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ABSTRACT

This study proposes two effective approaches to reduce the required computational time of the training process for time-series modeling

through a recurrent neural network (RNN) using multi-time-scale time-series data as input. One approach provides coarse and fine temporal

resolutions of the input time-series data to RNN in parallel. The other concatenates the coarse and fine temporal resolutions of the input time-

series data over time before considering them as the input to RNN. In both approaches, first, the finer temporal resolution data are utilized to

learn the fine temporal scale behavior of the target data. Then, coarser temporal resolution data are expected to capture long-duration

dependencies between the input and target variables. The proposed approaches were implemented for hourly rainfall–runoff modeling at

a snow-dominated watershed by employing a long short-term memory network, which is a type of RNN. Subsequently, the daily and

hourly meteorological data were utilized as the input, and hourly flow discharge was considered as the target data. The results confirm

that both of the proposed approaches can reduce the required computational time for the training of RNN significantly. Lastly, one of the

proposed approaches improves the estimation accuracy considerably in addition to computational efficiency.
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HIGHLIGHTS

• This study proposed approaches to reduce the required computational time for RNN.

• Multi-time-scale time-series data are used as input.

• As a case study, rainfall–runoff modeling was targeted.

• The proposed approaches significantly reduced the required computation time.

• Meanwhile, one of the approaches improved the estimation accuracy, too.
1. INTRODUCTION

Recurrent neural networks (RNNs) are gathering attention for time-series modeling in various domains, including hydrology.
RNN is a variant of a deep neural network with a specific architecture. Specifically, it can receive sequential data one by one
as the input and then generate outputs by considering the sequence of the input data. Owing to this structure, RNN can learn

the dependencies between the input and targeted data sequences. However, the traditional RNN has the limitation of learning
long-term dependencies known as the vanishing gradient problem. To address the vanishing gradient problem, a new variant
of RNN was developed by incorporating components such as the cell state and input, output, and forget gates, which is called

the long short-term memory (LSTM) network (Hochreiter & Schmidhuber 1997; Gers et al. 2000). These components enable
LSTM to learn long-term dependencies between the input and targeted data sequences. Due to this capability of LSTM, RNN
has gained attention for time-series modeling in hydrology.
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In the last decade, several studies have utilized LSTM, including its sequence-to-sequence extension, for time-series modeling

and forecasting in hydrology. LSTM has frequently been applied to river flow discharge modeling (Kratzert et al. 2018) and fore-
casting (Tian et al. 2018; Song et al. 2019; Kao et al. 2020; Li et al. 2020; Liu et al. 2020; Xiang et al. 2020; Zhu et al. 2020). Using
LSTM with a simple calibration, Kratzert et al. (2018) were able to obtain comparable (or even slightly higher) model perform-

ances compared to the well-known Sacramento Soil Moisture Accounting Model (SAC-SMA: Burnash et al. 1973) coupled
with the Snow-17 snow routine model. In addition, groundwater modeling and forecasting are prominent topics in time-series
modeling using LSTM (Zhang et al. 2018b; Bowes et al. 2019; Jeong & Park 2019; Jeong et al. 2020). Some research groups
have utilized LSTM for statistical downscaling of daily precipitation (Misra et al. 2018; Miao et al. 2019; Tran Anh et al.
2019). Also, LSTM has been employed for other time-series modeling in hydrology, such as lake water-level forecasting (Liang
et al. 2018; Hrnjica & Bonacci 2019), reservoir operation modeling (Zhang et al. 2018a), and tsunami flood forecasting (Hu
et al. 2019). These studies exhibit a substantial scope of RNN (LSTM) to model time-series issues in hydrology.

In contrast, RNN, including LSTM, has a limitation while modeling time-series. The computational requirements of RNNs
are strongly influenced by the length of the input data sequence (IDL). Notably, IDL for RNN is different from the length of
time (duration) for time-series modeling. RNN deals with time-series data as sequential data without considering time,

although it can consider the order of the input data sequences. This implies that IDL becomes much longer with a finer tem-
poral scale of time-series data as the input. For example, Kratzert et al. (2018) used 365 days of meteorological variables as the
input to LSTM to model daily rainfall–runoff in snow-dominated watersheds to reflect long-term dependencies between

meteorological time-series variables and flow discharge. When modeling rainfall–runoff on an hourly scale, IDL becomes
8,760 (365 days� 24 h). Meanwhile, RNN requires tuning various model options known as hyperparameters in machine
learning, which involves many trial-and-errors to optimize the hyperparameters. In addition, using RNN to model time-
series at a finer temporal scale would increase computational resources unreasonably when considering a long duration of

dependencies between the time-series of input and target variables.
To this end, this study proposes two approaches to reduce IDL for time-series modeling by RNN when there exist long-dur-

ation dependencies between the input and target variables. To generate outputs that exhibit behavior at a certain temporal

scale, a time-series model requires the input time-series data following the same temporal resolution. However, it appears
unnecessary to use the same temporal resolution of the input time-series data to reflect the long-duration dependencies on
the outputs. In this regard, a coarser resolution of the input time-series data can be sufficient. Therefore, this study proposes

two straightforward yet effective approaches for RNNs that use multi-temporal scale input time-series data. Specifically, both
proposed approaches utilize the same time-series variables at a finer time resolution and a coarser time resolution as the
input. The use of input time-series data at a coarser time resolution is anticipated to facilitate the model to learn dependencies
between the input and target time-series variables for a long duration. In contrast, these at a finer time resolution are antici-

pated to catch a fine temporal scale behavior of the target data for a short-time duration.
In this study, LSTM among RNNs was employed because LSTM is expected to have advantages in capturing long-term

dependencies. Both proposed approaches are implemented for hourly rainfall–runoff modeling at a snow-dominated Ishikari

River Watershed (IRW). In addition, the accuracy and computational resource requirements of both proposed approaches are
compared with each other and with the classical approach. For both approaches, the daily and hourly time-series of meteor-
ological variables were utilized as inputs. The general approach refers to LSTM with the hourly temporal resolution of the

input variables.

2. METHODOLOGY

LSTM is used to model time-series. Since LSTM has several structural variants, LSTM used in this study has a cell state c and
three gates: input gate g i, output gate go, and forget gate g f ,

g i(s) ¼ s(Wiix(s)þ bii þWhih(s� 1)þ bhi) (1)

g f(s) ¼ s(Wifx(s)þ bif þWhfh(s� 1)þ bhf) (2)

go(s) ¼ s(Wiox(s)þ bio þWhoh(s� 1)þ bho) (3)

c(s) ¼ g f(s)� c(s� 1)þ g i(s)� tanh (Wicx(s)þ bic þWhch(s� 1)þ bhc) (4)

h(s) ¼ go(s)� tanh (c(s)) (5)
://iwa.silverchair.com/jh/article-pdf/23/6/1312/962741/jh0231312.pdf
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where x(s) and h(s) denote the input vector and hidden state at time s, respectively. W and b are the weights and biases,

respectively. Notably, two subscripts of each weight and bias indicate the input/hidden state vector and gate/cell state,
respectively. The weights and biases are the learnable parameters that need to be tuned. Also, s and � represent the sigmoid
function and Hadamard product, respectively. The cell state c works as the memory of the system. The hidden state h(s) is the
information out of the system at time s and into the system at time (sþ 1). The forget gate g f adjusts the amount of the memory
to be forgotten. The input and output gates regulate the information into and out from the system.

When the length and end time of the input vector time-series are set to T and t, respectively, Equations (1)–(5) are recur-
rently used from s ¼ t� T þ 1 to t with the input time-series vector x(s), resulting in the hidden state h(t) at time t.
Subsequently, the hidden state h(t) is linearly transformed and assigned to an activation function when the activation function
produces the output vector y(6) at time 6. Here, for time-series modeling, 6 was set equal to t (Figure 1), and the linear function
was utilized as the activation function. To obtain a time-series of the output vector during the study period, the aforemen-

tioned procedure was repeated from the beginning to the end of the study period. Notably, LSTM can learn long-term
dependencies between the input and output time-series; however, the duration of dependencies learned by LSTM depends
on IDL (T).

Therefore, first, for time-series modeling, the temporal increment of the input time-series is considered the input to LSTM,
which is generally the same as that of the time-series of the output vector. Secondly, for hourly time-series modeling, the input
time-series at the hourly scale (x ¼ xH) was used. Notably, while setting IDL (T ) to TH, time-series of the hourly scale input

variable (xH(s): s ¼ tH � TH þ 1, tH � TH þ 2, � � � , tH � 1, tH) is used as the input to LSTM. Subsequently, LSTM is executed
hourly to generate an hourly output vector y(tH). In this study, this original approach of hourly time-series modeling is
referred to as OrigLSTM.

The first proposed approach provides hourly and daily time-series parallel to LSTM as the input, which is referred to as

ParaLSTM. When the length of the hourly and daily input time-series (HIDL and DIDL) is set to TH and TD, respectively,
the hourly xH and the daily input time-series xD are defined as follows:

xH(sH) ¼

xH1 (s
H)

xH2 (s
H)

..

.

xHn (s
H)

2
66664

3
77775

(sH ¼ tH � TH þ 1, tH � TH þ 2, � � � , tH � 1, tH)

xD(sD) ¼

xD1 (s
D)

xD2 (s
D)

..

.

xDn (s
D)

2
66664

3
77775

(sD ¼ tD � TD þ 1, tD � TD þ 2, � � � , tD � 1, tD)

where n is the number of types of input variables. sH and sD denote the times for the hourly and daily input time-series,
respectively. The units of sH and sD are hour and day, respectively. tH and tD represent the end times of the input time-
series at the hourly and daily scales, respectively. The time of the output is tH, and its date is tD.
Figure 1 | Temporal relationship between the input and output time-series of LSTM.
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WhenTH ¼ TD, the hourly and daily input time-series are arranged in parallel and provided as the input to LSTM, as shown in

Figure 2(a). In contrast, when TH = TD, a special treatment is required to use these time-series as the input to LSTM, which can
receive a single IDL. In natural language processing, the padding method is frequently used to align IDLs for RNN. Similarly,
Ishida et al. (2020) incorporated a yearly time-series of global air temperature togetherwith hourly input time-series for LSTMby

employing this method to reflect the effects of global warming on the hourly scale coastal sea-level modeling. In addition, this
study utilizes the padding method to provide hourly and daily time-series together as an input to LSTM. This study considered
only the case of TD . TH. Then, IDL (T ) to ParaLSTM is equal to TD. Thus, the hourly and daily time-series are provided as the
input to LSTMparallelly. The gap between TH and TD is padded by a specific value to align their lengths. Generally, zero is used

for adding after normalizing the input data. The time-series of the input vectors is shown in Figure 2(a). This approach exhibits a
temporal inconsistency between the hourly and daily input time-series.

The second approach, referred to as ConcLSTM, concatenates the hourly and daily input vectors along the time axis and

uses these time-series together. However, before concatenating the time-series, the overlapping period between the hourly and
daily time-series was removed. The integer part of TH=24 was set to TD0. ConcLSTM uses a part of the daily input time-series
between tD � TD þ 1 and tD � TD0, as shown in Figure 2(b).

Both approaches can significantly reduce the length of the input time-series. For instance, ParaLSTM requires merely 365
length input time-series to incorporate 1-year information of the input time-series into a model. It is 1/24 of the length required
by OrigLSTM, although the number of input variables increased twofold. ConcLSTM requires a longer input time-series than

ParaLSTM, which is still much shorter than OrigLSTM. Notably, both approaches are expected to significantly reduce compu-
tational time because of the shorter length of the input time-series. As shown in Figure 2(a), ParaLSTM has an inconsistency in
time between the hourly and daily input time-series. This approach is utilized based on the justification that LSTM can learn
relationships between the input time-series and target data even when temporal inconsistency exists. In contrast, there is

almost no temporal inconsistency between these time-series in ConcLSTM. Although its temporal increment suddenly changes
from an hourly to a daily scale, the input data sequence is arranged in the temporal order.
3. CASE STUDY

3.1. Hourly-scale rainfall–runoff modeling

As a case study, we selected hourly rainfall–runoff modeling at a snow-dominated watershed to investigate the potential of the
aforementioned approaches for time-series modeling. Since it can potentially require a long duration of the input data to
Figure 2 | Input time-series: (a) for ParaLSTM and (b) for ConcLSTM.
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reflect the effects of snow accumulation and melting to flow discharge by LSTM, hourly scale rainfall–runoff modeling at a

snow-dominated watershed is appropriate for the analysis. As the input to rainfall–runoff modeling, precipitation and air
temperature were utilized. Precipitation is the main water input to a watershed. Air temperature dominates the amount of
snowmelt flow together with precipitation. Both variables are the most sensitive variables to model flow discharge at a

snow-dominated watershed. LSTM with only an hourly input time-series (OrigLSTM) was utilized to create a rainfall–
runoff model. In addition, rainfall–runoff models were developed based on the two proposed approaches with daily and
hourly input time-series (ParaLSTM and ConcLSTM). The hourly input data were utilized to model hourly scale behavior
of the flow discharge, and daily data are expected to capture long-duration dependencies with a shorter IDL. Finally, potential

performances of the three rainfall–runoff modeling approaches were investigated.

3.2. Study area and data

As a study watershed, we targeted hourly flow discharge at IRW in the Hokkaido region at the northern end of Japan. The

Ishikari River is the third-longest river in Japan, with a length of 268 km, originating from the mountain peak of 1,967 m and
flowing into the sea. The catchment area of IRW is 14,330 km2 that is the second largest in Japan. Geographically, IRW is
located in a cold region and receives snowfall from October to March, especially in high-elevation areas. This snowpack

melts during the spring to early summer, i.e., from March to June.
Ishikari Ohashi gauging station was selected to obtain the hourly flow discharge for the target data of the model. As shown

in Figure 3, this station is 26.60 km from the outlet along the Ishikari River. The hourly flow discharge data were obtained

from the Water Information System (WIS) driven by the Ministry of Land, Infrastructure, Transport, and Tourism of
Japan (http://www1.river.go.jp/). Notably, data were available from 1998 to 2016, with some missing parts in the hourly
flow discharge data. These missing parts were removed from the target data while training and from data while calculating
the evaluation metrics.

This study utilized hourly precipitation and air temperature as inputs. Because the catchment area of IRW is relatively
large, the spatial variabilities of precipitation may not be negligible within IRW. Therefore, we use the spatial average of
the hourly precipitation data at the sub-regions of IRW as the input. These sub-regions are illustrated in Figure 3. Hourly pre-

cipitation data were obtained from the radar raingauge-analyzed precipitation (RRAP) generated by the Japan Meteorological
Agency. RRAP, available from 1988 to the present, is a gridded precipitation data obtained by modifying the radar precipi-
tation with gauging precipitation data. However, the provided grid resolution has gradually improved throughout.

Currently, RRAP is provided at a 1-km spatial resolution from 2006 to the present. This study utilized RRAP at a 1-km spatial
Figure 3 | Study area.
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resolution. To generate the input time-series data, the spatially averaged values of RRAP were calculated for the sub-regions of

IRW.
Many meteorological observation stations are located within IRW, which are operated by the Japan Meteorological

Agency. However, this study utilized hourly air temperature data only at a single station due to data availability. At some

stations, air temperature data were available either for recent or older periods. In addition, many missing data points were
present at most stations. Air temperature data are often highly correlated among nearby stations. Thus, the input data are
normalized for neural networks, including LSTM. When data are highly correlated among the stations within a watershed,
the air temperature data at a single station can be considered representative for time-series modeling with a neural network,

unlike physical or conceptual models. Thus, a station was selected among the stations within the watershed where the missing
parts were minimum. At the selected station, merely 7 h were missing during 11 years from 2006 to 2016. These missing parts
were imputed by linear interpolation.

3.3. Model implementation

LSTM has several tuning options called hyperparameters. The same hyperparameter configuration was used in the three
approaches, as listed in Table 1. The hidden state length was set at 50. Only a single layer of the LSTM recurrent unit was
utilized. HIDL was set to 8,760 h for OrigLSTM, and DIDL was set to 365 days for both ParaLSTM and ConcLSTM.

Then, several HIDLs were tested for ParaLSTM and ConcLSTM: 24, 48, and 120 h. The given dataset was segregated into
three sets: training, validation, and test datasets. The periods of the training, validation, and test datasets are 2007–2012,
2013–2014, and 2015–2016, respectively. The number of the datasets after removing the missing points of the flow discharge

data is 52,608, 17,520, and 17,544, respectively. Figure 4 illustrates the observed hourly precipitation, air temperature, and
flow discharge data used as the input and target data in this study. The daily input data were calculated from the hourly
values. Then, the model was calibrated using the training and validation datasets, and it was verified with the test dataset
as detailed below.

The model parameters: weights and biases are updated using the training dataset by means of the back-propagation
approach. An update iteration is performed with a subset of the training dataset known as a batch or a mini-batch. Notably,
these batches are generated using the shuffle sampling method. Specifically, this method randomly extracts samples from the

training dataset for each batch with no duplication until all samples are selected. When all samples were selected, the aggre-
gation of the update iterations was considered an epoch. The sample size of each batch or batch size was set to 256. The back-
propagation approach is implemented using the gradient descent method with an optimization algorithm. The mean square

error (MSE) was selected as the loss function for the gradient descent method. The error calculated by this function is called
loss. Adaptive moment estimation (Adam; Kingma & Ba 2014) is employed as the optimization algorithm to adjust the gra-
dient during each update iteration.

The validation dataset is utilized with an early stopping criterion to avoid the overfitting of the model and save compu-

tational resources for model calibration. At each epoch, the network whose parameters were updated with the training
dataset was executed with the validation dataset, and then the loss was calculated for the validation dataset. When this
loss continuously increases during a specific number of epochs, it is considered that the model overfits the training dataset.

Then, the training stops, and the parameters that yielded the minimum loss for the validation dataset were selected. The
number of epochs to determine whether the overfitting occurs is called patience, which was set to 50 in this study.
Table 1 | Hyperparameters used in this study

Hyperparameters Value or method

Hidden state length 50

Number of LSTM layer 1

Batch sampling method Shuffle sampling

Batch size 256

Loss function MSE

Optimization algorithm Adam

Patience of early stopping 50

://iwa.silverchair.com/jh/article-pdf/23/6/1312/962741/jh0231312.pdf



Figure 4 | Hourly observation data: (a–h) the area-averaged precipitation at the eight sub-regions of IRW, (i) air temperature at the selected
station, and (j) flow discharge at the flow gauging station.
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Generally, weights and biases of LSTM are initialized using random values because randomness in the initial states of par-
ameters can affect the model accuracy. Therefore, the aforementioned calibration process was performed 100 times for each
approach with each HIDL. The best-trained model for each LSTM with each HIDL was extracted with respect to the losses

for the validation period. Finally, the best-trained model was verified with the test dataset. All computations were conducted
using a computer with 64 RAM, Intel Core i7-10700 k, and NVIDIA GeForce RTX 2080 Ti. Models were implemented using
Python and its deep learning framework Pytorch (Paszke et al. 2019).
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Both proposed approaches, ParaLSTM and ConcLSTM, were compared with OrigLSTM based on the model accuracy and

required training time. The model accuracy was investigated using three evaluation metrics: root-mean-square error (RMSE),
correlation coefficient (R), and Nash–Sutcliffe Efficiency (NSE). There are 100 trained results for each approach with each
HIDL for the training and validation periods. Boxplots were created to compare the evaluation metrics for the training and

validation periods. In contrast, there was a single value for the test period. Each metric was tabulated for comparison. In
addition, the required time for training was compared using two measures: first, the required computational time for training
at each epoch (Time/EP) and, second, the number of epochs taken by each training process to reach the minimum loss for the
validation period for each training process (NEpochs).
4. RESULTS

Time/EP and NEpochs for the training process were obtained to examine the computational efficiency of the proposed
approaches, as shown in Table 2. The standard deviation of the computational time was less than 1% of the average compu-

tational time for each configuration. The difference in the computational time among epochs is negligible. In ParaLSTM, IDL
(T ) is equal to DIDL (TH) when HIDL (TH) �DIDL (TD) because DIDL (TD) is set to 365 for all cases. Consequently, Time/EP
is 2.7 s for an epoch on average. In ConcLSTM, IDL (T) gradually increased with HIDL (TH). In addition, Time/EP increases

with HIDL (TH), although the rate of increase with HIDL is not linear. While Time/EP for HIDL (TH) ¼ 24 is 2.7 s on aver-
age, it is 3.2 s for HIDL¼ 120. Time/EP for OrigLSTM is 58.7 s on average. ParaLSTM is approximately 21.7 times faster
than OrigLSTM when considering the same time duration (365 days¼ 8,769 h) for the input. Even ConcLSTM with HIDL
¼ 120, which is the slowest of the proposed method with all the HIDLs, is approximately 18.3 times faster than OrigLSTM

with respect to Time/EP.
The average of NEpochs is relatively smaller for ParaLSTM than for the others. The average of NEpochs is 61.4 for

OrigLSTM, whereas for ParaLSTM, the average of NEpochs gradually decreases from 48.2 to 41.2, with a longer HIDL.

There is no clear relationship between the average of NEpochs and HIDL for ConcLSTM. It is the smallest (37.1) with
HIDL¼ 48, and the largest (82.4) with HIDL¼ 120 for ConcLSTM. In addition, the standard deviation of the NEpochs is
between 22.5 and 26.1 for ParaLSTM, which is relatively small. In contrast, the standard deviation is 49.3 for OrigLSTM.

It fluctuates with ConcLSTM between 21.3 and 42.8. Also, except for HIDL¼ 48, the standard deviation of ConcLSTM is
larger than that of ParaLSTM.

The model accuracy was compared with the three approaches using three evaluation metrics: RMSE, R, and NSE. To
reiterate, the final trained result was obtained from the best results for each configuration based on the loss for the validation

period. These evaluation metrics of the final trained result for each configuration are listed in Table 2. ParaLSTM, except for
HIDL¼ 24, yielded better model accuracy for the test period compared to OrigLSTM, whereas ConcLSTM with all the HIDL
yielded less model accuracy for the test period. ParaLSTM and ConcLSTM yield the best model accuracy with HIDL¼ 120

based on these evaluation metrics. One-to-one plots between the observed and simulated flow discharges obtained by
OrigLSTM, ParaLSTM with HIDL¼ 120, and ConcLSTM with HIDL¼ 120 are delineated in Figure 5. ParaLSTM generated
better estimations of the large flow discharge during the test period (Figure 5(f)) compared to OrigLSTM (Figure 5(c)) and

ConcLSTM (Figure 5(i)). As shown in Table 2, ParaLSTM with HIDL¼ 120 improved RMSE, R, and NSE by 29.8 m3/s,
Table 2 | Statistical comparison among the three approaches

Training Validation Test

HIDL NEpochs Time/EP (s) RMSE (m3/s) R NSE RMSE (m3/s) R NSE RMSE (m3/s) R NSE

OrigLSTM 8,760 61.4+ 49.3 58.7+ 0.17 170.2 0.930 0.859 202.2 0.896 0.789 222.4 0.884 0.771

ParaLSTM 24 48.2+ 22.5 2.7+ 0.01 135.7 0.955 0.911 197.4 0.897 0.799 233.0 0.867 0.749
48 43.7+ 24.4 2.7+ 0.01 141.3 0.956 0.903 190.0 0.909 0.813 214.1 0.889 0.788
120 41.2+ 26.1 2.7+ 0.01 137.3 0.954 0.909 172.8 0.923 0.846 186.8 0.918 0.838

ConcLSTM 24 59.1+ 38.3 2.7+ 0.01 134.2 0.957 0.913 230.7 0.857 0.725 243.5 0.855 0.725
48 37.1+ 21.3 2.8+ 0.01 156.2 0.943 0.882 202.2 0.889 0.789 244.6 0.867 0.723
120 82.4+ 42.8 3.2+ 0.01 123.8 0.964 0.926 192.1 0.902 0.809 233.5 0.872 0.748

NEpochs and Time/EP for the training, and RMSE, R, NSE of the final trained results obtained by OrigLSTM, ParaLSTM, and ConcLSTM with several HIDLs.

://iwa.silverchair.com/jh/article-pdf/23/6/1312/962741/jh0231312.pdf



Figure 5 | Scatter plots between the hourly observed and simulated flow discharges of the final trained results obtained by OrigLSTM,
ParaLSTM with HIDL¼ 120, and ConcLSTM with HIDL¼ 120.
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0.029, and 0.057, respectively, for the test period, compared to OrigLSTM. In contrast, these evaluation metrics obtained by
ConcLSTM with HIDL¼ 120 are 11.1 m3/s, 0.012, and 0.023, respectively, which are worse than those obtained by
OrigLSTM.

These evaluation metrics obtained by ParaLSTM with all the HIDLs were better than OrigLSTM for the training and vali-
dation periods, although ConcLSTM yields better model accuracy merely with HIDL¼ 120 for the validation period
compared to OrigLSTM. These evaluation metrics by ConcLSTM with all the HIDLs were better than OrigLSTM for the

training period. Notably, these values were comparable to those of ParaLSTM. For example, ParaLSTM with HIDL¼ 120
improved RMSE, R, and NSE values by 32.9 m3/s, 0.024, and 0.05, respectively, for the training period, and 29.4 m3/s,
0.027, and 0.057, respectively, for the validation period. Meanwhile, the differences in RMSE, R, and NSE between

OrigLSTM and ConcLSTM with HIDL¼ 120 were 46.4 m3/s, 0.034, and 0.067 for the training period, and 10.1 m3/s,
0.006, and 0.020 for the validation period. In addition, Figure 5 delineates one-to-one plots between the observed and simu-
lated flow discharges by OrigLSTM, ParaLSTM with HIDL¼ 120, and ConcLSTM with HIDL¼ 120 for the training and
validation periods. Specifically, all the points of one-to-one plots by ConcLSTM were very close to the one-to-one line for

the training period.
To reiterate, the training process was conducted 100 times using each approach with each HIDL. For the training and vali-

dation periods, there were 100 trained results for each approach with each HIDL. For instance, the NSE value was calculated

for each of the 100 trained results for both periods to investigate the stability of the training for each approach, as shown in
Figure 6. OrigLSTM exhibits substantial differences in NSE values for the training and validation periods among the 100
training results. The difference in NSE between the best and median values were 0.373 and 0.356 for the training and
om http://iwa.silverchair.com/jh/article-pdf/23/6/1312/962741/jh0231312.pdf

4



Figure 6 | Nash–Sutcliffe efficiencies of the trained results by OrigLSTM, ParaLSTM, and ConcLSTM with different lengths of hourly time-
series for the training period (top) and validation period (bottom).
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validation periods, respectively. In contrast, differences in NSE values by ParaLSTM were minimal for each HIDL. Further-
more, the median values of NSE by ParaLSTM with all the HIDLs were comparable to the best value of NSE by OrigLSTM
for the training and validation periods. The best value of NSE by OrigLSTM was 0.928 for the training period, whereas the

median value of NSE was more than 0.920 by ParaLSTM. For the validation period, the best value of NSE by OrigLSTM was
0.789, whereas the median value by ParaLSTM with HIDL¼ 120 was 0.796. The results indicate that the ParaLSTM can be
stably trained well. In addition, the training process of ConcLSTM with three HIDLs was more stable than that of OrigLSTM,

although the NSE values by ConcLSTM were often smaller than those by ParaLSTM for the training and validation periods.
For ConcLSTM, differences in NSE between the best and median values were the widest with HIDL¼ 120, which are 0.077
and 0.088 for the training and validation periods, respectively. ConcLSTM can yield high accuracy more stable than
OrigLSTM.
5. DISCUSSION

The results indicate that LSTM can learn long-duration dependencies between input and target time-series variables even
when IDL is substantial. However, LSTM with a considerable IDL requires substantial time for training. In addition, the
training process is unstable. When the early stopping method was used, NEpochs fluctuates. In addition, LSTM is not

always adequately trained. Thus, LSTM experiences challenges with a considerable IDL.
The proposed approaches: ParaLSTM and ConcLSTM significantly decrease the computational time for training the model

compared to the original LSTM. Notably, Time/EP of LSTM significantly depends on IDL. The use of daily scale time-series

data together with the hour-scale of those largely decreases IDL that is required to learn the long-duration dependencies
between the input and the target time-series variables. For instance, when 1 year (365 days) of the input variable influences
the target variable, ParaLSTM requires an IDL of 365 (days), whereas OrigLSTM requires 8,760 h, that is, IDL becomes one
24th. Consequently, Time/EP is approximately 1/21.7. Because ConcLSTM has a longer IDL than ParaLSTM, Time/EP for

ConcLSTM is longer than that for ParaLSTM. However, Time/EP for ConcLSTM remains at least 1/18 of that for OrigLSTM.
In addition, NEpochs is 27–49% smaller for ParaLSTM than for OrigLSTM on average. Because Time/EP is 1/21.7 for

ParaLSTM than that for OrigLSTM, the total required computational time for the training becomes approximately 1/27.7–1/32.4

on average using ParaLSTM. ConcLSTM does not have an apparent advantage in terms of the number of NEpochs over
OrigLSTM, except for HIDL¼ 48. However, to reiterate, ConcLSTM requires much less computational time at each
epoch than OrigLSTM. The total computational time for the training was still much less for ConcLSTM than for OrigLSTM.
://iwa.silverchair.com/jh/article-pdf/23/6/1312/962741/jh0231312.pdf
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These results exhibit the large advantage of the required computational time when using both approaches: ParaLSTM and

ConcLSTM.
ParaLSTM also yields advantages in terms of model accuracy and the stability of the training process over OrigLSTM in

addition to the required computational resources. ParaLSTM with HIDL¼ 120 yielded higher model accuracy than

OrigLSTM for the three periods (Table 2 and Figure 5). Meanwhile, most of the training results yielded high accuracy for
the training and validation periods (Figure 6). For ParaLSTM, the finer (hourly) and coarser (daily) temporal resolutions
of the input variables are provided parallel to the model, as shown in Figure 2(a). There are some inconsistencies in the
input data sequences over time. However, these inconsistencies do not worsen the model accuracy or the required compu-

tational time. Deep learning, including LSTM, is a black-box model. Unlike physical or conceptual models, it does not
require consistency in the time increment between the input data. The results indicate that the flexible use of input data
can improve the accuracy and required computational resources.

Conversely, ConcLSTM did not exhibit better evaluation metrics than OrigLSTM for the test period, although it did
improve the model accuracy for the training and validation periods (Table 2). However, ConcLSTM does not have such
inconsistencies over time, although the time increment of the input time-series changes from daily to hourly. Notably, to

avoid such inconsistencies over time on ParaLSTM, ConcLSTM could be a reasonable choice because it still has an enor-
mous advantage on the required computational time than OrigLSTM. In addition, the accuracy of ConcLSTM is still
reasonable. The NSE value for ConcLSTM with HIDL¼ 120 is 0.748, which is more than 0.5, and is deemed acceptable,

according to Moriasi et al. (2007).
The comparison results may be different with other combinations of the hyperprameters. They may also change at another

snow-dominated watershed. Depending on a combination of the hyperparameters and a watershed, OrigLSTM and
ParaLSTM may obtain similar model accuracy. In this study, the duration of the input time-series data was set to a year

(¼ 365 days¼ 8,760 h). Although the model accuracy of OrigLSTM may be closer to that of ParaLSTM with a shorter dur-
ation, the model accuracy of both of them may become worse. Contrarily, the model accuracy of ConcLSTM may always be
worse than the others. The time increment of the input time-series data changes from daily to hourly in ConcLSTM, whereas

the parameters (weights and biases) are fixed along time. It means that ConcLSTM needs to deal with hourly and daily input
data by the same parameters, probably resulting in the worse model accuracy. At least, however, the proposed approaches
(ParaLSTM and ConcLSTM) maintain the advantage in the computational time (Time/EP) over the OrigLSTM. They

reduce the IDL, resulting in the reduction in the number of computations.
The main objective of this study is to reduce the computational requirements of time-series modeling at a fine temporal

resolution with RNN. LSTM basically requires much more computational resources than the traditional RNN due to its com-
plex architecture. To reduce the computational requirements with maintaining the model accuracy, a new architecture of

RNN has generally been proposed. The most famous one would be the gated recurrent unit (GRU; Cho et al. 2014). GRU
achieves the reduction in the computational requirements by reducing the number of gates compared to LSTM. For the
same purpose, Kusupati et al. (2019) introduced a residual connection to the traditional RNN and a gated RNN, respectively.

The former one is called a fast, accurate, stable, and tiny kilobyte-sized RNN (FastRNN). The latter one is called FastGRNN.
Unlike those studies, the proposed approaches in this study do not need to change the architecture of RNN. Although this
study focused on LSTM, meanwhile, the proposed approaches can be applied to most RNNs. The combined use of the pro-

posed approaches and the new architectures may improve the computational requirements of time-series modeling at a fine
temporal resolution with RNN.
6. CONCLUSIONS

This study proposed two approaches, namely ParaLSTM and ConcLSTM, to reduce the required computational time for the
training of rainfall–runoff modeling in a snow-dominated watershed by RNN using multi-time-scale data as the input.

Although ParaLSTM depicts inconsistencies over time among the input time-series, it significantly improves the required
computational time for training. Furthermore, it improves the stability of the training and the accuracy of the simulated
results. Although ConcLSTM also significantly improved the required computational time for training, it did not improve

the accuracy. In contrast to ParaLSTM, ConcLSTM maintains consistency between the input time-series. Although
ConcLSTM does not exhibit an advantage in terms of accuracy, it can still be useful owing to its reduced computational
time compared to the original OrigLSTM approach.
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Nowadays, the assessment of climate change impacts on hydrologic conditions is an important topic, for which the pro-

posed approaches can be utilized. When hourly flow discharge is to be estimated from atmospheric variables (e.g.,
precipitation and air temperature) of future climate projections at multiple watersheds, the proposed approaches can signifi-
cantly reduce the computational requirement. Meanwhile, ParaLSTM proposed in this study improved the accuracy of flow

discharge estimates, compared to the original LSTM. Thus, the use of ParaLSTM may enable to generate more accurate flow
discharge projections at the hourly scale.

This study utilized LSTM among RNNs; however, the proposed approaches can be extended to other RNN variants and
other time scales. In addition, this study focused on modeling of hourly flow discharge from precipitation and air temperature

to simply compare the proposed approaches with the original one. However, the proposed approaches can be utilized for
other various modeling issues that require to model the hourly scale behavior of a variable and long-duration dependencies
between the input and the target variables together. To sum up, the proposed approaches have potential to be used in various

time-series modeling problems.
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