
Downloaded from http
by guest
on 09 April 2024
An ecohydraulic-based expert system for optimal management of environmental flow

at the downstream of reservoirs

Mahdi Sedighkia a,*, Bithin Dattaa, Asghar Abdolib and Zahra Moradianc

a College of Science and Engineering, James Cook University, Townsville, Australia
b Biodiversity Department, Environmental Science Research Institute, Tehran, Iran
cMathematic Department, Tarbiat Modares University, Tehran, Iran
*Corresponding author. E-mail: mahdi.sedighkia@my.jcu.edu.au

MS, 0000-0003-1730-8928

© 2021 The Authors Journal of Hydroinformatics Vol 23 No 6, 1343 doi: 10.2166/hydro.2021.112
ABSTRACT

Linking ecohydraulic modeling and reservoir operation optimization is a requirement for robust management of the environmental

degradations at the downstream of the reservoirs. The present study proposes and evaluates an ecohydraulic-based expert system to

optimize environmental flow at the downstream of the reservoirs. Three fuzzy inference systems including physical habitat assessment,

water quality assessment and combined suitability assessment were developed based on the expert panel method. Moreover, water temp-

erature and dissolved oxygen were simulated by the coupled particle swarm optimization (PSO)–adaptive neuro-fuzzy inference system.

Three evolutionary algorithms including PSO, differential evolution algorithm (DE) and biogeography-based optimization were applied to opti-

mize the environmental flow regime. A fuzzy technique for order of preference by similarity to ideal solution was applied to select the best

evolutionary algorithm to assess environmental flow. Based on the results in the case study, the proposed method provides a robust frame-

work for simultaneous management of environmental flow and water supply. DE was selected as the best algorithm to optimize

environmental flow. The optimization system was able to balance habitat losses, storage loss and water supply loss that might reduce nego-

tiations between the stakeholders and environmental managers in the reservoir management.
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HIGHLIGHTS

• Environmental flow at downstream of dams is critical to protect river habitats.

• The present study proposes an ecohydraulic expert system for the reservoir operation.

• Optimal environmental flow and water supply are the outputs of the model.

• The developed system can minimize physical and water quality habitat losses.

• Differential evolution was the best optimization algorithm in the case study.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf

https://orcid.org/0000-0003-1730-8928
mailto:mahdi.sedighkia@my.jcu.edu.au
http://orcid.org/
http://orcid.org/0000-0003-1730-8928
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2021.112&domain=pdf&date_stamp=2021-10-21


Journal of Hydroinformatics Vol 23 No 6, 1344

Downloaded fr
by guest
on 09 April 202
GRAPHICAL ABSTRACT

1. INTRODUCTION

The importance of dams has been highlighted in the literature due to their significant role in the development of the

communities (Altinbilek 2002). However, the environmental impacts at the upstream and downstream are undeniable
(Wang et al. 2012). Increasing population might exacerbate the destruction of the river ecosystems due to raising offstream
flow in the rivers (Postel 1998). Due to the importance of protecting river ecosystems, different methods have been proposed

tomitigate environmental impacts of hydraulic structures such as dams. Allocating an environmental flow regime is an effective
solution to protect river ecosystems or aquatic river habitats thatmight be destroyed due to lack of adequate instream flow in the
rivers.Manymethods have been suggested to assess environmental flow in the rivers (Tharme 2003). For example, hydrological
desktopmethods and hydraulic ratingmethods are the simplest methods to assess environmental flow (Jowett 1997). However,

they are not efficient due to lack of focus on the regional ecological values in the study area (Sedighkia et al. 2017).
Advanced methods such as instream flow incremental methodology (IFIM) have an integrated simulation methodology in

which physical and water quality factors are simultaneously considered (Maddock 2018). It should be noted that IFIM is a

basic framework or process to manage environmental impacts in the river ecosystem. In fact, IFIM provides general methods
that should be used to assess the environmental flow regime by proposing some phases and mathematical models. Developers
encouraged users to consider innovation and creativity in the applications (Stalnaker 1994). The initially proposed methods

by IFIM are too old, which means that they might not be efficient to solve the complex environmental problems in the river
basins. For example, one of the components of IFIM is physical habitat simulation. The univariate method has originally been
proposed by IFIM to simulate physical habitats (Ahmadi-Nedushan et al. 2006). However, this method has been criticized in

the literature due to lack of accuracy to simulate interactions among physical parameters including depth, velocity and sub-
strate (Noack et al. 2013; Railsback 2016). In fact, this method computes the suitability of each parameter and then uses a
mathematical index such as geometric mean to compute combined habitat suitability. Using other approaches such as multi-
variate methods has been highlighted in the literature. One of the applicable and efficient novel methods that might be robust

to simulate physical habitats is fuzzy physical habitat simulation. The main advantage of this method is the possibility of using
the expert opinions in the development of the fuzzy physical habitat rules. It seems that the response of the fuzzy physical
habitat simulation is close to the actual response of the aquatics in the river habitat (Noack et al. 2013). It should be

noted that using knowledge-based models might be greatly applicable due to the complexities of the physical habitat simu-
lation. Some recent studies used this method in the conventional form to assess environmental flow (e.g. Sedighkia et al.
2021). Water quality simulation is another challenge in the assessment of the environmental flow regime. Hydrodynamic
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models have been developed to simulate water quality factors such as dissolved oxygen (DO) or water temperature (e.g. Fang

et al. 2008; Sedighkia et al. 2019). However, these models might not be flexible for applying in the complex water resource
management systems. Thus, artificial intelligence (AI) methods such as artificial neural networks (ANNs) have been utilized
in previous studies (Singh et al. 2009). Due to drawbacks of the ANN such as working as black box, other advanced methods

such as adaptive neuro-fuzzy inference systems (ANFIS) have been used as well (Tiwari et al. 2018). The ANFIS puts a
fuzzy inference system in the structure of the neural network that might increase the interpretability of the prediction
system (Jang 1993).

Reservoirs are one of the complex water resource systems that should be operated optimally due to the high cost of the

construction of dams. In fact, optimal operation of the reservoirs is critical for maximizing benefits from the reservoir.
Linear programming (LP) is a simple method that was used to optimize reservoir operation in previous studies (Reis et al.
2006). However, it was not able to provide an optimal solution for the reservoir operations due to the non-linear nature of

the problem (Ahmad et al. 2014). Thus, using non-linear programming (NLP) and dynamic programming was the next
step to improve the optimization methods of the reservoir operation (e.g. Arunkumar & Jothiprakash 2012). Reservoir oper-
ation might have a complex objective function. Thus, using advanced computational methods was essential that have been

utilized in the literature. Different classic and new generation algorithms have been applied to optimize reservoir operation
in recent years (e.g. Afshar et al. 2007, 2011; Haddad et al. 2015, 2016; Ehteram et al. 2018a, 2018b). The definition of the
objective function is another aspect in the reservoir operation problems. Hashimoto et al. (1982) defined a basic form of the

loss function that minimizes the difference between the target and the release. Target might be defined as the water demand in
the reservoir operation system. Datta & Burges (1984) highlighted adding storage loss in the reservoir operation system. In
fact, deviation from the optimal storage might increase storage loss in the system. This form of loss function has been used in
many studies, even in the recent reservoir operation studies (e.g. Ehteram et al. 2018a, 2018b). However, it seems that this

form of loss function is not responsive to overcome environmental challenges at the downstream of the reservoir. In fact,
developing the novel form of the optimization system is required that should be able to consider reservoir benefits and com-
plex environmental issues simultaneously. Reviewing recent studies regarding the optimization of the reservoir operation is

required. Predicting the inflow of the reservoir is one of the requirements for the management of the reservoirs. Recent studies
indicated the applicability of deep learning methods and improved AI methods in this regard (Taormina & Chau 2015; Fu
et al. 2020; Shamshirband et al. 2020). The prediction of flood is another important improvement in the reservoir manage-

ments (Fotovatikhah et al. 2018; Kaya et al. 2019). Furthermore, reservoir operation has been optimized considering climate
change and related uncertainties (Ehteram et al. 2018a, 2018b).

Simultaneous management of water supply and environmental flow is a complex process. Conventional optimization sys-
tems of the reservoir operation are not able to consider the environmental issues in the management of the reservoirs. Hence,

the improvement of the reservoir operation models considering environmental impacts is essential. Due to the complexities of
the environmental modeling in the river ecosystems, using the expert opinions and optimization system is necessary for
improving the environmental management of the reservoirs. The main motivation of the present study is lack of robust

expert systems in the environmental management of the reservoirs. In fact, the present study proposes an integrated
expert system to optimize the environmental flow regime at the downstream of the reservoir that might help the water
resource managers to overcome the environmental complexities in the reservoir management. The developed model simul-

taneously mitigates the water supply loss and environmental impacts considering expert opinions. In recent years,
ecohydraulic engineering was developed to manage environmental requirements of the river ecosystem in which interactions
between abiotic factors such as water quality and quantity with habitat suitability could be utilized for simulating habitats.

However, interactions are quite complex that means using AI methods could be highly beneficial. In fact, the development
of AI methods for modeling environmental challenges is one of the smart solutions that is the main motivation for the present
study. Water quality and quantity are separately effective for the suitability of habitats, which means that their integration is
necessary for managing environmental degradations to reservoirs. Based on the presented necessities, the present study devel-

ops two fuzzy inference systems for assessing water quality suitability and water quantity suitability. Then, these two fuzzy
inference systems are integrated into one combined fuzzy inference system to assess combined ecohydraulic suitability. In
fact, a knowledge-based system is developed in which fuzzy inference systems are utilized to assess aquatic habitat suitability

based on the expert opinions. Then, a developed knowledge-based system was applied in the structure of metaheuristic optim-
ization to optimize environmental flow at the downstream of the reservoir. In fact, the proposed coupled knowledge-based
optimization system can simultaneously consider environmental issues and reservoir losses. The present study might open
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf
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new windows to apply the knowledge-based system in the environmental management in the structure of the water resource

operation systems. In fact, each water resource engineering system needs to be managed considering environmental issues.
The proposed framework provides an upgradable environment that could demonstrate the high efficiency of the knowledge-
based system to solve environmental challenges of the water resource systems.

2. APPLICATION AND METHODOLOGY

The proposed method contains three Mamdani fuzzy inference systems including physical habitat suitability assessment
system, water quality suitability assessment system and combined suitability assessment system. Moreover, the coupled par-

ticle swarm optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS) data-driven model was utilized to simulate
water temperature and DO at the downstream of the reservoir. Furthermore, different evolutionary algorithms were used
to optimize environmental flow. Considering the fuzzy inference system of combined suitability assessment, in which two

fuzzy inference systems including physical habitat assessment and water quality assessment are used, is advantageous in
terms of integrated assessment of the river ecosystem. Other feasible alternatives might be to apply the fuzzy inference
system of physical habitat assessment or fuzzy inference system of water quality separately that might not be able to assess
integrated environmental suitability. For example, some previous studies only applied a fuzzy inference system of physical

habitat suitability that is not an efficient method for integrated assessment. Due to complexities of each part of the developed
system, a full description of different parts of the simulation–optimization system is presented in the following sections.
Finally, a case study is described.

2.1. Mamdani fuzzy inference system for physical habitat assessment

Two main effective physical parameters were considered in the physical habitat assessment including depth and velocity. A

river reach with a length of 10,000 m was considered at the downstream of the reservoir. Different cross-sections were sur-
veyed at an average distance of 100 m. Then, the relationships between depth and discharge as well as velocity and discharge
were developed. These developed relationships were utilized in the optimization system to assess depth and velocity in each

cross-section in each time step. An expert panel was established including an experienced ecologist who was familiar with the
regional ecological status of the case study, a water resource engineer and one of the managers of the regional department of
environment. A specific method was used to develop fuzzy rules of physical habitats. Figure 1 shows the workflow of devel-

oping fuzzy rules of physical habitats. For example, one of the verbal fuzzy physical rules is displayed as follows. Table 1
shows the main characteristics of the physical habitat fuzzy inference system. Figure 2 shows depth and velocity suitability
curves used in the case study.

‘If depth suitability is medium and velocity suitability is very high, then physical habitat suitability is high.’

It is essential to present more details regarding the expert panel in the proposed framework. The expert panel includes three

members who are familiar with the study area in terms of regional ecological values, management of water resources and
regional challenges for environmental management. In fact, the experienced ecologist has extensive information regarding
the aquatics needs in the river ecosystem. Moreover, a water resources engineer is familiar with the reservoir operation diffi-

culties and needs. Finally, a regional environmental manager can address environmental challenges such as negotiations
between stakeholders and environmentalists in the panel. At the first glance, it seems that the number of experts involved
in the panel is not sufficient for making a robust decision. However, each member of the panel might have an independent

research team or a group of colleagues who might be effective on the opinions. In fact, each member can reflect the opinions
by a group of experts that sounds enough and logical for a robust expert panel. Another important issue is how conflicting
feedback can be handled in the expert panel. As presented in Figure 1, two external reviewers who are not the member of
the panel would be used to resolve conflicts between the members of the panel. The reviewers’ comments will be considered

by the chief of the panel (experienced ecologist) to finalize the rules. The proposed panel can develop robust rules that are
significantly effective on the outputs of the optimization system. In fact, this form of the expert panel provides a reliable
environment to address scientific and technical issues and regional considerations for developing fuzzy rules.

According to the literature, three main physical factors are effective in the physical habitat suitability including depth, vel-
ocity and substrate or bed particle size. However, we only considered two parameters including depth and velocity in the
present study due to some reasons. First, the effect of depth and velocity is considerably more important on physical
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Figure 1 | Workflow of the expert panel.

Table 1 | Main characteristics of the knowledge-based physical habitat model (fuzzy inference system)

Inputs
Number of MFs
(inputs)

Type of MFs
(inputs) Outputs

Number of MFs
(output)

Type of MFs
(output)

Depth suitability
(between zero and one)

5 Triangular Physical habitat suitability
(between zero and one)

5 Triangular

Velocity suitability (between
zero and one)

5 Triangular
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suitability. For example, depth and velocity are effective on the energy consumption by the fish. However, the substrate has

less effect on the suitability. Moreover, the particle size distribution in the representative reach of the case study was approxi-
mately uniform, which means that the substrate could be excluded in the fuzzy inference system. Generally, three
membership functions (MFs) could be utilized in the fuzzy inference systems including triangular, Gaussian and trapezoidal.

The previous studies regarding the application of fuzzy inference systems for river habitat suitability corroborate that triangu-
lar MFs might provide the proper response. Hence, the triangular MF was applied in the present study. Using this form of MF
makes it possible to compare the developed fuzzy inference system in the present study with previous studies that might be

advantageous for future studies.

2.2. Mamdani fuzzy inference system for water quality suitability assessment

A fuzzy inference system was developed for the water quality suitability assessment as well. We considered two main water
quality factors including water temperature and DO that might be highly effective on the biological activities of the aquatics

such as reproduction and searching for food. Other parameters might be important. However, the initial assessment in the
case study indicated that water temperature and DO could be selected as the key water quality factors. Hence, a fuzzy infer-
ence system was developed based on these parameters. An expert panel was established to develop fuzzy rules like physical
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Figure 2 | Depth and velocity suitability curves.
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parameters. The following sentence shows one of the examples of the water quality suitability fuzzy rules in the present study.

Table 2 shows the main characteristics of the water quality assessment fuzzy inference system. Figure 3 shows used biological
water temperature and DO models to calculate tension or suitability in the case study.

‘If DO suitability is high and water temperature suitability is low, then water quality suitability is medium.’

Many water quality parameters can be considered in the habitat suitability assessment such as DO and total dissolved

solids. However, two main water quality parameters that might be highly effective on the suitability are water temperature
Table 2 | Main characteristics of the knowledge-based water quality suitability model (fuzzy inference system)

Inputs
Number of MFs
(inputs)

Type of MFs
(inputs) Outputs

Number of MFs
(output)

Type of MFs
(output)

DO suitability (between zero and
one)

5 Triangular Water quality suitability
(between zero and one)

5 Triangular

Water temperature suitability
(between zero and one)

5 Triangular
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Figure 3 | Water temperature and DO biological models (developed by Sedighkia et al. (2019)).
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and DO. Hence, these two parameters were taken into account in the development of a fuzzy inference system. The concen-
tration of other constituents might change the water temperature and DO concentration in the water. Thus, these two

parameters are proper indices for using in the structure of the fuzzy inference system.
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf
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2.3. Simulation of water temperature and DO

The simulation of the water temperature and DO might be a complex process. We need a flexible model that could be used in
the structure of the optimization model. Thus, the ANFIS-based data-driven model was utilized in this regard due to several

advantages. Using evolutionary algorithms might improve the training process of the ANFIS-based models. Hence, we
applied a coupled PSO–ANFIS model to simulate water quality factors in the present study. Figure 4 shows the workflow
of the ANFIS-based model in which PSO trains the data-driven model. Tables 3 and 4 shows the main characteristic of
the water temperature and DO data-driven models, respectively. The models were used to simulate these water quality factors

in different cross-sections of the representative reach that were described in the previous section. Two indices were utilized to
measure predictive skills of the data-driven model including the Nash–Sutcliffe model efficiency coefficient (NSE) and root-
mean-square error (RMSE) as displayed in the following equations:

NSE ¼ 1�
PT
t¼1

(OBSt � SIMt)
2

PT
t¼1

(OBSt �OBSm)
2

(1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

(SIMt �OBSt)
2

T

vuuut
(2)

where OBSt is the observed or recorded data in the time step t, SIMt is the simulated data by the model and T is the total
number of time steps.

Many types of data-driven models such as neural networks and support vector machines could be applied to simulate water
quality in the water bodies. However, the previous studies corroborated the robustness of the ANFIS for simulating water
quality. Thus, the ANFIS-based model was selected in the present study. Different methods could be utilized for training
Figure 4 | PSO–ANFIS flowchart.
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Table 4 | Main characteristics of the ANFIS-based DO model

Inputs
Number of MFs
(inputs)

Type of MFs
(inputs) Outputs

Number of MFs
(output)

Type of MFs
(output) Clustering method

Month (Jan to Dec) 10 Gaussian DO concentration at each
cross-section

10 Linear Subtractive
clusteringRate of flow (m3/s) 10 Gaussian

Distance from the reservoir 10 Gaussian

Water temperature at each
cross-section (°C)

10 Gaussian

Table 3 | Main characteristics of the ANFIS-based temperature model

Inputs
Number of MFs
(inputs)

Type of MFs
(inputs) Outputs

Number of MFs
(output)

Type of MFs
(output) Clustering method

Flow rate (m3/s) 10 Gaussian Water temperature at
each cross-section

10 Linear Subtractive
clusteringWetted perimeter (m) 10 Gaussian

Distance from the
reservoir

10 Gaussian

Elevation level from the
sea

10 Gaussian

Water temperature at
distance¼ 0 m (°C)

10 Gaussian

Air temperature (°C) 10 Gaussian
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ANFIS-based models such as backpropagation, hybrid and evolutionary algorithms. Recent studies corroborated that using
evolutionary algorithms might be a more robust option to train the ANFIS-based models. PSO was selected as the best
option to train the data-driven model. Hence, the coupled PSO–ANFIS model was applied to generate the data-driven

models in the present study. Moreover, the previous studies highlighted the effect of several factors on the changing water
temperature in the rivers. However, some factors are significantly more effective including considered parameters in
Table 3. Using these parameters makes the data-driven model simple and robust to simulate water temperature. In fact, select-

ing these parameters can generate reliable results, when required field measurements are minimized. Similarly, effective
parameters were selected for simulating DO concentration in the case study. Furthermore, an explanation is needed regarding
the MFs. Different types of MFs were tested for developing the ANIFS-based model before the main simulation of water temp-
erature and DO concentration for the case study. The initial simulations indicated that the Gaussian function is the most

robust MF for simulating water temperature and DO. Hence, this type of MF was selected for the inputs in the ANFIS-
based models of water temperature and DO.

2.4. Mamdani fuzzy inference system for combined habitat suitability

This fuzzy inference system was developed to assess combined habitat suitability in which physical habitat suitability and

water quality habitat suitability were considered as the inputs of the system and combined habitat suitability is the output
of the system. The expert panel-based method was utilized to develop fuzzy rules like previous fuzzy inference systems.
Table 5 shows the main characteristic of the developed expert system.

2.5. Optimization system

The development of a correct objective function is the main requirement of each optimization system in engineering.
Equation (3) displays the initial form of the developed objective function in the present study. This equation contains two
terms including water demand loss and environmental suitability loss. In fact, the supply of water demand is the main purpose

for the construction of many reservoirs. Thus, it should be in the objective function. This term minimizes the difference
between target water demand and release for the demand. Moreover, the second term minimizes the difference between com-
bined habitat suitability in the natural flow and the optimal release for environment by the reservoir. It should be noted that
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Table 5 | Main characteristics of the knowledge-based combined habitat suitability model (fuzzy inference system)

Inputs
Number of MFs
(inputs)

Type of MFs
(inputs) Outputs

Number of MFs
(output)

Type of MFs
(output)

Physical habitat suitability
(between zero and one)

5 Triangular Combined suitability (between
zero and one)

5 Triangular

Water quality suitability (between
zero and one)

5 Triangular
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considering habitat suitability in the natural flow is essential to environmental assessment. In fact, the objective function tries

to minimize habitat loss that might be possible due to the construction of dam and changing the flow regime in the river. Dt is
the target water demand, Rt is the release for demand, NCSt is the combined suitability in the natural flow and OCSt is the
combined suitability in the optimal environmental flow.

Minimize (OF) ¼
XT
t¼1

Dt � Rt

Dt

� �2

þ NCSt �OCSt

NCSt

� �2

(3)

Each optimizationmodel might need some constraints. In the proposedmodel, three constraints are required includingmini-

mum operational storage in the reservoir, maximum storage in the reservoir and maximum requested water demand from the
reservoir. We focused on using metaheuristic optimization in the present study. Thus, it was required to utilize a solution to put
the constraints in the structure of the optimization algorithm. The penalty function method is a known method in this regard
that has been used inmany previous studies (developed byAgarwal&Gupta (2005)). In fact, defined penalty functions increase

the penalty of the system when constraints are violated. Three penalty functions were developed as displayed in the following
equations. c1–c3 are the constant coefficients that were determined based on the initial sensitivity analysis.

if Si . Smax ! P1 ¼ c1
St � Smax

Smax

� �2

(4)

if Si , Smin ! P2 ¼ c2
Smin � St

Smin

� �2

(5)

if Rt . Dt ! P3 ¼ c3
Rt �Dt

Dt

� �2

(6)

Storage in the reservoir should be updated in each time step which is possible by Equation (7). Furthermore, overflow could
be calculated by Equation (8). Et is the evaporation from the reservoir, At is the area of the reservoir, It is the inflow of the
reservoir, ENVt is the environmental flow and T is the time horizon.

Stþ1 ¼ St þ It � Rt � ENVt � Et �At

1, 000

� �
, t ¼ 1, 2, . . . , T (7)

if St þ It � Et �At

1,000

� �� �
� Smax ! Ft ¼ St þ It � Et �At

1,000

� �
� Smax

if St þ It � Et �At

1,000

� �� �
, Smax ! Ft ¼ 0

8>><
>>:

(8)

2.6. Optimization algorithms

Different evolutionary algorithms might have different efficiencies in the optimization problems. Thus, using different algor-
ithms might be necessary. Three evolutionary algorithms were utilized in the present study including PSO, differential
evolution algorithm (DE) and biogeography-based optimization (BBO). Selecting these algorithms was useful to compare

the performance of algorithms with different origins. PSO is a classic algorithm that has been used in many previous optim-
ization problems successfully (Eberhart & Kennedy 1995). This algorithm imitates the social behavior of the organism such as
the movement of organisms in a bird flock or fish school. DE is a nonanimal-inspired algorithm that is able to indicate the
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performance of a nonanimal-inspired algorithm (Qin et al. 2008). BBO is a new generation algorithm that describes specia-

tion (the evolution of new species), the migration of species (animals, fish, birds or insects) between islands and the extinction
of species in its mathematical model (Simon 2008). More details regarding used algorithms have been addressed in the cited
documents. Hence, more details have not been presented.

Many evolutionary algorithms have been developed in the literature that might be useable for the optimization problems.
However, we selected three algorithms including PSO, DE and BBO based on their originality. PSO is a classic and an
animal-inspired algorithm that has been utilized in many previous studies. Selecting this algorithm is helpful to investigate
the performance of classic algorithms for novel optimization models. Moreover, DE is a known nonanimal-inspired algorithm

that could indicate the performance of the nonanimal-inspired algorithms compared with animal-inspired algorithms. Fur-
thermore, BBO is a new generation and animal-inspired algorithm that was selected to compare outputs of the classic and
new generation algorithm in the developed optimization model. Thus, selecting these algorithms among many available evol-

utionary algorithms is beneficial for comparing outputs of the algorithms in terms of the optimization of environmental flow.

2.7. Measurement indices and decision-making system

The performance of each optimization system should be measured to judge the outputs. Defining measurement indices should
be based on the requirements and the purposes of the developed system. In the present study, three aspects must be con-

sidered in the performance measurement including water demand loss, combined suitability loss and storage loss. In fact,
loss of water demand and storage are measured to analyze the performance of the reservoir in terms of pre-defined purposes
of dam construction. Moreover, suitability loss should be measured to assess the performance of the system in terms of the

design of a proper environmental flow regime. The reliability index was utilized to measure the robustness of the system in
terms of water demand supply as displayed in the following equation:

RIwater demand ¼

PT
t¼1

Rt

PT
t¼1

Dt

(9)

Two indices were used to measure the performance of the system in terms of storage loss including vulnerability index and
RMSE as displayed in the flowing equations:

VIstorage ¼ Max
T

t¼1

Soptimum � St
Soptimum

� �
(10)

RMSEStorage ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

(St � SOptimum)
2

T

vuuut
(11)

Moreover, three indices were applied to measure the performance of the system in terms of combined habitat suitability or
appropriateness of the designed environmental flow regime. The following equations display used indices. Similarly, these

indices were used for measuring physical habitat suitability in the final analysis of the outputs:

RMSEhabitat loss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

(OCSt �NCSt)
2

T

vuuut
(12)

VIhabitat loss ¼ Max
T

t¼1

NCSt �OCSt

NCSt

� �
(13)

NSEhabitat loss ¼ 1�
PT
t¼1

(NCSt �OCSt)
2

PT
t¼1

(NCSt �NCSo)
2

(14)

Why these indices were selected in the present study to evaluate the simulation–optimization system should be explained. The
reliability index is one of the basic indices that should be used in the reservoir operation models. More details regarding the
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf
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importance and role of this index in the reservoir operation optimization have been addressed in the literature. Similarly, the vul-

nerability index is another basic index for measuring the performance of the optimizationmodels of the reservoir operation. More
details are available in the cited documents for the reliability index. Moreover, NSE is a robust index for measuring the perform-
ance of hydrological models. This index was selected due to its ability for demonstrating how the model can generate the ideal

solution for the problem. In fact, NSE provides a transparent picture from the performance of the model compared with the ideal
solution. Furthermore, RMSE is a robust statistical index to compare the ideal solution and optimal or simulated solution that has
been applied in many previous studies. Selecting these familiar and known indices in the literature makes the output of the case
study comparable with other case studies that might be helpful to develop a robust optimization system in practice.

Owing to using different evolutionary algorithms in the proposed framework, it is necessary to apply a decision-making
system to select the best algorithm for the developed optimization system. The technique for order of preference by similarity
to ideal solution (TOPSIS) is the most known decision-making system that has been used in many water resource manage-

ment models. Thus, using this decision-making system seems logical to select the best algorithms. However, we applied
the fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) in the present study due to some advan-
tages. First, it is possible to consider the expert opinions in the structure of the decision-making system. Moreover, FTOPSIS

used the weight of importance for each criterion that means regional challenges of the environmental management could be
considered in the decision-making system. Hence, FTOPSIS is a robust decision-making system that has been addressed in
the literature (Chen 2000). Figure 5 shows the flowchart of this algorithm to select the best candidate among available
Figure 5 | Flowchart of FTOPSIS (Chen 2000).
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candidates or alternatives. Three levels were defined in the developed hierarchical system including goal of the system, cri-

teria and candidates. The goal of the system is to select the best algorithm. Criteria include computed measurement indices for
the optimization system, and candidates are the evolutionary algorithms.

2.8. Case study

The Jajrood river is one of the important rivers in the Ghom lake basin in Iran where there is a habitat for several native fish
species. Moreover, this river is responsible for the supply of part drinking water demand of the capital territory in Iran. The
Latian dam has been constructed at the midstream of this river to regulate water supply. The department of environment is

concerned regarding the protection of aquatic habitats at downstream of this reservoir due to lack of sufficient release to
downstream. On the other hand, the regional water authority is concerned regarding loss of the water supply and storage
due to considerable release for environment. Owing to the importance of protecting the river habitats and minimizing loss

of the reservoir, using a simulation–optimization system that is able to optimize the operation of the reservoir in terms of
water supply and environmental considerations is necessary. In fact, the simulation–optimization system should be able to
minimize habitat loss and reservoir losses simultaneously. Utilizing a knowledge-based system might be the best option
due to complexities of habitat selection in the river habitats. The Brown trout was selected as the target species based on

the opinion of the experienced ecologist who was familiar with ecological zones in the river basin. Figure 6 shows the
river network and elevations at the upstream catchment of the Latian dam and the location of the reservoir. A 12-month
Figure 6 | Location of the study area at upstream of the Jajrood river basin.

://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Journal of Hydroinformatics Vol 23 No 6, 1356

Downloaded fr
by guest
on 09 April 202
period was selected as the simulation period. From the technical view, the Jarood river was a good option as the case study. In

fact, we selected the Jajrood river as the case study due to the following reasons:

1. The extensive ecological field studies had been carried out in this river that means adequate ecological information for the

development of the habitat suitability fuzzy inference systems were available. It should be noted that the availability of the
previous ecological studies in the river ecosystem is a prerequisite for using the proposed method in each case study.

2. Environmental management is a challenging issue in this river due to considerable water demand and valuable habitats.

Hence, using the proposed method in the Jajrood river can demonstrate the abilities of the proposed method for managing
environmental challenges of the reservoirs.
3. RESULTS AND DISCUSSION

In the first step, the results of the ANFIS-based model of the water temperature and DO are presented and discussed. Figures 7
and 8 show results of the training and testing process of the water temperature and DO model, respectively. The computed
NSE and RMSE are shown in the figures. NSE for the water temperature model is 0.81, which demonstrates that the model is

quite robust to simulate the water temperature of the stream. According to the literature, if NSE is more than 0.5, then pre-
dictive skills of the model will be highly robust. Moreover, RMSE is 1.06, which demonstrates that the mean error of the
model to simulate water temperature is negligible for application in environmental studies. NSE for the DO model is 0.77.
Thus, the DO model is reliable and robust as well. The low mean error of the DO model corroborates the reliability of the

model to simulate DO in the further steps.
Tables 6–8 provides developed fuzzy inference systems or knowledge-based systems for the assessment of physical habitat

suitability, water quality suitability and combined suitability. It seems that the role of velocity suitability is significant. In fact,

reducing velocity suitability might decrease physical habitat suitability considerably. Depth suitability is important as well.
However, velocity might be more important in the physical habitat suitability. The main reason for the significant role of vel-
ocity suitability is an alteration of energy consumption by fish due to changing flow velocity. In fact, fishes should swim to the

upstream of the river for main biological activities such as reproduction. Thus, increasing flow velocity would rise needed
energy for swimming to the upstream that might reduce physical suitability. Developed physical fuzzy rules were utilized
in the optimization model directly.

Table 7 shows fuzzy rules for the water quality suitability in which DO suitability and water temperature suitability were

considered as the inputs of the system. It seems that the importance of the DO suitability is considerable. It should be noted
that the target species is such sensitive to DO suitability. Hence, the significant role of DO in the water quality suitability is
clear based on the developed fuzzy rules. It sounds that water temperature suitability in a combination of the DO suitability

might be highly effective to reduce suitability when DO suitability is medium to high. In fact, the role of water temperature
and depth in the knowledge-based systems are similar. The developed rules indicate that the expert panel should be familiar
with the role of parameters to assess the biological response of aquatics in the study area. It sounds that the selected
Figure 7 | Training and testing process of the stream temperature model.
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Figure 8 | Training and testing process of the DO model.

Table 6 | Parts of fuzzy rules for the knowledge-based physical habitat model

Rule code Depth suitability Velocity suitability Physical habitat suitability

P1 VL VL VL

P2 VL L VL

P3 VL M L

P4 VL H M

P5 VL VH M

VL means very low, L means low, M means medium, H means high and VH means very high – the total number of rules is 25.

Table 7 | Parts of fuzzy rules for the knowledge-based water quality suitability model

Rule code DO suitability Water temperature suitability Water quality suitability

Q1 VL VL VL

Q2 VL L VL

Q3 VL M VL

Q4 VL H VL

Q5 VL VH VL

VL means very low, L means low, M means medium, H means high and VH means very high – the total number of rules is 25.
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procedure in the development of knowledge-based rules is correct. In fact, experienced ecologists should make final decision
on the rules. However, opinions by other experts would be considered in the discussions when there are significant discre-

pancies. Table 8 shows combined suitability fuzzy rules that show a similar role of physical habitat suitability and water
quality suitability in this knowledge-based system. The rule code was used in the meetings of the expert panel for being con-
cise in the discussions. For example, if one of the members was not satisfied with one of the rules, then he/she only declares

the rule code for shortening the discussions.
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Table 8 | Parts of fuzzy rules for the knowledge-based combined suitability model

Rule code Water quality suitability Physical habitat suitability Combined habitat suitability

C1 VL VL VL

C2 VL L VL

C3 VL M VL

C4 VL H VL

C5 VL VH VL

VL means very low, L means low, M means medium, H means high and VH means very high – the total number of rules is 25.

Figure 9 | Assessed environmental flow regime by different algorithms.
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In the next step, the output of the optimization system as the main results of the proposed framework is presented and dis-

cussed. Figure 9 shows the proposed environmental flow by the optimization system in which results of three used algorithms
are shown. The performance of different algorithms is not similar. In fact, assessed environmental flow regimes indicate the
importance of using different algorithms in the optimization system. Utilizing one algorithm might generate unreliable results,

whereas using different algorithms makes it possible to select the best outputs of the optimization system. It should be noted
that applying more algorithms might be a better option. However, it is time-consuming. Hence, selecting algorithms should be
based on technical considerations similar to the present study. Three to four algorithms with different origins might be a good

option in practical projects.
Figure 10 shows supplied water demand by different algorithms. It should be noted that maximum water demand was con-

sidered 13 m3/s in all time steps. It seems that either PSO or BBO releases more water for demand compared with DE. Thus,
these algorithms might be robust in terms of water demand supply in the case study. However, better judgment needs using

the reliability index. Figure 11 shows storage time series in the simulated period for three algorithms. The performance of
penalty functions including maximum storage and minimum operational storage is robust. However, owing to simulating a
challenging period, storage in the reservoir is not close to maximum storage. Thus, the performance of the minimum storage

functions is a better criterion to judge the performance of the optimization model in terms of the storage penalty function.
Minimum operation storage is 19 MCM. All algorithms optimized storage in the reservoir considering this minimum
value. However, the performance of PSO is slightly weaker than others.

The performance of the optimization system is investigated in terms of designing environmental flow. Optimized physical
habitat suitability, water quality suitability and combined habitat suitability should be compared with these values in the natu-
ral flow. Figure 12 shows physical habitat suitability by different algorithms in the optimal release for environment and the

natural flow. Better performance of DE compared with other algorithms in terms of physical habitat suitability is clear
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Figure 11 | Storage time series by different algorithms.

Figure 10 | Release for water demand by different algorithms.
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because it is able to minimize the difference between optimal physical habitat suitability and the physical habitat suitability

for the natural flow. Moreover, the performance of BBO is better than PSO in terms of physical habitat loss.
Water quality suitability for different algorithms indicates that the optimization model is robust in this regard (Figure 13).

The performance of the three used algorithms is quite good, which means that they are able to minimize the difference

between suitability of optimal release for environment and natural flow. Thus, the optimization model is able to reduce
environmental advocators’ concerns regarding water quality. It should be noted that unsuitable concentrations of DO and
water temperature might be a primary reason for perishing sensitive aquatics such as the Brown trout. In fact, DO and

water temperature have a remarkable impact on the biological activities of the Brown trout. The previous biological studies
in the tanks demonstrated that the unsuitable water temperature raises the biological tensions for the Brown trout quickly. In
other words, all the biological activities such as searching for food and reproduction can be stopped in the unsuitable water
temperature that means survival of the fish might be threatened. Furthermore, the previous studies corroborate that a high

concentration of DO is a vital requirement for the Brown trout that means a low concentration of DO is considerably detri-
mental for the survival of the Brown trout.

Figure 14 shows combined habitat suitability which is the result of using a knowledge-based combined habitat suitability

system in the structure of the reservoir operation optimization. In previous parts, some qualitative judgments on the results
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Figure 13 | Water quality suitability by different algorithms.

Figure 12 | Physical habitat suitability by different algorithms.
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were possibly observed. However, judgment on the algorithms in terms of combined habitat suitability might not be possible

observably. Generally, qualitative judgment on the environmental parameters might not be applicable to use in the robust
decision-making system. Hence, using qualitative assessments for making final decisions is not recommendable in the prac-
tical project of the environmental flow assessment. Measurement indices are quite helpful in this regard to make a right
decision for the final design of the environmental flow regime.

Figure 15 shows measurement indices for reservoir losses including reliability index for water supply, vulnerability index
and RMSE for storage loss. Moreover, Figure 16 shows measurement indices for combined habitat loss. PSO is the best algor-
ithm in terms of water supply. In fact, it is able to supply 60% of requested demand for the reservoir. DE has the lowest

reliability for water demand based on outputs of the optimization system. The performance of the optimization system in
terms of storage loss might be more complex. PSO has the highest vulnerability index. However, it does not have the highest
RMSE. In other words, the performance of the PSO in one of the time steps is quite weak that might generate the highest

vulnerability. Whereas the mean error of the DE is higher than PSO. The performance of the BBO is between these two
algorithms.
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Figure 14 | Combined suitability by different algorithms.

Figure 15 | Measurement indices for water demand loss and storage loss.
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The main purpose of the proposed framework is to develop a robust knowledge-based system to optimize environmental
flow at downstream of the reservoirs. Hence, evaluation of the performance of the optimization system in terms of environ-
mental aspects including physical, water quality and combined suitability might be the most important part of the discussion
on the results. Some points should be noted before discussion on the result of the measurement indices for environmental

aspects. First, it might be logical to discuss on the results only by using measurement indices for combined habitat suitability
because it shows the final output of the system. However, we computed measurement indices for physical habitat suitability as
well to increase the reliability of the analysis. Secondly, it should be noted that the performance of the optimization system in
://iwa.silverchair.com/jh/article-pdf/23/6/1343/962627/jh0231343.pdf



Figure 16 | Measurement indices for combined habitat loss.
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terms of water quality suitability was highly robust that could be judged observably. Thus, we did not consider measurement
indices for the water quality suitability in the discussion and decision-making system separately.

Figure 17 shows computed measurement indices for the physical habitat suitability in which vulnerability index, RMSE and
NSE have been applied. Each index is helpful to measure one of the aspects in the analysis of the results. The vulnerability
index indicates how the optimization system might harm the river habitats in the worst time step. Moreover, RMSE might

show mean error in the simulated period compared with the natural flow. The best status of the river is the natural flow.
Hence, using NSE could be helpful to demonstrate how the optimization model is able to simulate the suitability of natural
flow in the optimal release for environment. The vulnerability index for all algorithms is close that indicates none of the algor-

ithms is highly robust in this regard. It is because the vulnerability index is close to 70% that might be a serious concern. The
vulnerability index indicates the maximum difference between natural suitability and optimal suitability in the simulated
period. When the vulnerability index is 70%, the optimal suitability is considerably lower than natural suitability in some
timesteps that might be a serious threat for providing a suitable environment for the aquatics in the river. However, it

should be noted that simultaneous management of the environment and water demand might be challenging in the river eco-
system, and some threats are inevitable. Owing to the simulation of a challenging period of the reservoir operation, this output
might not be surprising. The supply of water demands, storage requirements and environmental demands might not be poss-

ible perfectly. High RMSEs for all algorithms corroborate the weakness of the optimization system in terms of physical
habitat suitability due to low inflow to the reservoir. However, the performance of DE is better than other algorithms.
NSEs demonstrate that the optimization model is not able to provide physical suitability close to the natural flow because

NSEs for three algorithms are less than zero that might show the weaknesses of the system in the case study. It should be
noted that it is not the weakness of the developed knowledge-based method. In fact, it is a result of the low inflow to the
reservoir. The results of the case study demonstrate that the assessment and management of the environmental flow might

be highly complex in challenging periods. Thus, not only would using a robust knowledge-based system be a good suggestion,
but it is also a requirement for the assessment and management of the environmental flow at downstream of the reservoirs in
many cases.

The vulnerability index for the combined habitat suitability is much less than physical habitat suitability that demonstrates

some key points. First, the optimization system used generated suitability by the water quality suitability system to reduce the
combined unsuitability in the objective function that might be logical. In other words, we face a complex situation in the river
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Figure 17 | Measurement indices for physical habitat loss.
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ecosystems that might be analyzed from different views. RMSEs and NSEs indicate that the optimization model is able to
provide sufficient combined suitability for downstream river ecosystems compared with the natural flow. To sum up, the per-
formance of the optimization model is generally acceptable. It is able to increase combined suitability dramatically. However,
its performance in terms of physical habitat suitability is not perfect. Table 9 shows the rating of alternatives for applying the

FTOPSIS method. Figure 18 shows the final ranking of the methods by the FTOPSIS method. DE is the best candidate to
optimize environmental flow in the proposed method.

One of the questions that should be answered is how the input parameters of the model were selected in the present study.

It should be noted that the particular set of parameters for each model was selected based on the previous studies. For
example, the previous studies corroborate that depth and velocity are the most important parameters that are effective on
the physical habitat suitability of the river habitats that were the main reasons for selecting these parameters in the physical

habitat model. Moreover, sensitivity analysis of effective parameters on the water temperature by the previous studies demon-
strated that selected parameters are the most sensitive parameters for changing water temperature in the streams. To sum up,
the parameters were selected based on many previous studies on the river habitats that determined sensitive parameters for

simulating habitat suitability in the rivers.
More discussion on the technical aspects and details of the developed model is essential. The proposed method considered

the physical habitat suitability and water quality suitability as the most important factors in the river habitats in an integrated
Table 9 | Sample of rating of alternatives for some selected indices (based on the method by Chen (2000))

PSO DE BBO

RI (water supply) G RG RP

VI (storage) VG G RG

RMSE (storage) G G RG

VI (combined suitability) G G VG

RP, RG, G, VG mean relatively poor, relatively good, good and very good respectively.
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Figure 18 | Final ranking by the FTOPSIS method.
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framework that is the main advantage of the proposed method. Flow velocity and depth are effective on the energy consump-
tion by the fish that means considering these two parameters is necessary for each habitat suitability assessment of the
aquatics. Depth might be important for sheltering the fishes in the habitats as well. It seems that suitable management of vel-

ocity and depth is able to provide the minimum requirements for protecting aquatic habitats in terms of physical factors.
Moreover, the water temperature and the concentration of DO are key water quality factors that might be effective on the
suitability of river habitats. Other parameters could be added to the system as well. However, these two water quality par-
ameters are good indexes that are able to demonstrate the impact of all the water quality factors on the river habitats. It

should be noted that changing the concentration of other constituents such as total dissolved solids or total suspended
solids might change the water temperature and the concentration of DO in the water bodies. Hence, it is recommendable
to apply the water temperature and the concentration of DO as the critical water quality parameters for modeling the suit-

ability of river habitats. Furthermore, adding climate change models to the proposed expert system is recommendable for
future studies. In fact, climate change might alter the streamflow or inflow of the reservoir that is significantly effective in
the management of environmental flow in the reservoirs. It should be highlighted here that the abiotic parameters are con-

sidered in the present study. It is recommendable to add biotic factors such as predation in future research work.
Each method or system might have some advantages and disadvantages that should be noticed for practical projects. In

fact, discussion on the strength and limitation of the proposed method is essential. Moreover, it should be discussed why
the proposed mechanism was prosperous in the case study to assess the environmental flow regime. Using a knowledge-

based system is useful in the assessment of environmental flow. We face a complex ecological status in the rivers that
might not be measurable in many aspects. However, experts might have strong views on the complexities of the system
that is based on many qualitative observations and studies on the ecological aspects of the case study. These experts’ opinions

might not be useable without the development of a robust knowledge-based system. Moreover, water resource systems such as
reservoirs are complex. They should be able to supply different needs including humans’ needs and environmental needs.
Thus, using optimization models in the management of the water resource systems is necessary. The proposed method

puts a knowledge-based environmental model in the structure of an optimization system that might be the most important
point to propose an appropriate environmental flow regime. This system was able to provide requirements of the reservoir
management simultaneously. Hence, we can claim that the proposed method is an integrated method to assess the environ-

mental flow regime. Another advantage of the proposed model is upgradability. In other words, other effective factors could
be added to the system in future studies. It should be noted that fishes are not the main species for all of the rivers. Hence,
using other target species might be another option in the assessment of the environmental flow regime. The proposed method
is upgradable in this regard. The main limitation of the proposed method is high computational complexities. This term can be

defined as the required time and memory to the optimization model to find the best solution. Practical projects might need
many simulations or covering a long-term period. The proposed method needs much time for running due to using several
fuzzy inference systems in the structure of the evolutionary algorithm. Furthermore, simultaneous simulations might need

considerable memory that might be a concern for the successful application of the proposed method in practical projects.
We recommend focusing on the reduction of computational complexities in future studies that increases the applicability
of this method.
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Moreover, some key points should be discussed regarding the optimization model. First, why three different evolutionary

algorithms have been applied in the present study. Second, why the single objective evolutionary algorithms have been uti-
lized to optimize reservoir operation. Third, more details regarding the application of the evolutionary algorithms in the
present study. The main drawback of the evolutionary algorithms is the inability to guarantee the global optimization that

means using one evolutionary algorithm might not be reliable to find the best solution. Thus, utilizing different evolutionary
algorithms and a robust decision-making system is a requirement for the complex optimization system such as the developed
model in the present study. It should be noted that there is a serious concern for guaranteeing the global optimization by the
evolutionary algorithms, particularly in the complex objective functions. Furthermore, it is observable that the proposed

objective function contains different terms that might be useable in the structure of the multi-objective optimization algor-
ithms. However, two points convinced the researchers of the present study to apply single objective algorithms instead of
multi-objective algorithms. First, the proposed method in the single objective form has high computational complexities

that are a limitation for the system. Multi-objective optimization algorithms such as multi-objective PSO inherently have
higher computational complexities compared with single objective optimization algorithms. Hence, using the multi-objective
algorithms might make the optimization model highly complex. In other words, required time and memory will be very high

for implementing the model in the projects that might reduce the applicability of the model for the engineers. Secondly, the
limited number of multi-objective algorithms have been developed in the literature that means applying these algorithms
might not be reliable enough in terms of global optimization in the current condition. However, many single objective algor-

ithms have been developed in the literature with different origins that might help the researchers to find the best solution
using a robust decision-making system such as FTOPSIS. In the present study, a number of iterations were considered as
the stop criterion for the evolutionary algorithms. In other words, a high number of iterations (i.e. 10,000) was considered
for the optimization algorithms to find the best solution. This number of iterations was highly reliable as the stop criterion

in the optimization model. In fact, the best solution was found by the algorithms when the number of iterations was 5,000
that means the selected criterion was highly reliable.

4. CONCLUSIONS

The present study proposed a coupled knowledge-based system–optimization model to assess environmental flow at the

downstream of the reservoirs as one of the important water resource systems. Three Mamdani fuzzy inference systems
were developed including physical habitat suitability, water quality suitability and combined habitat suitability. Depth and
velocity suitability were assessed based on the developed suitability criteria. Moreover, water temperature and DO were simu-
lated by the PSO–ANFIS model. Three different evolutionary algorithms including PSO, DE and BBO were utilized to

optimize reservoir operation in which environmental knowledge-based systems were considered in the structure of the optim-
ization model. Based on the results in the case study, the proposed method is able to optimize environmental flow properly.
Moreover, it is able to minimize storage loss and water supply loss in the reservoir. FTOPSIS was used as a decision-making

system to select the best algorithm that is DE. The main limitation for the application of the proposed method is high com-
putational complexities that means considerable time and memory are needed for implementing the proposed optimization
system. Moreover, it is recommendable to add the biotic factors of the river habitats such as predation to the proposed

method. Furthermore, it might be useful to add the climate change models to the framework in future studies.
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