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ABSTRACT

Ubiquitous flow bedforms such as ripples in rivers and coastal environments can affect transport conditions as they constitute the bed rough-

ness elements. The roughness coefficient needs to be adequately quantified owing to its significant influence on the performance of

hydraulic structures and river management. This work intended to evaluate the sensitivity and robustness of three machine learning (ML)

methods, namely, Gaussian process regression (GPR), artificial neural network (ANN), and support vector machine (SVM) for the prediction

of the Manning’s roughness coefficient of channels with ripple bedforms. To this end, 840 experimental data points considering various

hydraulic conditions were prepared. According to the obtained results, GPR was found to accurately predict the Manning’s coefficient

with input parameters of Reynolds number (Re), depth to width ratio (y/b), the ratio of the hydraulic radius to the median grain diameter

(R/D50), and grain Froude number (V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D50

p
). Moreover, sensitivity analysis was implemented with proposed ML approaches which

indicated that the ratio of the hydraulic radius to the median grain diameter has a considerable role in modeling the Manning’s coefficient

in channels with ripple bedforms.

Key words: artificial neural network (ANN), Gaussian process regression (GPR), Manning’s coefficient, ripple bedforms, support vector

machine (SVM)

HIGHLIGHTS

• GPR, SVM and ANN were selected to identify influential parameters for prediction of roughness coefficient of ripple bedforms.

• 840 experimental data points from different sources were used to feed the utilized models.

• Prediction capability of roughness coefficient was investigated under varied hydraulic conditions.
INTRODUCTION

Accurate prediction of the flow resistance (i.e., roughness coefficient) in open channel hydraulics has a significant effect on

flow conditions and can be identified as a crucial part of designing and operating hydraulic structures. It is way more com-
plicated to determine roughness since it is affected by several factors including irregular channel bed properties, bed material,
vegetation, cross-sectional, plan form variability, etc.). The problem of predicting flow resistance and roughness coefficient
depends, to a large extent, on the bedform. Assessments of the bedform such as dunes and ripples in rivers and marine

environments require information on the instability mechanism, as the development of the bedform is inversely proportional
to the lag between bed shear stress, sediment transport, and bed elevation. When the tractive force is sufficient to begin the
sediment transport, an initially flat bed will be unstable and deformed into irregular features (Kennedy 1969). In the case of

fine sediment, ripples are formed, while coarser sediments and higher subcritical velocity (Froude number ,1) will usually
form dunes (Figure 1). Ripples refer to triangular sand waves with small dimensions, typically shorter than about 0.6 meters
and higher than about 60 mm, whereas dunes are associated with larger dimensions formed in natural streams (Engelund &

Fredsoe 1982).
In the past half-century, many analytical and semi-empirical approaches have been presented in order to predict the total

roughness coefficient owing to bedform roughness (Meyer-Peter &Müller 1948; Einstein & Barbarossa 1952; Tylor & Brooks
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Figure 1 | Different types of bedforms in alluvial channels (lower regime): (a) plane bed, (b) ripple, (c) dune, (d) washed-out dune (Julien
2010).
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1962; Raudkivi 1967; Richardson & Simons 1967; Smith 1968; Van Rijn 1984; Karim 1995; Yang et al. 2005; Van der Mark

et al. 2008). There are also a large number of studies characterizing the effect of the Reynolds and Froude numbers on the
roughness coefficient (Rouse et al. 1963; Brownlie 1983; Colosimo et al. 1988). Utilizing the Froude number as an indepen-
dent parameter, Ugarte & Madrid (1994) prepared an expression for Manning’s n. Afzalimehr & Anctil (1998) conducted

dimensional analysis on different dimensionless parameters with the Froude number as one of them, which had a significant
effect on friction factor. García Díaz (2005) suggested that the Froude number is inversely proportional to Manning’s n.
Zhang et al. (2010) studied a curve-fitting relationship between Manning’s n with the Reynolds and Froude numbers. How-

ever, the existing relationships for the prediction of roughness coefficient related to bedforms differ from each other and no
universal equation for roughness coefficient was established. This can be due to the complicated process of interaction
between a large number of variables, 3D nature of bedform development, and also the lag in the adjustment of bedform in

reaction to changing flow conditions (Karim 1999). Concerning the point emphasized in the foregoing discussion, develop-
ment of a flexible and robust methodology that is capable of predicting roughness coefficient for the channel with
different types of bedform is deemed a crucial problem. In the recent decade, AI (artificial intelligence) methods have
been introduced as reliable tools in providing persistent success in various fields of hydraulic engineering. In AI models

we are looking for a learning machine capable of finding an accurate approximation of a natural phenomenon, as well as
expressing it in the form of an interpretable equation. However, this bias towards interpretability creates several new
issues. The computer-generated hypotheses should take advantage of the already existing body of knowledge about the

domain in question. However, the method by which we express our knowledge and make it available to a learning machine
remains rather unclear (Babovic 2009). More recently, AI methods including artificial neural network (ANN), support vector
machine (SVM), gene programming (GP), and group method of data handling (GMDH) have been applied for modeling flow

resistance and bedform dimensions of alluvial channels. The effectiveness of GP-based approaches was revealed in the exper-
iments of developing a formula for the description of vegetation-induced roughness (Babovic & Keijzer 2000; Keijzer &
Babovic 2002; Giustolisi 2004; Baptist et al. 2007). Azamathulla et al. (2013) accurately solved a high nonlinear relationship
between Manning’s n and input parameters of the Froude and Reynolds numbers, width to depth ratio, bed slope of channel,

and relative roughness through the gene expression programming (GEP) approach. Roushangar et al. (2017) offered a useful
prediction method based on the least squares support vector machine (LSSVM) coupled with particle swarm optimization
(PSO). Compared with semi-empirical equations, their hybrid model enjoyed higher performance when it came to predicting

the Manning and Darcy–Weisbach roughness coefficients in open channels with dune bedforms. In another investigation into
the application of AI methods on the modeling characteristics of dune bedforms, Roushangar et al. (2018a, 2018b) developed
GEP-based equations for the prediction of the Manning’s roughness coefficient and relative dune height. Javadi et al. (2015)
found that SVM surpasses ANN in terms of predicting dune bedform dimension. Qaderi et al. (2017) used a combination of
GMDH with shuffled complex evolution (SCE) and harmony search (HS) in simulating bedform dimensions, and concluded
that the developed hybrid models outperform all other empirical approaches for predicting bedform dimensions. Roushangar

et al. (2018a, 2018b) applied extreme learning machine (ELM) in order to find the nonlinear interaction among different input
variables for the prediction of coefficient of friction of overland flows. More recently, Saghebian et al. (2020) presented the
applicability of Gaussian process regression (GPR) for the prediction of total and bedform resistance of dune bed channels.

A great deal of previous research into the application of AI methods for predicting flow resistance of alluvial channels

shows that much attention has been paid to dunes’ bedform and, to the best of our knowledge, there is a lack of research
on the comprehensive study of predicting the roughness coefficient in channels with ripple bedform. Therefore, the present
study aims to investigating the generalization capability of SVM and GPR as effective kernel-based techniques for modeling
://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf
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the total Manning’s coefficient (which includes both grain friction and form resistance) in channels with ripple bedform. The

proposed techniques were developed using experimental datasets. Performance of the different input combinations was eval-
uated in both training and testing phases and under two scenarios through several statistical measures. Moreover, in order to
undertake the comprehensive assessment of the bedform’s role in modeling the Manning’s coefficient, prediction results of

the employed methods for channels with dune bedform were discussed using four experimental datasets (one original exper-
iment was performed by the author and three other experiments by other researchers). In the last stage, the most influential
parameters in predicting the total Manning’s coefficient were determined using sensitivity analysis.
MATERIALS AND METHODS

Experimental data used in the study

Due to the fact that employing more datasets from varied hydraulic conditions can challenge the ML methods and enjoy

more reliable evaluation, a total of 26 related data sources with the appropriate experimental data were explored and the rel-
evant data were considered for the modeling process. As a result, there are 840 records for open channels with ripple
bedforms. The sources of data as well as the ranges of measured and calculated parameters are presented in Table 1. It

should be pointed out that the measured values of the Manning’s coefficient are calculated from Manning’s formula
which is simple in form and is well confirmed by much practical experience.
Table 1 | Hydraulic characteristics of the utilized experimental data for ripple bedforms

Source D50 (mm) y (m) B (m) Fr Re n Number of data

Athaullah (1968) 0.018–0.047 0.08–0.32 2.43 0.03–0.36 2,012–113,789 0.015–0.026 38

Jopling & Forbes (1979) 0.045 0.02–0.1 0.2 0.22–0.67 3,793–29,494 0.014–0.027 11

Guy et al. (1966) 0.18–0.5 0.08–0.31 0.6–2.43 0.14–0.36 14,505–47,429 0.007–0.019 44

Mantz (1983) 0.017–0.35 0.02–0.12 0.3 0.19–0.61 5,824–39,494 0.005–0.028 26

Lau (1988) 0.08–0.4 0.05–0.14 0.75 0.17–0.45 8,956–27,639 0.013–0.058 35

Banks & Collinson (1975) 0.29 0.07–0.22 0.81 0.19–0.54 17,215–77,875 0.017–0.025 23

Costello & Southard (1981) 0.51–0.66 0.14–0.16 0.92 0.17–0.26 35,149–46,557 0.007–0.017 8

Ueno (1981) 0.23–0.53 0.02–0.11 0.4–1 0.06–0.38 2,142–16,482 0.02–0.038 14

Taylor (1972) 0.22 0.11–0.18 0.85 0.23–0.45 41,324–76,954 0.017–0.020 9

Barton & Lin (1955) 0.18 0.09–0.42 1.2 0.16–0.39 19,432–137,629 0.016–0.032 17

Brooksa (1957) 0.08–0.14 0.05–0.09 0.26 0.27–0.49 14,532–26,708 0.015–0.021 10

Chyn (1935) 0.59–0.84 0.04–0.07 0.61 0.49–0.76 19,433–32,686 0.011–0.013 25

Davies (1971) 0.15 0.07–0.3 1.3 0.17–0.49 16,749–110,839 0.013–0.023 27

Franco (1968) 0.23 0.12–0.16 0.91 0.28–0.40 27,676–52,607 0.017–0.022 11

Jorissen (1938) 0.6–0.91 0.02–0.10 0.61 0.48–0.67 7,262–46,380 0.010–0.017 15

Laursen (1958) 0.04–0.11 0.07–0.30 0.91 0.24–0.47 22,751–134,842 0.013–0.022 20

Mutter (1971) 0.26 0.01–0.1 1.21 0.16–1.57 8,236–22,856 0.008–0.041 23

Nomicos (1956) 0.07–0.08 0.09–0.15 0.26 0.28–0.72 11,578–33,069 0.009–0.023 15

Nordin (1976) 0.12–0.24 0.32–0.85 0.17–0.30 96,870–315,067 0.014–0.024 5

Pratt (1970) 0.47 0.07–0.45 1.37 0.11–0.30 14,502–121,741 0.015–0.028 25

Straub (1954), Straub et al. (1958) 0.16–0.19 0.04–0.07 0.3 0.39–0.83 17,478–38,922 0.010–0.020 10

Vanoni & Brooks (1957) 0.13 0.07–0.16 0.85 0.19–0.5 15,695–64,141 0.014–0.025 12

Vanoni & Hwang (1967) 0.20–0.23 0.07–0.37 0.26–1.1 0.22–0.50 9,306–100,502 0.015–0.024 16

Shinohara (1959) 0.21 0.01–0.04 0.34 0.33–0.9 2,446–17,750 0.014–0.042 15

U.S. Corps of Engineers (1935) 0.18–0.47 0.01–0.26 0.73 0.11–0.73 5,218–61,013 0.003–0.051 215

Singh (1960) 0.62 0.01–0.2 0.25–0.75 0.27–0.85 3,100–36,129 0.008–0.024 171

a Data source: Vanoni & Brooks (1957).
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Feed-forward neural network (FFNN)

Artificial neural networks are a family of machine learning algorithms originally inspired by biological neural networks that
can be employed to approximate any measurable function with an arbitrary number of inputs (Tayfur 2014). The feed-forward

neural network (FNN) with back propagation (BP) is a widely known utilized strategy in water resources engineering issues
(Karami et al. 2012; Li et al. 2018). The employed ANN is the common FFNN algorithm with three layers of input, hidden,
and target (Figure 2). The Levenberg–Marquardt preparing calculation (Hagan & Menhaj 1994) was utilized, and the mean
square error (MSE) between the calculated and observed values served as the cost function. Different numbers of parameters

were used as input and the optimum number of neurons was obtained through trial and error process. Furthermore, in the
proposed work, the tan-sigmoid was used as an activation function in the hidden and output layers.
Support vector machine (SVM)

Here, fundamental aspects of SVM are presented since this kernel-based method has been conducted in various fields of
engineering. It may be presumed that for dataset{xi, yi}, SVM formulations function as (Vapnik 1998):

f(x) ¼ Ww(x)þ b (1)

where W (weight factor) and b (bias) are known as the parameters of the regression function and w(x) stands as the transfer

function.

RSVMs (C) ¼
1
2
kwk2 þ C

1
2

Xn
i¼1

L(xi, yi) (2)

where C
1
2

Xn

i¼1
L(xi, yi) denotes the empirical risk. The minimization process of regularized risk function is used in order to

calculate the parameters W and b. This process is implemented after introducing positive slack variables ji and j�i as represen-
tative of upper and lower excess deviation.

Minimize RSVMs (w, j�, j) ¼ 1
2
kwk2 þ C

Xn
i¼1

(ji, j
�
i ) (3)

Subject to
yi �ww(xi)þ bi � jþ ji
ww(xi)þ bi � yi � jþ j�i
ji, j

�
i � 0, i ¼ 1, . . . , n

8<
:

Figure 2 | Structure of employed ANN model.

://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf



Journal of Hydroinformatics Vol 23 No 6, 1186

Downloaded fr
by guest
on 03 April 202
where 1
2 kwk2 stands for the regularization term, C is the cost factor, ɛ is known as the loss function, and n represents the

sample size.
Equation (1) can be resolved through applying Lagrange multiplier and optimality constraints. Consequently, a general

form of function can be obtained by:

f(x) ¼
Xn
i¼1

(bi � b�
i )K(xi, xj)þ b (4)

where K(xi, xj) ¼ w(xi)w(xj) and the term K(xi, xj) stand as the kernel function, which is an inner product of two vectors xi and
xj in the feature space w(xi) and w(xj), respectively. The kernel function plays a significant role in the performance of SVM.

Some of the kernel functions and their parameters are listed in Table 2. In this study, radial basis function (RBF) kernel func-
tion was used for implementation of the SVM algorithm as suggested by researchers (Azamathulla et al. 2016; Roushangar &
Shahnazi 2020). The optimum values of RBF kernel parameter (γ) were obtained after a trial and error process. Furthermore,

optimization of related hyper parameters (C and ε) has been carried out by a systematic grid search of the parameters using
cross-validation on the training dimensionless measures.

Gaussian process regression (GPR)

Deriving from the Bayesian framework, GPR can be considered as a random process to carry out the nonparametric
regression with the Gaussian process. For regression, consider that y # Re; then, a Gaussian process on domain of inputs
is determined by a mean function m:x ! Re. In GPR, the response variable (y) is calculated as y ¼ f(x)þ j, where f(x) is
latent function and j�N(0, s2) is the additive noise and is considered as normal independent and identically distributed
noise contribution with a mean value of zero. The standard deviation of the noise (s2) and f(x) drawn from the Gaussian
process on x is determined by K, as:

Y ¼ (y1, . . . , yn) � N(0, Kij þ s2I)

where Kij ¼ K(xi, xj), and I refers to the identity matrix. Since Y=X � N(0, K þ s2I) is normal, it can be considered as the con-
tingent distribution of test labels provided training and test data of p(Y*/Y, X, X*). Therefore, one has Y*/Y, X, X*∼N(μ,∑), where:

m ¼ K(X�, X)(K, (X, X)þ s2I)�1Y (5)X
¼ K(X�, X�)� s2I �K(X�, X)(K(X, X)þ s2I)�1K(X, X�) (6)

whereK(X, X�) represents the matrix of covariance between the training setX and the test setX*. Moreover, K(X�, X�) represents
the covariance matrix of the test set itself. Here,X and Y are the vector of the training data and training data labels yi, whereasX* is
the vector of the test data. A particular covariance function is needed for producing a positive semi-definite covariance matrix K,
whereKij ¼ K(xi, xj). The covariance function and associated parameters with the degree of noise should be optimally determined

through the training process of the GPR model. The Gaussian process allows the utilization of Bayesian inference over the
noise variance σ2 and the kernel parameters to be applied. The process begins with the calculation of the log-likelihood of the
regressors y. Then, maximization of this marginal likelihood can be obtained by taking derivatives over the parameters and

using gradient descent (Kuss 2006). The covariance function k(xi, xj) can be defined by various kernel functions. It can be para-
meterized in terms of the kernel parameters in vector θ. Hence, it is possible to express the covariance function as k(xi, xjju).
Table 2 | Different kernel functions of SVM

Kernel type Function Kernel parameter

Linear K(xi, xj) ¼ (xi, xj) –

Polynomial K(xi, xj) ¼ ((xi, xj)þ 1)d d

RBF K(xi, xj) ¼ exp (� k xi, xj k2 =2g2) g

Sigmoid K(xi, xj) ¼ tanh(�a(xi, xj)þ c) a, c
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Considering r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xj)

T (xi � xj)
q

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

m¼1 (xim � x jm)
2=s2

m

q
, different kernel functions can be defined as shown

in Table 3. In this table, sl represents the length scale parameter, sf represents the signal standard deviation, and sm rep-

resents the separate length scale. In the present study, in order to tune the related hyper parameters, a standard gradient

descent optimizer was utilized through maximizing the log marginal likelihood.
Performance metrics

Assessment and comparison of the performance of each proposed model developed in the present study is evaluated using
statistical parameters of the Nash–Sutcliffe efficiency (NSE), correlation coefficient (R), root mean squared error (RMSE),

and the logarithmic transformation variable (e), which are formulated as follows:

R ¼

PN
i¼1

(Xi � �X)� (Yi � �Y)

PN
i¼1

(Xi � �X)
2 � (Yi � �Y)

2
(7)

NSE ¼ 1�

PN
i¼1

(Xi � Yi)
2

PN
i¼1

(Xi � �X)
2

(8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

(Xi � Yi)
2

N

vuut (9)

e ¼
XN
i¼1

logYi

logXi
(10)
Table 3 | Different kernel functions of GPR

Kernel type Function

Squared exponential
k(xi, xjju) ¼ s2

f exp �1
2
(xi � xj)

T (xi � xj)
s2
l

" #

Exponential
k(xi, xjju) ¼ s2

f exp � r
sl

� �

Matern 3/2
k(xi, xjju) ¼ s2

f 1þ
ffiffiffi
3

p
r

sl

 !
exp �

ffiffiffi
3

p
r

sl

 !

Matern 5/2
k(xi, xjju) ¼ s2

f 1þ
ffiffiffi
5

p
r

sl
þ 5r2

3s2
l

 !
exp �

ffiffiffi
5

p
r

sl

 !

Rational quadratic
k(xi, xjju) ¼ s2

f 1þ r2

2as2
l

 !�a

ARD squared exponential
k(xi, xjju) ¼ s2

f exp �1
2

Xd
m¼1

(xim � xjm)
2

s2
m

" #

ARD exponential k(xi, xjju) ¼ s2
f exp(�R)

ARD Matern 3/2 k(xi, xjju) ¼ s2
f 1þ ffiffiffi

3
p

R
� �

exp � ffiffiffi
3

p
R

� �

ARD Matern 5/2 k(xi, xjju) ¼ s2
f 1þ ffiffiffi

5
p

Rþ 5
3
R2

� �
exp � ffiffiffi

5
p

R
� �

ARD rational quadratic
k(xi, xjju) ¼ s2

f 1þ 1
2a

Xd
m¼1

(xim � xjm)
2

s2
m

 !�a

://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf



Journal of Hydroinformatics Vol 23 No 6, 1188

Downloaded fr
by guest
on 03 April 202
where N stands for the number of data, Xi is the observed value, Yi is the predicted value, �X and �Y represent the mean values

of the observed and predicted values. Since using non-normalized data would decrease the speed and accuracy of AI
approaches and may lead to zero and minus predictions, the following equation was used to normalize input and output vari-
ables by scaling between 0.1 and 1.

xnorm ¼ 0:1þ 0:9� xi � ximin

ximax � ximin

� �
(11)

For the purpose of predicting Manning’s coefficient, due to training and testing goals, data were divided into training set

(75% of total data) and testing set (remaining 25% of data). As a result, there are 630 measurements for training and 210
measurements for testing.
RESULTS AND DISCUSSION

In order to implement the employed ANN, SVM, and GPR for prediction of Manning’s roughness coefficient, the most sig-
nificant step is to find the best architecture of the model, which can properly simulate the relationship between input and
output variables. It is assumed that the roughness coefficient (n) as a dependent variable can be described through a function

of dimensionless variables as follows (Roushangar et al. 2017, 2018a):

n ¼ f Fr, Re,
y
b
,

R
D50

,
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(s� 1)D50

p ,
Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(s� 1)D3
50

q
0
B@

1
CA (12)

where Fr is the Froude number, Re is Reynold’s number of water flow, y is flow depth, b is width of channel, R is hydraulic
radius, D50 is mean grain diameter, and the last two parameters of Equation (12) are included as independent variables since

they include most of the dimensional sediment and flow variables (except viscosity). To quantitatively assess the influence of
each parameter, different combinations of the aforementioned parameters were considered and based on trial and error pro-
cess, the models of Table 4 were suggested for modeling the Manning’s roughness coefficient of alluvial channels with ripple

bedforms.
The performances of the employed ANN, SVM, andGPRmethods were compared with each other and the associated results

appear in Table 5 representing the evaluation indices of the applied models. In the first step, it was attempted to express the

Manning’s coefficient modeling process through variables based on hydraulic characteristics. To achieve this goal, the
employed ML approaches were fed with double input variables (models I and II). According to the results of Table 5, it can
be seen that introducing the Froude numberwith depth towidth ratio yielded better prediction accuracy. Considering the results
Table 4 | Applied input combination for prediction of Manning’s n

Models Input parameters

(I) Fr,
y
B

(II) Re,
y
B

(III) Fr,
y
B
,

R
D50

(IV) Re,
y
B
,

R
D50

(V) Re,
y
B
,

R
D50

,
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(s� 1)D50

p
(VI) Re,

y
B
,

R
D50

,
Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g(s� 1)D3
50

q
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Table 5 | Statistical comparison of the obtained results of employed methods (the best results are italicized and in bold)

Models

Performance criteria for test series

Train Test

R NSE RMSE e R NSE RMSE e

ANN (I) 0.742 0.551 0.067 3.63 0.747 0.548 0.073 �0.541

ANN (II) 0.525 0.275 0.085 6.87 0.521 0.259 0.093 2.98

ANN (III) 0.778 0.605 0.063 3.90 0.730 0.481 0.078 �0.113

ANN (IV) 0.789 0.623 0.061 2.84 0.793 0.617 0.067 0.249

ANN (V) 0.852 0.726 0.052 2.43 0.854 0.719 0.057 0.586

ANN (VI) 0.817 0.667 0.057 2.19 0.819 0.650 0.064 1.51

SVM (I) 0.661 0.432 0.075 �0.276 0.646 0.360 0.087 �2.52

SVM (II) 0.637 0.404 0.077 3.81 0.614 0.375 0.086 0.935

SVM (III) 0.822 0.675 0.057 1.36 0.801 0.636 0.065 �0.868

SVM (IV) 0.882 0.766 0.048 5.73 0.838 0.687 0.060 0.764

SVM (V) 0.888 0.788 0.046 0.367 0.880 0.775 0.051 0.687

SVM (VI) 0.922 0.850 0.038 1.49 0.877 0.767 0.052 �0.097

GPR (I) 0.661 0.432 0.075 �0.276 0.646 0.360 0.087 �2.52

GPR (II) 0.637 0.404 0.077 3.81 0.614 0.375 0.086 0.935

GPR (III) 0.915 0.807 0.044 4.12 0.826 0.669 0.062 0.262

GPR (IV) 0.988 0.969 0.017 1.84 0.853 0.714 0.058 �0.567

GPR (V) 0.982 0.956 0.021 2.05 0.880 0.769 0.052 0.286

GPR (VI) 0.993 0.983 0.013 1.39 0.863 0.733 0.056 �0.321
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of themodeling process with hydraulic characteristics, ANN confirms its superiority over kernel-based approaches with respect
to statistical indices (R¼ 0.747, NSE¼ 0.548, RMSE¼ 0.073, and e¼�0.541) for the testing part.

It is apparent from the results that the model (V) with four input parameters including Reynolds number (Re), the ratio of
depth to width of channel (y/B), the ratio of the hydraulic radius to median grain diameter (R/D50) and grain Froude number
(V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D50

p
) has the best performance for prediction of roughness coefficient in alluvial channels with ripple bedforms.

The obtained results indicate that the implementation of model (V) as input combination of the SVM method provided very

good outcomes (R¼ 0.880, NSE¼ 0.775, RMSE¼ 0.051, and e¼ 0.687), superior to the other machine learning methods
employed, while ANN generated poor results. According to NSE values, when comparing model (I) and model (II), consider-
ing Re (in model II) increases the model accuracy by approximately 28% (ANN), 8% (SVM), and 6.7% (GPR). It can indicate

the merits of each input combination and sensitivity of employed kernel-based approaches to input parameters. It can be seen

that omitting V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D50

p
and introducing relative discharge (Vy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D3

50

q
) in model (VI) reduces the performance

of ANN by approximately 9%. On the other hand, considering the obtained results of GPR and SVM approaches, models (V)
and (VI) show similar potential, indicating more flexibility and generalization capability of kernel-based approaches in quanti-

fication of Manning’s roughness coefficient. Figure 3 shows the variation of statistical parameters of NSE via the numbers of
neurons in the hidden layer (fed with model (V)). Taking into account the NSE values, significant variability can be seen
throughout the performance of the employed ANN approach. ANN performance ranges between NSE¼ 0.330 (for 1
neuron) and NSE¼ 0.719 (for 21 neurons). It is observed that the best network structure is 4-21-1. Furthermore, it can be

seen that for solving the objective problem with employed datasets, the ANN model with numbers of neurons in the
hidden layer less than 21 leads to over-fitting.

Based on the value of the logarithmic transformation variable, GPR presents relatively better prediction accuracy (e¼ 286)

in comparison to SVM (e¼ 0.687). With the aid of standard gradient descent optimizer, the best values of related parameters
for the different kernels were achieved as the length scale parameter (sl) ranging from 0.0240 to 0.1320 and the signal stan-
dard deviation (sf) ranging from 0.0664 to 0.1149.
://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf



Figure 3 | Variation of NSE vs. numbers of neurons for model (V).
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Figure 4 depicts the scatter plots between the observed data and model results. The results of previous works (Roushangar
et al. 2017; 2018a; Roushangar and Shahnazi 2020 and Saghebian et al. 2020) show that the best results for dune-bed channel
studies for prediction of Manning’s roughness coefficient were obtained from GEP (R¼ 0.866, NSE¼ 0.742, and RMSE¼
0.0035), least squares SVM (R¼ 0.839, NSE¼ 0.705, and RMSE¼ 0.0036), and GPR (R¼ 0.784 and NSE¼ 0.715), respect-
ively. Hence, it seems that hydraulic conditions governing ripple bedforms provide better predictive ability for machine
learning approaches in comparison to channels with dune bedforms.

In order to assess the prediction capability of the Manning’s coefficient under varied hydraulic conditions, different inter-
vals of the Reynolds number were considered based on trial and error. Then, the best input combination (Re, y/b, R/D50, and
V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D50

p
) was rerun for selected data categories. Results of the testing parts are plotted in Figure 5, which shows a

clear ascending trend in performance of kernel-based approaches. These findings indicate that the performance of SVM
and GPR approaches with the selected best input combination tends to be more robust with increasing Reynolds number.
Prediction process for Reynolds number greater than 26,000 (which includes 339 data points) gave the most accurate results
with SVM (R¼ 0.941, NSE¼ 0.884, RMSE¼ 0.036, and e¼ 0.326) and GPR (R¼ 0.945, NSE¼ 0.890, RMSE¼ 0.035, and

e¼ 0.928). According to the obtained results, the ANN method showed less stability and presented a poor performance in
predicting the Manning’s coefficient in different intervals of the Reynolds number. In addition, for a Reynolds number greater
than 11,000 (which includes 88% of employed data), SVM demonstrated satisfactory outcomes with R¼ 0.873, NSE¼ 0.761,

RMSE¼ 0.048, and e¼ 0.618.
Since the Froude number is an effective parameter for illustrating the hydraulic properties of rivers, it may be beneficial to

check out the effectiveness of the best input combination for the prediction of Manning’s coefficient in different intervals of

this parameter. In accordance with the obtained results, prediction of Manning’s coefficient with lower Froude number (Fr,
0.25) increases the modeling performance of GPR and ANN by 4.2% and 5.5%, respectively. On the contrary, hydraulic con-
ditions governing the flow with the higher Froude number (Fr. 0.55) decreased the modeling accuracy with R¼ 0.539,

NSE¼ 0.267, and RMSE¼ 0.033 for SVM and R¼ 0.532, NSE¼ 0.279, and RMSE¼ 0.032 for GPR. Generally, it can be
inferred that Manning’s coefficient in channels with ripple bedforms has better prediction capability in flows with lower
Froude number. Results of predicted Manning’s coefficient in different intervals of the Froude number are presented in
Figure 6.

The functionality of the employed ML approaches was investigated in different ranges of the R/D50 as the most influential
parameter in determination of Manning’s coefficient of ripple bedform channels. As shown in Figure 7, variation of the R/D50

from 50 to 400 caused fluctuation in performance of ANN from NSE¼ 0.444 to NSE¼ 0.756, SVM from NSE¼ 0.629 to

NSE¼ 0.806, and GPR from NSE¼ 0.692 to NSE¼ 0.807. Results revealed that the GPR model offered a more consistent
performance with the variation of R/D50 values. Moreover, as can be seen in Figure 7, when the depth is larger compared
with bed material size so that R/D50. 450, the performance of the employed ML approaches decreases significantly.
om http://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf
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Figure 4 | Scatter plots of observed and predicted values of n for the test sets.
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In SVM, model behavior is largely dependent on the RBF kernel parameter (γ), which can lead to under-fitting and over-
fitting in the prediction process (Roushangar & Shahnazi 2019). Figure 8 illustrates the statistical indices via gamma values of

the SVM model (fed with model (V)). From the figure, it can be seen that the best fitting gamma values are obtained when
g � 50. When gamma is small (in our example g � 50), the SVM model tends to memorize all the training data but is capable
of generalizing unseen data: hence, only trained data points can be predicted. Thus, for solving the objective problem with the

employed datasets, SVM model with gamma values less than 50 leads to over-fitting. According to the output, the optimum
value of RBF kernel function was assessed as 300 for model (V). It is worth noting that statistical indices can show different
behavior with variations of gamma value for different input combinations.

Since a well-advised application of kernel-based modeling methods is to find an appropriate kernel function and tune
associated hyper parameters, various kernel functions were used as a core tool of the employed GPR methods. Table 6
://iwa.silverchair.com/jh/article-pdf/23/6/1182/963032/jh0231182.pdf



Figure 5 | Results of predicted Manning’s coefficient in different intervals of Reynolds number.

Figure 6 | Results of predicted Manning’s coefficient in different intervals of the Froude number.

Figure 7 | Results of predicted Manning’s coefficient in different intervals of the relative roughness.
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Figure 8 | Variation of NSE and RMSE vs. gamma values for model (V).
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lists the results of statistical indices of different kernels for model (III) as the best input combination for prediction of the

Manning’s roughness coefficient.
Attending to the NSE values, the trivial variability can be seen throughout the considered kernel functions. GPR perform-

ance ranges between 0.722 (for rational quadratic kernel) and 0.798 (for ARD Matern 3/2 kernel). In addition to exponential

kernel, the constructed GPR structure with squared exponential kernel seems to be robust since their performance in the test
set is encouraging. The comparison demonstrated that the Matern 3/2 Matern 5/2 kernel functions performed equally well.
Moreover, based on the results of Table 6, utilization of automatic relevance determination (ARD) kernels improved the effect

of a good nonlinear interpolation of the employed GPR method and increased the global average accuracy by approximately
3% in terms of NSE values. As mentioned before, the result proved that SVM–RBF had the most success rate values (R¼
0.880, NSE¼ 0.775, and RMSE¼ 0.051). It was followed by polynomial kernel function (R¼ 0.513, NSE¼ 0.108, and RMSE

¼ 0.102) and linear kernel (R¼ 0.271, NSE¼ 0.038, and RMSE¼ 0.106). The results showed that the SVM with sigmoid
kernel function achieved the worst performance for both training and testing phases (R¼ 0.116, NSE¼�0.00056, and RMSE
¼ 0.149).

In the last step, a simple sensitivity analysis of the input parameters on the prediction accuracy of employed ML approaches

for the Manning’s roughness coefficient of channel with ripple bedforms is presented. The selected input combination for the
analysis is model (III), as its prediction accuracy was proved to be the best in the previous sections. In addition, the ANN
model with Levenberg–Marquardt learning algorithm, SVM with RBF kernel, and GPR with exponential kernel have also

been selected for the sensitivity analysis of inputs. The sensitivity analysis was implemented by successively omitting each
input from the model (V). Consequently, the statistical behavior of the eliminated input is reduced in terms of employed cri-
teria such as R and NSE, allowing the prediction models to quantify the effect of excluded input on the prediction targets.

Figure 9 shows the results of the sensitivity analysis. In this figure ΔNSE stands for the values of percent reduction of
NSE pertaining to each excluded parameter.
Table 6 | The statistical indices of GPR method with different kernel functions (model (V))

Kernel types

Performance criteria for test series

R NSE RMSE e

Exponential 0.880 0.769 0.052 0.286

Squared exponential 0.887 0.776 0.051 0.896

Rational quadratic 0.851 0.722 0.057 �0.123

Matern 3/2 0.888 0.782 0.050 0.704

Matern 5/2 0.888 0.781 0.050 0.796

ARD exponential 0.893 0.795 0.049 0.189

ARD squared exponential 0.872 0.759 0.053 0.774

ARD rational quadratic 0.870 0.754 0.054 �0.397

ARD Matern 3/2 0.895 0.798 0.048 0.695

ARD Matern 5/2 0.889 0.788 0.050 0.834
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Figure 9 | The results of sensitivity analysis.
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In view of the analysis results, depicted in Figure 9, it can be deduced that R/D50 is the most sensitive input parameter and
plays a significant role in the prediction process. This conclusion is reached using ANN, GPR, and SVM methods with the
highest ΔNSE values (15.3%, 21.7%, and 18.1%, respectively). The Reynolds number is the second most effective parameter

on the Manning’s coefficient of ripple bedforms. With its elimination ΔNSE increased to 12.5%. In the case of SVM, given the
ΔNSE measure, the two parameters of y/B and Re had a similar effect on prediction accuracy, while the parameter y/B has
the least effect on prediction accuracy of ANN. It can be observed that different ML approaches use different degrees of input

parameter features for appropriate modeling of the relationship between input and output parameters. It can be seen that, in
the case of the ANN method, the parameter y/b had the least impact on the modeling process, but, on the other hand, this
parameter was the second most effective parameter on the modeling accuracy of the employed SVM method.

CONCLUSIONS

Although there have been some useful steps towards the application of ML approaches in determining the characteristics of
dune bedforms, the effectiveness of the aforementioned approaches for modeling flow resistance in alluvial channels with

ripple bedforms remains elusive. In this regard, three ML approaches, namely, GPR, ANN, and SVM, were employed in
this study for the Manning’s coefficient prediction. An extensive dataset consisting of 840 experimental samples from 24
sources was used in order to interpret their embodied knowledge by employed techniques. Six input combinations were

tested, based on flow and sediment characteristics. All the variables were used in non-dimensional form in order to ensure
dimensional consistency between inputs and outputs. Regarding the results, the model (V) with parameters Re, y/b, R/
D50, and V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(s� 1)D50

p
was the most accurate model. SVM yielded the best results in all the employed statistical indices

(R¼ 0.880, NSE¼ 0.775, RMSE¼ 0.051, and e¼ 0.687). Moreover, the proper utilization of ML techniques in different inter-

vals of the Reynolds number and relative roughness dictates more stability and generalization capability of GPR in predicting
the Manning’s coefficient under varied hydraulic conditions. It was deduced that the prediction of the Manning’s coefficient
for Reynolds values of greater than 26,000 was more precise than those with lower Reynolds values. In addition, the obtained

results demonstrated that complicated hydraulic conditions governing channel systems caused a considerable decrease in the
performance of the employed ML approaches. However, it should be noted that the employed GPR, SVM, and ANN are data-
driven models and the ML-based models are data sensitive, so further studies using data ranges beyond this study and field

data should be conducted in order to prove the merits of the proposed models to estimate roughness coefficient of ripple bed-
forms in real flow conditions.
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