Novel hybrid approaches are proposed to model the non-linear, complex, and dynamic rainfall–runoff process in a larger catchment.

• Spatial variations in hydrologic and catchment characteristics are modeled using a conceptual approach.

• Non-linearity and complexity in the rainfall–runoff process are modeled using data-driven techniques.

• Two conceptual and one data-driven models are developed for comparison purposes.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

The rainfall–runoff (RR) process is one of the most complex, dynamic, and highly non-linear hydrological phenomena which
is affected by many temporal and spatial variations of the catchment, geo-morphological, and climatic characteristics (Beven
2000) and is often inter-related. The influence of these factors and many of their combinations in generating runoff is an extre-

mely complex physical process and is not understood clearly (Zhang & Govindaraju 2000). The modeling of the RR process
has been the subject of research among hydrologists and engineers for a very long time as it is an integral component in most
water resource management projects (Reed et al. 2004; Moretti & Montanari 2007; Moradkhani & Sorooshian 2009; Dorum
et al. 2010; Barati et al. 2012; Wolfs et al. 2015). Various modeling techniques have been used to model the RR process in the

past that can be broadly classified into two categories: the theory-driven approach includes conceptual and physics-based
techniques, and the data-driven approach includes empirical and black-box techniques (Solomatine & Dulal 2003). The con-
ceptual approach is the best-explored technique in the early stage of modeling the RR process, which was first started by

Mulvany (1850) called the rational method. Subsequently, a large number of daily conceptual streamflow simulation
models were developed differing in complexity and sophistication. Some notable examples include Moisture Accounting
and Routing (SMAR; O’Connell et al. 1970), SACRAMENTO model (Burnash et al. 1973), Système Hydrologique Europeén
://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf
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model (SHE; Abbott et al. 1986), the Institute of Hydrology Distributed Model (IHDM; Beven et al. 1987), Australian water

balance model (AWBM; Boughton 1995), and SIMHYD model (Chiew et al. 2002). Due to the theoretical basis adopted in
the development of conceptual models, it is expected that the conceptual models would be more realistic in terms of physical
components and parameters in simulating the RR process. Although many of these models are simple and computationally

efficient, there are many situations, where these models compromise their accuracy, and are affected by parameter uncertain-
ties (Moradkhani & Sorooshian 2009; Zhang et al. 2016). Moreover, the conceptual RR models require a large amount of
data and information on catchment for its calibration and validation (Grayson et al. 1992; Koycegiz & Buyukyildiz 2019).
Due to these factors, researchers started to explore a new category of modeling technique called as data-driven models

(DDMs). The DDMs in hydrological forecasting have received tremendous attention from researchers in the past decade
(Jain & Kumar 2007; Solomatine et al. 2009; Bowden et al. 2012; Galelli et al. 2014; Nanda et al. 2016; Ahmadi et al.
2019; Sharghi et al. 2019; Vidyarthi & Chourasiya 2020; Vidyarthi et al. 2020; Hagen et al. 2021). These models develop

relationships among input and output variables without considering the underlying physical process, which is why sometimes
they are also labeled as black-box models (Vidyarthi & Jain 2020). DDMs learn the previously unknown relationships existing
among the input and output data through a process of training, without a prior knowledge of the internal catchment charac-

teristics, hence requiring less information on the catchment. As such, many researchers have employed DDMs in solving
hydrologic problems (Solomatine et al. 2009; Maier et al. 2010). Many studies have demonstrated the superiority of
DDMs in terms of accuracy over conventional methods for modeling the RR process (Solomatine & Ostfeld 2008; Talei

et al. 2010; Rezaeianzadeh et al. 2013; Koycegiz & Buyukyildiz 2019; Lees et al. 2021). Despite having numerous advantages,
the ANN approach is by no means a substitute for conceptual techniques (Hsu et al. 1995), and thereby, field practitioners
show their reluctance to use artificial neural networks (ANNs) when it comes to an enhanced comprehensibility of the model
(Sudheer & Jain 2009; Vidyarthi & Jain 2020).

The state of the art in the above two approaches suggests that the conceptual and data-driven techniques have their own
benefits and it has been observed that the conceptual and DDMs outperform each other in certain conditions along with their
limitations. Therefore, in order to overcome the drawbacks of both techniques, a hybrid modeling was first explored by Corzo

et al. (2009). Later, few researchers have integrated the conceptual and data-driven techniques with the aim to improve the
performance of the RR models by developing different kinds of hybrid models. Song et al. (2012) integrated the ANN tech-
nique with the Xinanjiang model and claimed that the results are promising for hourly event-based simulation. Mekonnen

et al. (2015) combined the SWAT model with ANN to deal with the contributing and non-contributing areas of the catch-
ment. Humphrey et al. (2016) integrated the Génie Rural à 4 paramètres Journalier (GR4 J) conceptual RR model with a
Bayesian ANN to improve monthly streamflow prediction. Young et al. (2017) integrated the HEC-HMS model with a sup-
port vector machine to improve the hourly runoff discharges in the Chishan Creek catchment in southern Taiwan. More

recently, Ghaith et al. (2020) integrated the conceptual hydrological model (HYMOD) with the ANN technique for daily
streamflow simulation and reported that a better resemblance of streamflow patterns was achieved by the hybrid model.
Farfán et al. (2020) combined physics-based WEAP and GR2M models with the ANN technique to improve flow forecasting

in Andean watersheds.
The RR process is a highly non-uniform, complex, dynamic, and non-linear process, and any technique attempting to model

the RR process in a catchment must be capable of accounting for or handling the non-uniformity, complexity, non-linearity,

and dynamics inherent in the physical process being modeled. Most of the conceptual models developed so far assume the RR
process to be linear because the assumption of linearity facilitates and simplifies the modeling process. With the availability of
non-linear data-driven techniques and their established superiority, it should be possible to model the inherent complexities

and non-linearity in the RR process in mathematical models in a more efficient manner. The standalone ANN models devel-
oped so far for the RR process are capable of modeling the complexity and non-linearity in the RR process, which is probably
the reason they have been found superior to the more conventional conceptual RR models in terms of forecast accuracies in
the past. The previous research efforts have also demonstrated the superiority of the hybrid models over the standalone indi-

vidual models. However, the integration of the conceptual and ANN models attempted so far has been arbitrary rather than
based on domain knowledge of the RR process. It should be possible to incorporate non-uniformity, complexity, and non-lin-
earity of the RR process in a catchment in DDMs in a gradual manner based on the domain knowledge. The transformation of

the rainfall falling non-uniformly over a large catchment into runoff at the catchment outlet consists of several components,
e.g. infiltration, surface flow, and sub-surface flow. Incorporation of the spatial variations in the hydrologic and catchment
characteristics in a large catchment into a hybrid model requires a distributed or a semi-distributed approach capable of
om http://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf
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not only incorporating the non-uniformity in the input data, e.g. spatial variations in rainfall data and varying catchment

characteristics, but also the complexity and non-linearity of the RR process. Routing of the runoff responses from the
upstream reaches in a catchment to the runoff response at the outlet of the catchment is a non-linear process involving spatial
variations in hydrologic and catchment characteristics. Therefore, the generation of the surface runoff in upstream reaches in

a catchment and its subsequent routing to the outlet of the catchment must be performed using a mathematical technique
capable of incorporating such complexities, non-linearity, and non-uniformity in the RR process. The hybrid models proposed
in this study employ the conceptual methods capable of incorporating spatial variations in hydrologic and catchment charac-
teristics in generating surface runoff in upstream reaches of a catchment and then exploit the strength of data-driven

approaches in handling the non-linearity and complexity inherent in the RR process in order to carry out the routing of
runoff hydrographs generated at the upstream reaches in a catchment to the outlet of the catchment. Such hybrid approaches
attempting to incorporate non-uniformity and non-linearity based on domain knowledge may be able to offer improved mod-

eling accuracies but it remains to be investigated. The conceptual method employed in this study is the AWBM to generate
runoff hydrographs at individual sub-catchment levels in upstream reaches, while non-linear regression (NLR) and ANNs are
employed as the data-driven techniques for carrying out surface flow routing. In addition, two individual standalone AWBMs

(one lumped and another routed) and a standalone ANN model are also developed as the benchmark models for comparison
purposes. The catchment was divided into three sub-catchments and the AWBMs were developed for generating runoff
hydrographs from individual sub-catchments by using spatially varying hydrologic and catchment characteristics. The surface

flow responses obtained from the three sub-catchments were then routed by using NLR and ANN techniques to obtain the
runoff at the catchment outlet in the hybrid model and by using the hydrologically based routing method, popularly known as
the Muskingum method in the semi-distributed AWBM. A wide variety of standard statistical performance evaluation
measures have been employed to validate all the models investigated. To illustrate the applicability of proposed hybrid

models, the rainfall, runoff, and temperature data derived from the Kentucky River basin have been employed.
The paper starts with a brief description of the material and methods which includes a brief description of the study area

and data. A detailed description of the model development is then discussed. After a discussion of the obtained results, the

paper ends with the concluding remarks.
2. MATERIAL AND METHODS

The complete modeling process and design are described in Figure 1. In the first approach, standalone AWBM and ANN
models were developed which are lumped in nature, while conceptual (Muskingum method) and non-linear methods
(NLR and ANN) were used for routing the sub-basins’ flows in the second approach to obtain the basin’s outlet. The modeling

techniques employed in this study include the conceptual AWBM, NLR, and ANN techniques. The description of NLR can
be obtained in any standard textbook of statistics (Rhinehart 2016). Three-layered (an input layer, one hidden layer and an
output layer) feed-forward neural network trained with back-propagation (FFBP) using the Levenberg–Marquardt (LM)
Figure 1 | Schematic diagram of the modeling process.
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algorithm is used in this study and their detailed description can be obtained in Hagan & Menhaj (1994) and Hagan et al.
(1996). A brief overview of the AWBM technique and the description of study area and data are presented in this section.

2.1. Australian water balance model

The AWBM was developed in the early 1990s (Boughton 1995), and after several modifications since its inception, it is now

one of the most widely used RR models in Australia (Boughton 2004). The AWBM is a catchment water balance model that
calculates runoff from rainfall at daily or hourly time increments; the schematic diagram is shown in Figure 2. The model uses
three surface storage elements to simulate runoff using evapotranspiration (ET) data as an input in addition to rainfall data.
The water balance of each surface storage element is calculated independently of the others. If the value of moisture in the

store becomes negative, it is reset to zero, as the ET demand is superior to the available moisture. If the value of moisture in
the store exceeds the capacity of the store, the moisture in excess of the capacity becomes runoff and the store is reset to the
capacity. When runoff occurs from any storage element, part of the runoff becomes recharge of the base flow storage if there

is base flow in the streamflow. The fraction of the runoff used to recharge the base flow storage is runoff multiplied by a factor
called base flow index (BFI) which is the ratio of base flow to total flow in the stream. The remainder of the runoff, i.e.,
(1.0�FI)*runoff, is surface runoff.
Figure 2 | Schematic diagram of the AWBM model.

om http://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf

4



Journal of Hydroinformatics Vol 24 No 2, 355

Downloaded from http
by guest
on 10 April 2024
The base flow storage is depleted at the rate of (1.0�KB)*BS, where BS is the current moisture in the base flow storage and

KB is the base flow recession constant. The surface storage acts in the same way as the base flow storage and is depleted at the
rate of (1.0�KS)*SS, where SS is the current moisture in the surface runoff storage and KS is the surface runoff recession
constant of the time step being used. There are eight parameters in AWBM. All the AWBMs are calibrated by using the Rain-

fall–Runoff Library (RRL) of the Cooperation Research Centre for Catchment Hydrology, Australia. The RRL toolkit has eight
choices of primary objective functions and three choices of secondary objective functions depending upon the need of the
problem and selected model, as RRL contains many other models other than AWBM. Out of the available choices of objec-
tive functions and optimizers in RRL, the sum of square error (SSE) as an objective function and the genetic algorithm (GA)

as an optimizer are used in the present study, as suggested by Kim et al. (2005).

2.2. Study area and data

The data derived from the Kentucky River basin, USA, as shown in Figure 3, are employed to develop the RR models in this

study. The Kentucky River originates from Beattyville, Kentucky, and meets the Ohio River at the end. It fulfills the water
needs of nearly one-sixth of the population of Kentucky State. The Lock and Dam 14 (LD14) is the first lock and dam
along its flow direction. The drainage area of the Kentucky River at LD14 near Heidelberg, Kentucky, is approximately
6,881 km2. The data used in this study include the average daily streamflow (m3/s) from the Kentucky River at LD14 near

Heidelberg, and the daily rainfalls (mm) from the four rain gauges (Manchester, Hyden, Jackson, and Heidelberg) scattered
up to LD14. The daily rainfall values from these four rain gauge stations were averaged to get the mean daily rainfall values
for the basin. The average of the temperature data (in °C) obtained at Manchester and Lexington Airport is used in this study.

All the observation stations are shown in Figure 3(a). The rainfall, runoff, and temperature data for 26 years (between years
1960 and 1989) are used for model development in this study. For the development of the conceptual models, ET is calculated
for the entire Kentucky basin using temperature data. To calculate ET, PET (potential evapotranspiration) is first calculated

using the equation given by Thornthwaite (1948), and then using rainfall pattern, ET is calculated. At the time of using the
Thornthwaite equation, the negative average monthly temperature is taken as zero (Xu & Singh 2001).

Using temperature data, PET (mm/month) is calculated for all months. A coefficient, t0 ¼ (Tmax)j=
P

(Tmax), is calculated

for each day, where j is the individual day of the month. PET data for a day in any month are calculated by multiplying this
coefficient by the PET (mm/month) of that month. The actual ET per day is calculated by comparing total daily rainfalls
(PPT), i.e., if PPT�2.5 mm/day, ET¼PET/2, otherwise, ET¼PET itself (Haan 1972). In the hybrid model development, the
Figure 3 | River basins, USA: (a) Kentucky at LD14 and (b) Kentucky sub-basins at LD14.
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entire Kentucky River basin is divided into three sub-basins called as North Fork (NF), Middle Fork (MF), and South Fork

(SF), as shown in Figure 3(b). All these sub-basins are in the Eastern Kentucky Coal Field physiographic region which is
characterized by mountainous terrain. The northern edge of the NF and SF sub-basins is in the plateau area of the coal
field with more rolling terrain which causes somewhat less rapid surface runoff than the MF sub-basin. The MF sub-basin

is underlain by coals, sandstones, and shales which are generally conducive to many wells in the region and cause of a mod-
erate rate of groundwater drainage. The unconsolidated silts, sands, and gravels occur along the flood plain of the MF sub-
basin. The drainage areas of the NF, MF, and SF sub-basins are 2,852, 1,391, and 1,870 km2, respectively. Though these sub-
basins contain other runoff sites, the proposed model is tested only by using the streamflow data near Jackson (QNF), Tallega

(QMF), and Booneville (QSF) to access its performance for the basin which would have limited gages available in the area.
Figure 4 presents a semi-log plot of observed daily flows for a randomly selected period to compare the flow patterns of
three sub-basins. It can be seen form Figure 4 that the NF and SF sub-basins show somewhat similar behavior during

higher flow events. On the other hand, the MF sub-basin exhibits quite distinguishable behavior having low flow as compared
to NF and SF sub-basins with higher flow recession. The ET data calculated for the entire Kentucky River basin is used for the
calibration of AWBM of the individual sub-basins in this study.

The data set is divided into two subsets: the first is used for calibration/training (covering the period 1 January 1960–31
December 1972) and another is used for validation/testing (covering the period 1 January 1977–31 December 1989) of the
models. Table 1 presents the basic statistics of various data sets.
Figure 4 | Observed flows of the sub-basins.

Table 1 | Basic statistics of various data

Basic statistics Jackson Manchester Heidelberg Hyden Avg. QNF QMF QSF LD14 Kentucky

Training rainfall (mm) Training flow (m3/s) Training PET (mm)

Minimum 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 2.0 0.0

Maximum 104.0 101.0 116.0 100.0 85.8 1,164.0 291.7 1,427.3 2,449.4 5.7

Average 3.0 3.4 3.2 3.3 3.2 38.7 21.2 30.0 102.8 2.0

Std. Dev. 7.8 8.4 8.3 7.8 6.7 77.0 29.7 67.8 171.0 1.7

Skewness 4.6 4.0 4.6 3.9 3.8 6.2 2.3 7.4 4.4 0.3

Kurtosis 30.2 22.8 31.2 21.9 21.6 55.2 6.4 86.6 30.8 �1.4

Testing rainfall (mm) Testing flow (m3/s) Testing PET (mm)

Minimum 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0 1.3 0.0

Maximum 104.0 107.1 133.6 111.0 101.1 1,478.3 213.2 1,362.2 2,432.4 6.2

Average 3.2 3.3 3.1 3.4 3.2 37.4 19.6 28.5 100.9 2.1

Std. Dev. 7.9 8.5 8.4 8.1 6.7 73.9 27.1 64.1 168.3 1.8

Skewness 4.4 4.5 5.5 4.3 4.2 7.9 2.0 7.9 4.9 0.4

Kurtosis 26.8 30.3 46.9 27.2 28.7 94.3 4.0 98.4 38.3 �1.3
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3. MODEL DEVELOPMENT

In this paper, two standalone conceptual AWBMs, one standalone ANN model, and two different hybrid models are devel-
oped. The first standalone conceptual AWBM is a lumped model, while the second conceptual AWBM is quasi-distributed
in nature. The standalone ANN model and the lumped AWBM were developed using the average rainfall, runoff, and temp-

erature data of the Kentucky River basin at LD14. The first hybrid model is developed by integrating the conceptual AWBM
with NLR, and the second hybrid model is developed by integrating the AWBM with the ANN technique. For developing
the quasi-distributed AWBM and the two hybrid models, the Kentucky River basin up to LD14 was divided into three sub-

basins and the runoff generated from these sub-basins using conceptual AWBMs was taken as input for the development of
the hybrid models. Later, two more improved hybrid models were developed by incorporating delayed surface runoff in the
input vector of the ANN models based on domain knowledge and past practices. The detailed explanation of model develop-

ments is provided in the sub-section. Four different standard statistics were used to evaluate the performance of the models
developed in this study. These are the average absolute relative error (AARE ¼ 1=N

PN
t¼1 QO(t)�QP(t)=QO(t)j j

� �
� 100%),

the root-mean-square error (RMSE), the Pearson coefficient of correlation (R), and the threshold statistics

(TSx ¼ nx=N � 100%) between observed discharge (QO (t)) and predicted discharge (QP (t)). The TSx is the percentage of
data points forecasted for which the absolute relative error is less than x%, where nx is the number of the data points forecasted
with the absolute relative error less than x% andN is the total number of observation points. Most of these error statistics have
been extensively used for model selection by many researchers in the past (Chidthong et al. 2009; Vidyarthi et al. 2020).

3.1. Development of conceptual AWBMs

Two different standalone conceptual AWBMs are developed in this study. The first standalone conceptual AWBM is a
lumped model (named as AWBM-lumped) which was developed using the average rainfall, runoff, and temperature of the
Kentucky River basin at LD14. The second standalone conceptual AWBM is quasi-distributed in nature, which first generates

individual runoff hydrographs at upstream reaches and then routes them to the outlet of the entire catchment using the linear
hydrologic routing method popularly known as the Muskingum method; hence, the second standalone conceptual model is
named as AWBM-Muskingum.

3.1.1. AWBM-lumped

In the development of the AWBM-lumped model, the average rainfall data obtained from Jackson, Hyden, Manchester, and

Heidelberg and the runoff at the basin outlet LD14 were used. The ET data calculated for the entire Kentucky River basin was
used for the calibration of the AWBM-lumped model. The AWBM-lumped parameters for the Kentucky River catchment
were estimated using the RRL toolkit for the data of the calibration period by setting SSE as an objective function and

GA as an optimizer. After implementing the calibration step, the conceptual models may sometimes give inappropriate par-
ameter values which do not match with field situations, and to check this, the ranges of the parameters were fixed between
meaningful values before performing the calibration step. The best parameter set was obtained by running the model multiple
times using different initial values to get the suitable and meaningful calibrated parameters. The GA used in this study has

four parameters: number of points (population), probability of mutation, trapezoidal probability density function (PDF),
and maximum iterations. The best GA optimizer parameters were obtained using a trial and error method varying one par-
ameter at a time. The trapezoidal PDF was varied from 1 to 2 and the number of iterations was varied from 20 to 100. The

values of trapezoidal PDF¼2, mutation probability¼0.01, and iteration¼80 were found to be the best for the calibration of the
AWBM-lumped model. After the calibration step, the parameters of the AWBM for the Kentucky River basin were obtained
as 0.134 and 0.433 for partial areas, A1 and A2, respectively; 0.722 for percolation constant, BFI; 48.6, 154.5, and 125.5 for

surface storage capacities, C1, C2, and C3, respectively; 0.773 for base flow recession constant, KB; and 0.988 for surface flow
recession constant, KS.

3.1.2. AWBM-Muskingum

For the development of the AWBM-Muskingum model, first, the conceptual AWBMs of individual sub-basins NF, MF, and SF
were developed using the data of the corresponding sub-basins. The rainfall and runoff at Jackson were employed for devel-

oping the AWBM for the NF basin; the rainfall at Hyden and runoff at Tallega was employed for developing the AWBM for
the MF basin; and the AWBM for the SF basin was developed using the averaged data of rainfall obtained from Manchester
and Heidelberg and runoff at Booneville. The ET data calculated for the entire Kentucky River basin was used for the
://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf
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calibration of the AWBM of the individual sub-basins in this study. The individual AWBM parameters for the sub-basins were

estimated using the RRL toolkit for the data of the calibration period by setting SSE as an objective function and GA as an
optimizer following the similar procedure used for calibrating the AWBM-lumped parameters. The best GA optimizer par-
ameters obtained from the AWBM-lumped model were found to be suitable for calibrating the AWBMs of the individual

sub-basins also. Table 2 presents the calibrated model parameters for the AWBMs developed for NF, MF, and SF sub-
basins along with the default range of the parameter values.

It can be observed from Table 2 that the calibrated parameters of the models are different in different sub-basins which show
the variations in the physiography of the sub-basins. For example, the NF sub-basin recharges and depletes its base flow store at

similar rate with the values of BFI¼0.769 and KB¼0.753. The base flow store of theMF sub-basin, on the other hand, recharges
and depletes rapidly with the values of BFI¼0.808 and KB¼0.918, respectively. In contrast to NF and MF sub-basins, the base
flow store of the SF sub-basin recharges rapidly with a value of BFI¼0.910 and depletes with a little slower rate of recessionwith

a value of KB¼0.651. The value of surface flow recession parameter (KS) is nearly similar in all the sub-basins, while the par-
ameters for surface storage capacity (C1, C2, and C3) are significantly different for different sub-basins presented in Table 2.
After calibration, the runoff at Jackson for NF (Q̂NF), runoff at Tallega for MF (Q̂MF), and runoff at Booneville for SF (Q̂SF)

sub-basins were estimated using the corresponding calibrated parameters of the sub-basins. In the last step of AWBM-Muskin-
gummodel development, the routing of sub-basins’ calculated runoffs Q̂NF , Q̂MF , and Q̂SF fromAWBMs of NF,MF, and SF sub-
basins, respectively, was performed using the hydrological routing method popularly known as the Muskingummethod which

assumes linear relation among the storage, input and output in a channel reach (see Srivastava & Jain (2017) for details of the
Muskingummethod). TheMuskingummethod of runoff-routing through river reaches consists of two important parameters:K
and x that need to be calibrated. The parameters K (the slope of storage-weighted discharge curve, in days) and x (a dimension-
less constant known as weighting factor) were estimated by the standard storage–weighted discharge method in this study and

their values thus obtained are: K¼1.5 days corresponding to the value of x¼0.33.

3.2. Development of the ANN model

For the development of the ANN model, the significant input vectors were selected on the basis of the values of cross-corre-

lation function (CCF), auto-correlation function (ACF) and partial auto-correlation function (PACF) of the daily data
employed in this study. PACF is used in this study because, in the case of more than two independent variables, the use of
PACF is very useful to know the association between two variables in presence of another influential variable. Based on
the analysis, the flow values lagged up to 3 days, Qt�1, Qt�2, and Qt�3, and the rainfalls, Pt, Pt�1, and Pt�2, were found as

significant for predicting Qt at LD14. The ANN model architecture, 6-N-1, was thus trained using the LM algorithm by vary-
ing the hidden neuron number (N) from 1 to 20. A number of trial values of the LM parameter, initial damping factor (μ),
were tried, and a value of μ¼0.001 was found to be the best and selected to train the ANN model. The objective function

was taken as the mean squared error (MSE). As soon as the MSE reaches 0.0001 or a maximum iteration of 50,000 reaches,
the training was terminated. The 6-4-1 architecture of the ANNmodel thus obtained was found to be the best among 20 differ-
ent architectures as the error statistics of this architecture was found to be optimum.
Table 2 | Calibrated parameters for AWBM for sub-basins of Kentucky River

AWBM parameters Physical meaning

Calibrated value

Default rangeSub-1 NF Sub-2 MF Sub-3 SF

A1 Area 0.134 0.134 0.134 0–1

A2 0.433 0.433 0.433 0–1

BFI Percolation 0.769 0.808 0.910 0–1

C1 Surface storage capacity 12.4 13.3 30.0 0–50

C2 99.6 154.5 144.3 0–200

C3 451 123.5 154.9 0–500

KB Base flow recession 0.753 0.918 0.651 0–1

KS Surface flow recession 0.99 0.99 0.988 0–1
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3.3. Hybrid model development

The procedure for the development of hybrid models is the same as adopted in AWBM-Muskingum model development
except for the technique employed for routing of the upstream sub-basins’ runoffs to the outlet of the entire catchment at

LD14. In contrast to the AWBM-Muskingum model, the non-linear techniques, such as NLR and ANN, were used for devel-
oping the hybrid models. Therefore, the procedure for generating Q̂NF , Q̂MF , and Q̂SF from AWBMs for NF, MF, and SF sub-
basins, respectively, is similar to that explained for the development of the AWBM-Muskingum model. The general structure
of the hybrid models is shown in Figure 5, which states that the flows obtained from AWBMs of individual sub-basins (Q̂NF ,

Q̂MF , and Q̂SF) are combined or routed using NLR and ANN techniques to obtain the LD14 runoff (QLD14). The structure of
the hybrid models (AWBM-NLR and AWBM-ANN) can be represented as follows:

QLD14(t) ¼ f[Q̂NF(t), Q̂MF(t), Q̂SF(t)] (1)

The first hybrid model (named as AWBM-NLR) uses the NLR for routing the calculated runoffs Q̂NF , Q̂MF , and Q̂SF from
AWBMs of NF, MF, and SF sub-basins, respectively. The modeling structure of the AWBM-NLR model can be represented

using the following equation:

QLD14 ¼ b1 � (Q̂NF)
b5 þ b2 � (Q̂MF)

b6 þ b3 � (Q̂SF)
b7 þ b4 (2)

where b1, b2, b3, b4, b5, b6, and b7 are the parameters of the NLR model. For calculating the values of these parameters, the
MATLAB function ‘fminsearch’was used. Interested readers can refer to the user’s guide of optimization toolbox of MATLAB
2012 for a detailed description of ‘fminsearch’ algorithm and its use in solving unconstrained optimization problems. The

calibrated regression equation is given as follows:

QLD14 ¼ �0:57� (Q̂NF)
0:01 þ 0:76� (Q̂MF)

1:13 þ 0:53� (Q̂SF)
1:42 � 0:43 (3)

The second hybrid model (named as AWBM-ANN) uses the ANN technique for routing the calculated runoffs Q̂NF(t),
Q̂MF(t), and Q̂SF(t) for predicting the runoff at LD14, i.e., QLD14(t). The ANN model architecture, 3-N-1, was thus trained
using the LM algorithm by varying the hidden neuron number (N ) from 1 to 20 keeping the same objective function and con-

ditions for stopping criteria used earlier. The values of LM parameters used earlier were found suitable for the development of
hybrid models also. The 3-9-1 architecture of the AWBM-ANNmodel thus obtained was found to be the best among 20 differ-
ent architectures.

3.4. Development of improved hybrid RR models

The ANN models are powerful tools for the modeling and forecasting of the hydrologic system. Many researchers have
employed ANN models in the past in which the input vector has been selected based on the correlation analysis. Most of

the ANN-RR models proposed in the past use past flows as inputs. In fact, the standalone model developed in this study
also includes past flow as inputs. The past flows actually represent the moisture conditions of the catchment in the past
few time steps. It is felt that the inclusion of delayed surface runoff from the three sub-basins in the upstream reaches of

the Kentucky River may improve the performance of the hybrid models proposed in this study. The inclusion of the delayed
Figure 5 | Structure of hybrid models.
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surface runoffs in the input vector of the ANN model may be able to capture the complexity, dynamics, and non-linearity in

the flood-routing process in a catchment in a better manner; however, this remains to be explored. With this objective in
mind, it was decided to include Q̂NF(t� 1), Q̂SF(t� 1), and QLD14(t� 1) in the AWBM-NLR and AWBM-ANN models for
the routing of individual runoff hydrographs from upstream reaches of the Kentucky River to the outlet of the entire catch-

ment. These new hybrid models are termed as AWBM-NLRI and AWBM-ANNI, where ‘I’ stands for improvement in the
hybrid-modeling structure by way of including inputs in the hybrid models based on domain knowledge in the form of delayed
surface runoff in the hope of attaining improved performance. Thus, the structure of the improved hybrid models (AWBM-
NLRI and AWBM-ANNI) can be represented as follows:

QLD14(t) ¼ f[Q̂NF(t), Q̂MF(t), Q̂SF(t), Q̂NF(t� 1), Q̂SF(t� 1), QLD14(t� 1)] (4)

The general structure of these hybrid models is shown in Figure 6.

The process of development of the AWBM-NLRI model is the same as the AWBM-NLR model except for the number of
input variables. The proposed statistical equation for AWBM-NLRI is given as follows:

QLD14(t) ¼ b1 � (Q̂NF(t� 1))b8 þ b2 � (Q̂NF(t))
b9 þ b3 � (Q̂MF(t))

b10 þ
b4 � (Q̂SF(t� 1))b11 þ b5 � (Q̂SF(t))

b12 þ b6 � (Q̂LD14(t� 1))b13 þ b7
(5)

where b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, and b13 are the parameters of the hybrid NLR model. These parameters
were calculated using the similar procedure discussed in the previous sub-section. The calibrated regression equation for
AWBM-NLRI thus obtained is given as follows:

QLD14(t) ¼ 2:28� (Q̂NF(t� 1))9:33 þ 0:92� (Q̂NF(t))
0:28 � 0:19� (Q̂MF(t))

1:21

þ 0:003� (Q̂SF(t� 1))1:92 þ 1:39� (Q̂SF(t))
0:97 þ 1:56� (Q̂LD14(t� 1))0:82

þ 0:38

(6)

The procedure of development of the AWBM-ANNI model is similar in terms of combining the AWBM model with the
ANN technique, but differs in the number of input variables, which is six in this case, and therefore, the ANN model archi-

tecture, 6-N-1, was explored using the LM algorithm by varying the hidden neuron number (N) from 1 to 20. The best
architecture for the AWBM-ANNI model thus obtained was 6-9-1 as error statistics was optimum for this architecture.
4. RESULTS AND DISCUSSION

The results in terms of various performance statistics from all the RR models during calibration/training and validation/test-
ing are presented in Table 3 starting from the simplest model to the model with increased complexities to draw inferences

about the performance accordingly. The bar chart of AARE, TS50, and R for the visualization of the performances of various
Figure 6 | Structure of the improved hybrid models.
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Table 3 | Performance evaluation statistics from various RR models

Model AARE R RMSE TS50 TS75 TS100

During calibration/traininga

AWBM-lumped 116.3 0.874 0.047 46.2 57.9 65.8

AWBM-Muskingum 66.1 0.890 0.041 52.7 73.0 90.7

ANN 28.2 0.970 0.013 85.2 93.5 96.7

AWBM-NLR 75.0 0.883 0.036 41.6 57.7 79.0

AWBM-ANN 53.4 0.900 0.025 64.2 83.2 90.3

AWBM-NLRI 40.0 0.950 0.017 77.7 88.1 93.4

AWBM-ANNI 18.9 0.974 0.013 92.5 97.1 98.6

During validation/testinga

AWBM-lumped 104.5 0.863 0.043 45.1 58.4 66.7

AWBM- Muskingum 61.2 0.880 0.033 52.2 73.5 90.2

ANN 30.3 0.960 0.015 84.3 92.0 95.4

AWBM-NLR 75.0 0.874 0.031 41.5 58.2 78.2

AWBM-ANN 58.5 0.880 0.024 63.0 79.9 86.7

AWBM-NLRI 39.5 0.920 0.022 74.6 86.4 92.0

AWBM-ANNI 18.9 0.964 0.015 92.1 96.8 98.4

aCalibration/validation is used for AWBM, AWBM-Muskingum, AWBM-NLR, and AWBM-NLRI, while for all other models, the term training/testing has been used.

Bold values represent the best error statistics.
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models is shown in Figure 7. The graphical results in terms of observed and predicted flows from all the models for a testing/
validation year are shown in Figure 8. It can be observed from Table 3 that the conceptual model which uses the linear Musk-

ingum method for routing the upstream sub-basins’ runoffs at basin’s outlet performed better than the lumped AWBM model,
as expected. The AWBM-routed model is better than the AWBM-lumped model because the AWBM-routed model is quasi-
distributed in nature and uses the spatial variations of the data used in modeling the RR process and routes the upstream

runoff hydrographs to the outlet of the catchment using the Muskingum method. Thus, the AWBM-Muskingum model is
able to represent the field conditions in mathematical modeling in a better manner. The standalone ANN model is better
than both the conceptual models developed in this study (AWBM-lumped and AWBM-Muskingum). This is also expected
because of the powerful structure of the ANN technique in capturing the complexity, dynamics, and non-linearity of the phys-

ical process being modeled. In further analyzing the results from Table 3, it can be observed that the performance of the
AWBM-NLR model is similar to the AWBM-Muskingum model, which shows that the NLR method is unable to capture
the complexity and non-linearity in the process of transformation of surface runoff from upstream reaches to the outlet of
Figure 7 | Bar plots of error statistics for different RR models: (a) during training/calibration and (b) during testing/validation.
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Figure 8 | Time-series plot for best models for testing year 1989.
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the entire catchment. Analyzing the results from Table 3, it is clear that the hybrid model developed by integrating AWBM
with ANN (AWBM-ANN model) performed better than the AWBM-NLR model during both training and testing data sets.
This is true in the case of improved hybrid models also, where the AWBM-ANNI model performed better than the

AWBM-NLRI model. The relative improvements in AARE, R, RMSE, TS50, TS75, and TS100 from the AWBM-NLR
model to the AWBM-ANN model are approximately 29, 2, 31, 54, 44, and 14%, respectively, during training, and nearly simi-
lar relative improvements registered during testing also. The relative improvements in AARE, R, RMSE, TS50, TS75, and

TS100 from the AWBM-NLRI model to the AWBM-ANNI model are approximately 53, 2, 24, 19, 10, and 6%, respectively,
during training with a similar trend in relative improvements registered during testing also.

In general, all the hybrid and improved hybrid models that use the ANN technique for routing consistently outperformed
their regression counterparts. Analyzing the error statistics further (from Table 3), it is clear that the performances of

improved hybrid models, AWBM-NLRI and AWBM-ANNI, are significantly better than their corresponding hybrid
models, AWBM-NLR and AWBM-ANN, respectively, during both training and testing. Looking at the performances of con-
ceptual AWBM and ANNmodels from Table 3, it is observed that the standalone conceptual AWBM is showing a reasonable

accuracy only, while the standalone ANN model performance is very good and even better than all hybrid and improved
hybrid models except for the AWBM-ANNI model. This may be because of two reasons: (a) the ANN technique is much
more robust and powerful in capturing the complexity, dynamics, and the non-linearity inherent in the physical process
om http://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf
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Figure 9 | Runoff mapping by the best RR models during the testing period: (a) peak flow at less than 400 m3/s and (b) peak flow at more than
400 m3/s.
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being modeled and (b) both the models employed delayed flows/surface flows, which helps represent the field conditions in
the form of catchment’s antecedent moisture conditions in a much better manner in the modeling process. Both ANN and
AWBM-ANNI RR models are showing the same robustness in terms of R (0.970 and 0.974), but the accuracy of the AWBM-

ANNI model in terms of AARE (18.9), TS50 (92.5), TS75 (97.1), and TS100 (98.6) is significantly better than that of the ANN
model during training with relative improvements of 49, 8, and 4% in AARE, TS50, and TS75, respectively. During testing
also, the performance of the AWBM-ANNI model shows a similar trend of relative improvements to the ANN model.

The improved hybrid model AWBM-ANNI is the best model among all the developed RR models including their concep-
tual counterparts, where the relative improvements from AWBM to AWBM-ANNI in AARE, R, RMSE, TS50, TS75, and
TS100 are 515, 10, 262, 50, 40, and 33%, respectively, during training.

During testing also, the performance of the AWBM-ANNI model shows a similar trend of relative improvements to the
AWBM model. The graphical results in terms of observed and predicted flows from the best models in each category, i.e.,
conceptual, ANN, hybrid and improved hybrid (i.e., AWBM-lumped, AWBM-Muskingum, ANN, AWBM-ANN, and
AWBM-ANNI), and the AWBM-lumped for a testing year are shown in Figure 9. It can be observed from Figure 8 that,

though the ANN model exhibits very close competitor to the AWBM-ANNI model in capturing the RR relationship, the
improved hybrid model, AWBM-ANNI, captured the flows most smoothly as compared to any other model developed in
this study which can also be seen in Figure 9, where the AWBM-ANNI model captured two of the randomly selected hydro-

graphs (from the testing period) with different peak flows most accurately than other RR models.
Through the proposed hybrid models, the calibrated parameters of AWBM for three sub-basins provided the sub-basin

characteristics, and by combining them with two data-driven techniques, the accuracy of runoff simulation has been improved

significantly. For example, the best hybrid model AWBM-ANNI provides excellent modeling accuracy with the physiographic
information that the NF sub-basin recharges and depletes its base flow store at a similar rate. The base flow store of the MF
sub-basin, on the other hand, recharges and depletes rapidly. In contrast to NF and MF sub-basins, the base flow store of the

SF sub-basin recharges rapidly and depletes with a slower rate of recession. The surface flow recession is nearly similar in all
the sub-basins. The surface storage capacities are significantly different for different sub-basins. Also, among all the sub-basins,
the MF sub-basin has the highest groundwater drainage in terms of baseflow recession which is obvious as the MF sub-basin
physiography is conducive to a moderate rate of groundwater drainage. Thus, while the conceptual models capture the

spatially varying hydrologic and catchment characteristics, the ANN models are able to capture the complexity and non-lin-
earity in the RR process giving improved accuracies in modeling.
5. SUMMARY AND CONCLUSIONS

This paper proposes hybrid-modeling approaches to simulate the RR process in a catchment which integrates the conceptual
model (AWBM) with NLR and ANN techniques and compares its performance with their individual counterparts. In the

hybrid approach, the basin was divided into sub-basins and individual runoff hydrographs were generated separately by cali-
brating the AWBM parameters using the data of individual sub-basins. These sub-basin runoffs were then routed by
integrating the conceptual model components with the NLR and ANN techniques to obtain the runoff at the basin outlet.
://iwa.silverchair.com/jh/article-pdf/24/2/350/1030772/jh0240350.pdf



Journal of Hydroinformatics Vol 24 No 2, 364

Downloaded fr
by guest
on 10 April 202
Delayed surface runoffs were later employed in the hybrid models in an attempt to improve the model performance based on

domain knowledge. A wide variety of standard statistical performance evaluation measures were employed to evaluate the
performances of various models developed in this study.

Quasi-distributed conceptual models may be employed in hydrologic applications instead of the lumped models. While

quasi-distributed conceptual models are capable of capturing the spatial variations in the hydrologic and catchment charac-
teristics, they do require more data from individual sub-basins. Among the standalone models investigated in this study, the
ANN model performed the best because of its powerful, complex, and non-linear structure that is capable of capturing the
complexity and non-linearity in the physical process being modeled. The data-driven techniques such as NLR and ANNs

have the potential to improve the runoff simulation in a basin and can be used for routing of the surface flow. The proposed
hybrid models are comprehensible and provided improved runoff simulation performance. The results obtained in this study
indicate that the NLR technique is not suitable for the purpose of surface flow routing when compared to the ANN technique.

The improved hybrid model that integrated conceptual and ANN techniques and employed delayed surface runoffs as inputs
in the model development provided the best performance in RR modeling among all the models developed in this study
including their conceptual and ANN counterparts. The structure of the best performing hybrid model was able to capture

the spatial variations in the hydrologic and catchment characteristics, complexity, and non-linearity of the mechanisms
involved in flood-routing in a catchment, and was able to represent the actual overall field conditions in the best possible
manner. Thus, it can be said that special efforts are required to be spent in developing the mathematical model structures

to capture the non-uniformity, complexity, dynamics, and non-linearity inherent in the RR process in a catchment rather
than making simplified assumptions.

No study is complete and there is always scope for improvement. The findings obtained here are based on an application of
proposed methodologies to the data derived from a single catchment. Also, one conceptual model (AWBM) and two data-

driven techniques (regression and ANN) were used. There are several other conceptual and data-driven techniques available.
It is hoped that the future research efforts will focus on implementing the methodologies proposed here in other catchments
of varying hydrologic and climatic conditions and based on several other combinations of the conceptual and data-driven

techniques. Such special, co-ordinated, and focused efforts are required in developing RR models capable of producing
improved runoff forecasts that can be employed in better planning, design, operation, and management of various water
resources activities.
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