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Deterministic and probabilistic evaluation of raw and

post-processing monthly precipitation forecasts: a case

study of China

Yujie Li, Bin Xu, Dong Wang, QJ Wang, Xiongwei Zheng, Jiliang Xu,

Fen Zhou, Huaping Huang and Yueping Xu
ABSTRACT
Monthly Precipitation Forecasts (MPF) play a critical role in drought monitoring, hydrological

forecasting and water resources management. In this study, we applied two advanced Machine

Learning Models (MLM) and latest General Circulation Models (GCM) to generate deterministic MPFs

with a resolution of 0.5� across China. Then the Bayesian Joint Probability (BJP) modeling approach is

employed to calibrate and generate corresponding ensemble MPFs. Raw and post-processing MPFs

were put against gridded observations over the period of 1981–2015. The results indicated that: (1)

for deterministic evaluation, the forecasting performance of MLMs was more inclined to generate

random forecasts around the mean value, while the GCMs could reflect the increasing or decreasing

trend of precipitation to some degree; (2) for probabilistic evaluation, the four BJP calibrated

ensemble MPFs were unbiased and reliable. Compared to climatology, reliability and sharpness were

all significantly improved. However, in terms of overall accuracy metric, the ensemble MPFs

generated from MLMs were similar to climatology. In contrast, the ensemble MPFs generated from

GCMs achieved better forecasting skill and were not dependent on forecasting regions and months.

Moreover, the post-processing method is necessary to achieve not only bias-free but also reliable as

well as skillful ensemble MPFs.

Key words | Bayesian joint probability, general circulation model, machine learning model, monthly

precipitation forecast, post-processing
HIGHLIGHTS

• Two advanced Machine Learning Models are employed to generate monthly precipitation

forecasts with a resolution of 0.5 degree.

• The latest seasonal forecasts of ECMWF are evaluated with the same forecasting grid cells and

lead time.

• The BJP modeling approach is used to calibrate above four raw forecasts.

• A comprehensive comparison is achieved for the raw and post-processing forecasts.
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INTRODUCTION
Monthly Precipitation Forecasts (MPF) play a critical role in

drought monitoring, hydrological forecasting and water

resources management (Schepen et al. ; Yuan &

Wood ; Wang et al. ). With the intensification of cli-

mate change in the low and middle latitudes of the Northern

Hemisphere, the frequency of extreme rainfall and extreme

drought in China is continuously increasing, which further

enhances the requirements for accurate and reliable MPF

(Peng et al. b; Schepen et al. ; Wang et al. a).

Theoretically, recent methods to generate MPF can be

broadly divided into two main approaches: Machine Learn-

ing Model (MLM) and General Circulation Model (GCM)

(Yuan et al. ; Zhao et al. ; Shen ).

For the first approach, MLM implements the MPF by

exploring the relationship between past precipitation and cli-

mate indices (Bazile et al. ). Operationally, MLM mainly

consists of two components, climate predictors and a

regression algorithm (Peng et al. a). Here, climate predic-

tors mean a number of large-scale climate indices, such as sea

surface temperature, oscillation index, etc. In order to facili-

tate the research, the China Meteorological Administration

(CMA) has established a climate predictors dataset including

130 types of climate indices (referred to hereafter as CI, see

Appendix) and has been widely used to drive the regression

algorithm (He et al. ). The regression algorithm is essen-

tially a black box system and is capable of estimating the MPF

without fully understanding the effects of climate change and

human activities on the precipitation-streamflow-evaporation

circle in a certain catchment. Although the regression algor-

ithm contains a large number of different mathematical

forms, it can still be roughly divided into the following cat-

egories (applied in the hydrological community): (1) Linear

regression with regularization, such as Lasso (Jeon et al.

), Ridge (Jeong et al. ), and Elastic Network (Park

& Mazer ); (2) Support Vector Regression with different

kernel functions (Chen et al. ; Liang et al. ); (3) Deep

Learning, which includes but is not limited to Convolutional

Neural Network (Qiu et al. ), Long Short-Term Memory

(Zhang et al. ), and Deep Belief Network (Bai et al. );

(4) Bagging strategy, which is famous for Random Forest

(Wang et al. ); (5) Boosting strategy, in the forms of
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
Adaptive Boosting (Liu et al. ), Gradient Boosting

Decision Tree (Ma et al. ), and eXtreme Gradient Boost-

ing (Fan et al. ). Among the above regression algorithms,

the Boosting strategy is greatly developed and widely used in

MPF due to the characteristics of solid mathematical theory,

low computational cost, and easy implementation.

For the second approach, GCM as a category of climate

models can directly generate precipitation forecasts with

different lead times. GCM generally consists of numerous

and complicated atmosphere, ocean, land components and

corresponding dynamic exchange interfaces (Street ;

Zhao et al. ). With the constant improvements of model

configuration (e.g. structure and resolution), model initializa-

tion (e.g. operational analysis system), and ensemble

generation (e.g. initial condition perturbations and stochastic

perturbations), the GCM approach has become the main tool

to implement MPF by most authoritative meteorological

research centers (Molteni et al. ; Yuan et al. ; Schepen

et al. ; Johnson et al. ), and has shown advantages in

extending the lead time, improving the resolution, and quan-

tifying the uncertainty. For instance, considering the

interactions between the atmosphere and ocean allows

GCM to simulate long-term phenomena such as phases of

the El Niño–Southern Oscillation cycle which is a significant

large-scale climate predictor deeply affecting the precipitation

in the middle latitude of the Northern Hemisphere (Cao et al.

). Moreover, National Centers for Environmental Predic-

tion (NCEP) of USA has transitioned to operationally use the

Climate Forecast System version 2 (CFSv2) since 2011, to

provide real-time forecasts with 24 ensemble members, maxi-

mum lead time of nine months, and resolution of 1� (Saha

et al. ; Liu et al. ). The European Centre for

Medium-Range Weather Forecasts (ECMWF) also upgraded

the Seasonal Forecast System 5 (SEAS5) in 2017 to replace

its predecessor System 4 (SEAS4) which had been oper-

ational since 2011 (Johnson et al. ).

Nonetheless, both MLM and GCM have their own

shortcomings that cannot be ignored in practical appli-

cation. In the matter of MLM, one of the most obvious

drawbacks is that the MPF generated is always a determinis-

tic forecast (i.e. single-valued forecast), which is generally
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considered to be outdated compared with the probabilistic

forecast (i.e. ensemble forecast) especially in the sub-seaso-

nal (1–3 months) scale (Bennett et al. ; Li et al. ).

Duan et al. () concluded that the traditional determinis-

tic MPF is inadequate to meet different needs of emergency

and water resources managers and that the emerging ensem-

ble forecasting approach is the way forward. One immediate

way to obtain ensemble forecasts is to input different scen-

arios of climate predictors or employ different regression

algorithms. However, for a suitable combination of climate

predictors and regression algorithms, the forecasts usually

show a small variation. As for GCM, although it produces

multi-member ensemble forecasts, its incomplete system pat-

terns and unsuitable modeling parametrizations always lead

to systematic bias and cannot be used directly by the end-

users (Li et al. ; Shen ).

Therefore, in response to the above disadvantages, the

post-processing method becomes a necessary step not only

to generate an ensemble forecast but also to quantify and

reduce the uncertainty. Moreover, the objectives of the

post-processing method also contain: (1) correct bias; (2) pre-

serve the raw predictive skills; (3) ensure the ensemble

members have a reliable time-space relationship (Clark

et al. ; Li et al. ). Recently, a Bayesian Joint Prob-

ability modeling approach (referred to hereafter as BJP),

developed by Wang et al. (), as a conditional distri-

bution-based statistical post-processing method, has been

successfully applied to calibrate the MPF from GCM (Peng

et al. a; Bennett et al. ; Zhao et al. a). In addition,

BJP also has the ability to generate ensemble forecasts based

on certain deterministic MPF, which provides an available

method to overcome the shortcomings from the MLMs

(Zhao et al. ), and also supports a worthwhile way to

compare two MPFs from different sources within the frame-

work of both deterministic and probabilistic forecasting.

In summary, the specific objectives this study aims to

realize are as follows: (1) use the climate predictors from

CI and two advanced Boosting models of MLMs (namely

XGB and LGB) to generate raw MPFs with the resolution

of 0.5� (3824 grid cells) covering the majority of the Chinese

mainland over the period of 1981–2015; (2) assess the pre-

diction performance of two GCMs from ECMWF (namely

SEAS5 and SEAS4) by ensemble means and compare with

the above two MLMs in terms of bias, accuracy, and
om http://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
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correlation; (3) calibrate the above four raw deterministic

MPFs by BJP modeling approach to generate corresponding

probabilistic forecasts, and evaluate the four post-processing

ensemble MPFs in terms of bias, accuracy, reliability, and

sharpness. The paper is organized as follows: the next

describes three categories of the dataset (observation, CI,

and GCM forecasts) followed by a section providing a

brief overview of XGB, LGB, BJP models as well as evalu-

ation measures and metrics. This is followed by the results,

discussion and conclusions, respectively.
DATASET

Gridded monthly precipitation observation

The observed precipitation is provided by the CMA, with a

resolution of 0.5�, a total of 3824 grid cells, and the period

of 1981–2015, covering the majority of the Chinese main-

land. The original data is daily and comes from 2472

national meteorological stations that have been uniformly

distributed throughout China since 1961. The Thin Plate

Spline (TPS) spatial interpolation method is employed by

CMA to generate gridded observations from sites and has

been verified to represent a desirable accuracy. The specific

introduction, establishment and assessment can be found

in Zhao et al. (, ). Figure 1 shows the monthly

mean precipitation that displays an enormous spatial and

temporal variability. This increases the difficulty of accurate

forecast. Due to the three-steps-distributed feature of

Chinese terrain and altitude, the precipitation generally

decreases from southeast to northwest, with several dis-

tinguishable boundaries. Besides, since China is mainly

characterized by a continental monsoon climate, which

often represents a co-occurrence of rain and hot summer,

the precipitation from April to September is also signifi-

cantly higher than that in other months.

130 types of large-scale climate indices

CI is a continuously improved large-scale climate predic-

tor dataset which has been provided by CMA since

1970. CI contains 88 types of atmospheric circulation

(e.g. Pacific Subtropical High of area/intensity/position



Figure 1 | Monthly mean precipitation (mm) over Chinese mainland during the period 1981–2015.

Figure 2 | The timeline of the lead time of predictand and the lag time of predictors.
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index), 26 types of sea surface temperature (e.g. Niño

anomaly of 1þ 2/3.4), and 16 types of other indices (e.g.

landing typhoon, sunspot), which have demonstrated
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
good adaptability and flexibility as predictors to establish

monthly, seasonal, even yearly forecasts. The specific

description can be found at https://cmdp.ncc-cma.net/

Monitoring/cn_index_130.php. Here, we take the forecast-

ing timeline shown in Figure 2 to illustrate the lead time

(shown as LD) of predictand and the lag time (shown as

LG) of predictors in detail. First, we assume that the lag

periods of CI are 12 months, i.e. when the predictand is the

forecasts in January, the predictor with the longest duration

is in January of the previous year. Then, when we intend to

generate MPF of January and February on any day in January

(usually at the beginning), the corresponding lead times are 0

and 1, respectively. In this study, we focus on the forecast

scenery with LD¼ 1, i.e. LG from 2 to 13 (as shown in the

lower half of Figure 2).

https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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Seasonal forecast system products

ECMWF has been operating the SEAS4 since November 2011

and it was upgraded to the latest version, SEAS5, in November

2017. SEAS5 is a substantially changed and coupled ocean-

atmosphere-land dynamical forecast system. Compared with

the predecessor (i.e. SEAS4), SEAS5 has improvement in the

following main aspects: (1) The atmosphere model is the

ECMWF IFS (Integrated Forecast System) from version 36r4

to 43r1, with a higher resolution from 0.8 to 0.36�; (2) The

ocean model is the NEMO (Nucleus for European Modelling

of the Ocean) from version 3.0 to 3.4, with a higher resolution

from 1 to 0.25� as well as the number of vertical levels from 42

to 75 levels; (3) A sea-ice model named LIM2 has been added;

(4) Wave model resolution has improved from 1 to 0.5�; (5)

The real-time forecasts still comprise 51 ensemble members

but the re-forecasts (also known as hindcasts) members have

increased from 15 to 25. Details of the comparisons can be

found in Johnson et al. (). In this study, since the precipi-

tation resolutions of SEAS4 and SEAS5 are 0.75 and 0.4�

degrees respectively, Bilinear Interpolation, as an extension

of linear interpolation and widely used interpolating function

on a rectilinear 2D grid, is used to process the calculation of

downscaling (for SEAS4) or upscaling (for SEAS5) to coordi-

nate and unify the spatial resolution issue.
METHODOLOGY

To assist the reader through the description of the com-

ponents of this research, a conceptual representation of the

calculation process is shown in Figure 3. First, we obtained

the raw deterministic MPFs from the XGB and LGB

models, as well as obtaining raw ensemble GCMs from

SEAS4 and SEAS5. Then a deterministic evaluation was

applied to analyse the quality of the raw MPFs. Second, the
Figure 3 | The flowchart of the research process.
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BJP model was used to calibrate the raw MPFs which con-

tains both MLMs and GCMs approaches to obtain the

calibrated MPFs. Third, a probabilistic evaluation was

applied to analyse the quality of the calibrated MPFs.
Extreme gradient boosting

Extreme Gradient Boosting (referred to hereafter as XGB) is

presented by Chen & Guestrin () and Chen et al. ()

and is widely used in classification and regression issues as

an enhanced implementation of the Gradient Boosting

Decision Tree (Friedman ). The core idea of XGB is to

combine a large number of weak learners (e.g. classification

and regression tree) into strong learners through continu-

ously fitting residuals. This is obtained by adding

regularization into the loss function that not only minimizes

the computational cost but also prevents over-fitting. The

loss function of XGB can be defined as:

L ¼ P
i
l(yi, ŷi)þ

P
k
Ω(fk)

Ω(f) ¼ γJ þ 1
2
λ ωk k2

(1)

where l is a differentiable convex loss function which

measures the error of observed yi and simulated ŷi, ω is the

fraction of leaf nodes, λ is the regularization parameter, γ is

the minimum loss required to further divide the leaf nodes

and J is the quantity of the leaf nodes. In addition, XGB

adopts the viewpoint of parallel computing in Random

Forest (Breiman ), which obviously improves the calcu-

lation efficiency. The detailed information of the XGB model

can be found in Chen & Guestrin () and Chen et al. ().
Light gradient boosting machine

Light Gradient Boosting Machine (referred to hereafter as

LGB) is a fast, distributed and high-performance framework

based on GBDT (Ke et al. ). Compared with XGB, sev-

eral obvious differences are as follows. First, LGB further

studies the accelerated calculation method based on the his-

togram algorithm. Second, XGB adopts a level-wise growth

strategy, while LGB adopts a more efficient leaf-wise growth

strategy with depth restriction on leaf growth. Third, LGB
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proposes Gradient-based One-Side Sampling (GOSS) so

that the training is accelerated under the condition that

the precision is hardly affected. Fourth, LGB proposes

Exclusive Feature Bundling (EFB) for the optimization of

column sampling. Detailed information of the LGB model

can be found in Ke et al. (). Theoretically, these differ-

ences play an important role in optimizing the

computational performance, but there is no research on

MPF showing that the forecast skills of LGB will be better

or worse than XGB (Ukkonen & Mäkelä ).
Bayesian joint probability post-processing modeling

approach

The BJP post-processing modeling approach is originally

presented to generate ensemble streamflow forecasts

(Wang et al. ; Wang & Robertson ; Robertson

et al. ) and has been successfully applied to post-process

precipitation (Shrestha et al. ; Bennett et al. ) and

other hydrometeorological predictions (Zhao et al. a,

b). The BJP post-processing modeling approach begins

with the predictand y (in this case observed precipitation)

and predictor x (in this case raw MPF), and then the log-

sinh transformation (Wang et al. ) is used to normalize

the variables and homogenize their variances. Mathemat-

ically, the log-sinh transformations are given by:

x̂ ¼ 1
βx

ln [sinh (αx þ βxx)]

ŷ ¼ 1
βy

ln [sinh (αy þ βyy)]
(2)

where x̂ and ŷ are transformed variables of x and y, respect-

ively, and α and β are the transformation parameters. Then,

the transformed variables are assumed to follow a bivariate

normal distribution:

p(x̂, ŷ) ∼ N(μ, Σ) (3)

where μ ¼ μx̂
μŷ

� �
and Σ ¼ σ2

x̂ ρσ x̂σ ŷ

ρσ x̂σ ŷ σ2
ŷ

" #
. μ and σ are the

mean and standard deviation for each predictand and pre-

dictor; ρ is the correlation coefficient. Then the forecast
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
function could be defined as:

p(ŷjx̂) ∼ N μŷ þ ρ
σ ŷ

σ x̂
(x̂� μx̂), (1� ρ2)σ2

ŷ

� �
(4)

From Equation (4) above, it can be concluded that the

BJP model can further estimate the uncertainty of prediction

while correcting the systematic bias. Here we obtain a set

of nine parameters, θ ¼ [αx, βx, μx̂, σ x̂, σy, βy, μŷ, σ ŷ, ρ]. The

posterior distribution function of θ is as follows:

p ¼ (θjyN , yN�1, . . . y1) ∝ P(θ)P(yN , yN�1, . . . y1jθ)
¼ P(θ)

QN
n¼1

p(ynjθ) (5)

where N is the length of training period and

p(yN , yN�1, . . . y1jθ) and p(θ) are likelihood function and

prior distribution of θ, respectively. The Gibbs sampling

based on Markov chain Monte Carlo is the core of BJP to

establish the Bayesian parameters inference and generate

climatological reference distribution (Zhao et al. b).

Detailed information on the BJP model can be found in

Wang et al. () and Wang & Robertson ().
Evaluation measures and metrics

We employ a leave-one-month-out-cross-validation (lomocv)

procedure to evaluate the performance of raw deterministic

MPFs, calibrated deterministic MPFs and calibrated ensem-

ble MPFs. Specifically speaking, when we drive XGB and

LGB models to generate the gridded MPFs, all available

datasets except one month are used to train the parameters

and the prediction for the leave-out month is compared to

the corresponding observation. Since we have 35 years of

observation, the procedure will be repeated 35 times and

the corresponding cross-validated predictions will be

obtained for 12 months. Similarly, lomocv is also used to

infer parameters and generate the ensemble forecast in the

BJP post-processing model.

A detailed assessment usually requires several perform-

ance metrics to analyze different aspects of forecast quality

attributes which normally contain Bias, Accuracy, Corre-

lation, Reliability, Sharpness and Skill.

(1) Bias measures the difference between average forecast

and average observation. Here we use the relative bias



920 Y. Li et al. | Monthly precipitation forecasts of China Journal of Hydroinformatics | 23.4 | 2021

Downloaded fr
by guest
on 20 April 202
(RB) to measure the Bias. The perfect value of RB is 0

and could be defined as:

RB(%) ¼
PT
t¼1

ytfct �
PT
t¼1

ytobs

PT
t¼1

yTobs

× 100 (6)

where yobs is the observation, yfct is the raw deterministic

MPF or the mean of calibrated ensemble MPF, and T is

the length of verification period (in this case 35).

(2) Accuracy measures the average distance between fore-

cast and observation. Here we use the well-known

Continuous Ranked Probability Score (CRPS) for

ensemble MPF (Hersbach ). The perfect value of

CRPS is 0 and can be defined as:

CRPS ¼ 1
T

XT
t¼1

ð
[Ffct(Y

t
fct)�H(Yt

fct)�H(ytfct � ytobs)]
2

dyt

(7)

where Ffct(ytfct) is the cumulative distribution function

(CDF) of the forecasts and H is the Heaviside step func-

tion and is defined as:

H(ytfct � ytobs) ¼
0 ytfct < ytobs
1 ytfct � ytobs

(
(8)

CRPS corresponds to the Mean Absolute Error (MAE)

for deterministic MPF. The perfect value of MAE is 0

and can be defined as:

MAE ¼ 1
T

XT
t¼1

jytfct � ytobsj (9)

(3) Association reflects the linear relationship forecast and

observation. Here we use the Pearson Correlation Coef-

ficient (PCC) which can be expressed as:

PCC ¼
PT
t¼1

(ytfct � �y fct)(y
t
obs � �yobs)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1
(ytfct � �y fct)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

(ytobs � �yobs)
2

s (10)
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(4) Reliability describes how well the forecast agrees with

the observation when a specific forecast is issued and

here a probability integral transform (PIT) histogram is

employed to assess the reliability of ensemble forecasts.

PIT is the CDF of the forecast F fct(ytfct) evaluated at

observation ytobs and is given by:

PITt ¼ Ffct(y
t
obs) (11)

when the ensemble forecast reliably captures the distri-

bution of observation, the observation ytobs can

statistically be regarded as random samples drawn

from Ffct(ytobs). Therefore, the reliability of ensemble

spread is shown by the uniformity of the PIT histogram

(Laio & Tamea ; Duan et al. ). In addition, in

order to compare the reliability with climatology, the

PIT Area is also used (Renard et al. ; Schepen

et al. ) and is defined by:

PIT Area ¼ 2
T

XT
t¼1

PITt
� �

t
T þ 1

����
���� (12)

where PITt
� is the sorted PITt in increasing order. The

PIT Area represents the total deviation of PITt
� from

the corresponding uniform quantile (i.e. the tendency

to deviate from the 1:1 line in PIT diagrams). The PIT

Area ranges from 0 (perfect reliability) to 1 (worst

reliability).

(5) Sharpness describes the concentration of the predicted

distribution and indicates the distribution of the ensem-

ble members. Here the 90% interquartile range (IQR) is

used to evaluate the sharpness (Crochemore et al. )

and can be defined as follows:

IQR ¼ 1
T

XT
t¼1

(Qt(95%)�Qt(5%)) (13)

where Q(95%) and Q(5%) are the 95 and 5% percentiles

of the forecast distribution. The final IQR score is the

average of the whole interquartile range at a certain

period. The narrower the IQR, the sharper the ensemble

forecasts.
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(6) Skill describes the accuracy of a forecast relative to a

reference forecast or benchmark (Duan et al. ).

When the skill score is superior (inferior) to zero, this

means that the forecast is more (less) skillful than the

reference. When it is equal to zero, the forecasts and

the reference have equivalent skill (Crochemore et al.

). Here CRPS Skill Score (CRPSS), PIT Area Skill

Score (PITSS), and IQR Skill Score (IQRSS) are com-

puted for the probabilistic comparison. The three skill

scores can be calculated by:

CRPSS(%) ¼ CRPSref � CRPSfct

CRPSref
× 100

PITSS(%) ¼ PITArearef � PITArea fct

PITArearef
× 100

IQRSS(%) ¼ IQRref � IQRfct

IQRref
× 100

(14)

Here we refer to climatology as the reference and the cli-

matology is calculated by the BJP method (Wang et al.

b).
RESULTS

Quality of raw deterministic MPFs

Bias in raw deterministic MPFs is analyzed by RB using

Figure 4. Each row corresponds to a month and each

column corresponds to a model. In general, the MLMs

overall outperform the GCMs, representing a smaller RB

throughout 12 months. From February to October,

almost half of the grid cells are slightly underestimated

(shown in light red), and others are slightly overestimated

(show in light blue). From November to January, some

unideal dark blue pixels occur in the middle and north-

west, but with no obvious aggregation. RB in XGB is the

smallest overall, varying from –20 to 20%, and is distribu-

ted evenly throughout the mainland, slightly better than

LGB. In contrast to MLMs, the MPFs from SEAS4 and

SEAS5 are badly overestimated (show dark blue) in

most month and grid cells, especially during January–

April. For April–November, both of them show positive

and negative alternation in other regions except for the
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
negative RB of less than –40% in the northwest region.

Meanwhile, the distribution of RB always shows an

obvious aggregation. These systematic errors are most

likely caused by the incomplete simplification of hydro-

logical cycle mechanisms and unsuitable modeling

parametrizations.

The accuracy of raw deterministic MPFs is analyzed

by MAE in Figure 5, which shows a clear dividing line

conforming to the geographic elevation. The distribution

of MAE exhibits certain common temporal and spatial

distribution characteristics of MAE among four models,

particularly for November–April. The MAE values of these

months are mainly distributed in three intervals. Most of

them vary from 0 to 10 in the northwest; some are 10–30

in the middle, and the rest are less than 50 in the southeast.

In terms of May–October, the MAE values are worse than

other months, while the worst results are detected in July

and August. Some MAE values even exceed 70, which

means an unacceptable accuracy. It can be found that the

MAE generally increases from northwest to southeast,

matching the distribution of precipitation. Meanwhile, it is

also difficult to tell the best model in terms of MAE. The per-

formance of accuracy seems to depend on the magnitude of

precipitation rather than the difference in models, which

confirms the results in Liu et al. () and Tian et al. ().

As mentioned above, the PCC between the raw MPF

and the observation is a key parameter used by BJP in the

calibration process. For this reason, Figure 6 represents

the PCC of four models and only contains the significantly

positive correlations at a 90% confidence level (according

to a t-test). Contrary to the results in Figures 4 and 5,

the GCMs overall outperform the MLMs. The number of

PCC grid cells satisfying the above conditions in XGB and

LGB are sparse over 12 months and far lower than those

in SEAS4 and SEAS5. In addition, the PCC values in

MLMs are also detected to be much smaller than in

GCMs and mainly vary between 0.3 and 0.6. In contrast,

PCC values of SEAS4 and SEAS5 basically cover the main-

land except for some northwest grid cells, mainly varying

between 0.4 and 0.9. It can be concluded that although

MLMs display better performance in term of bias and accu-

racy, the MPFs tend to be a phenomenon of random

prediction due to poor PCC values. Meanwhile, although

the RB and MAE of GCM are not ideal, both SEAS4 and



Figure 4 | RB (%) between four raw deterministic MPFs (namely XGB, LGB, the ensemble means of SEAS4 and SEAS5) and observations throughout 12 months for the period of 1981–2015.

Blue areas represent a tendency of overpredicting precipitation, and red areas represent a tendency of underpredicting precipitation.
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Figure 5 | MAE between four raw deterministic MPFs (namely XGB, LGB, the ensemble means of SEAS4 and SEAS5) and observations throughout 12 months for the period of 1981–2015.

The best value of MAE is zero. The larger the values, the worse the forecast performance.
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Figure 6 | PCC between four raw deterministic MPFs (namely XGB, LGB, the ensemble means of SEAS4 and SEAS5) and observations throughout 12 months for the period of 1981–2015.

Only significant correlations (90% confidence level, according to a t-test) are shown. The best value of PCC is 1. The larger the values, the better the forecast performance.
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SEAS5 can more effectively reflect the increasing or

decreasing trend of precipitation than XGB and LGB.

Quality of BJP calibrated ensemble MPFs

As introduced above, we employed the BJP post-processing

modeling approach to calibrate the four raw deterministic

MPFs, which aims to correct bias and generate correspond-

ing 1000-member ensemble MPFs. Figure 7 illustrates the

RB between four calibrated ensemble MPFs and obser-

vation. As expected, in contrast to the results of Figure 4,

post-processed MPFs are less biased than raw MPFs. The

BJP method is effective at reducing RB of MLM-based and

GCM-based MPFs. However, for November and December

on the Qinghai-Tibet Plateau, the MPFs suffer negative RB,

the magnitude of which varies between –30 and 0%. This is

mostly caused by inaccurate precipitation observation or

extreme precipitation events. Due to the sophisticated

underlying surface environment, the error of precipitation

observation may be magnified in dry months. For the south-

east coast with dense observation sites, the RB for calibrated

MPFs ranges from approximately 0 to 10%. This suggests

that BJP is a useful method to generate bias-free ensemble

MPFs. Meanwhile, it is also evident that post-processing is

a necessary step before using the MLM-based and GCM-

based MPFs in hydrological forecasting.

The accuracy of calibrated ensemble MPFs is analyzed

by CRPSS using Figure 8. The climatology as the reference

is also calculated by the BJP method (Wang et al. b).

Here we consider that white pixels (CRPSS between �5

and 5%) show neutrally (little or no) skillful forecasts

(Zhao et al. ). Blue pixels (>5%) show positively skillful

forecasts and red pixels (<� 5%) show negatively skillful

forecasts. Overall, there is no great difference between

XGB and LGB, with approximately 90% values of CRPSS

located in white pixels throughout all months. The other

10% values mainly vary from 5 to 15, scattering sporadically

on all the grid cells. For the SEAS4 and SEAS5, except that

about 40% values of CRPSS are similar with climatology,

the other 60% values tend to be positive, varying between

5 and 35, sometimes more than 35. Although there are sev-

eral red pixels in the southwest and northwest of China, the

proportion is very small. Moreover, the predictive perform-

ance of summer (June–August) is not as good as the other
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
three seasons. Basically, SEAS5 shows a slightly better

performance than SEAS4 and represents the most optimal

forecasting skill in four models.

Reliability is analyzed in terms of PIT histograms

(Figure 9) and PITSS plots (Figure 10). The PIT histograms

visualize the distribution of PIT values to reflect the property

of reliability. As shown in Figure 9, the PIT histograms exhi-

bit inconsiderable variability between different models and

different months. The red dotted line means an average

level. Since there are 3824 grid cells and the period of

loocv is 35 years, the average level for each month in this

study is 3824 × 35/10¼ 13384. The values of the frequency

corresponding to 10 bins in the x-axis float around the red

line (i.e. the PIT histograms concentrate uniform probability

density in all ten bins), which presents good reliability.

Figure 10 clearly illustrates that four calibrated ensemble

MPFs are more reliable than climatology, with the emer-

gence of a large proportion of blue pixels. It should be

noted that in terms of reliability, the predictive performance

is too close to distinguish.

Sharpness is analyzed using Figure 11. It should be

noted that without reliability, a sharp forecast is misleading

(Crochemore et al. ). Four calibrated ensemble MPFs

are overall sharper than climatology in the large majority

of grid cells. Some exceptions appear for December, and

especially in the edge of the Qinghai-Tibet Plateau of west

China. The IQRSS of SEAS4 and SEAS5 is much better

than that of XGB and LGB, confirmed by a double proof

based on a larger area and darker blue. Moreover, the

obvious aggregation pixels, especially in the southeast

coastal area, reflect the remarkable improvement of cali-

brated ensemble MPFs on becoming sharper and gaining

skill.
DISCUSSION

As illustrated in the introduction section, massive MLMs

have been widely implemented in the MPFs, and the predic-

tion performance of these deterministic forecasts has been

verified around the world. However, most previous studies

always focus on small catchments, with not many precipi-

tation stations. This kind of small-scale evaluation is

unconvincing to some extent. As a key process of applying



Figure 7 | RB (%) between ensemble mean of four calibrated ensemble MPFs (namely XGB, LGB, SEAS4, and SEAS5) and observations throughout 12 months for the period of 1981–2015.

Blue areas represent a tendency of overpredicting precipitation, and red areas represent a tendency of underpredicting precipitation.
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Figure 8 | CRPSS between four calibrated ensemble MPFs (namely XGB, LGB, SEAS4, and SEAS5) and reference (namely climatology) throughout 12 months for the period of 1981–2015.

Blue pixels (>5%) show positively skillful forecasts; white pixels (�5 to 5%) show neutrally (little or no) skillful forecasts; red pixels (<� 5%) show negatively skillful forecasts.
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Figure 9 | PIT histograms of four BJP calibrated ensemble MPFs (namely XGB, LGB, SEAS4, and SEAS5) throughout 12 months for the period of 1981–2015. Red dotted line means an

average level (in this case 13,384).
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Figure 10 | PITSS between four calibrated ensemble MPFs (namely XGB, LGB, SEAS4, and SEAS5) and reference (namely climatology) throughout 12 months for the period of 1981–2015.

Blue pixels (>5%) show positively skillful forecasts; white pixels (�5 to 5%) show neutrally (little or no) skillful forecasts; red pixels (<� 5%) show negatively skillful forecasts.
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Figure 11 | IQRSS between four calibrated ensemble MPFs (namely XGB, LGB, SEAS4, and SEAS5) and reference (namely climatology) throughout 12 months for the period of 1981–2015.

Blue pixels (>5%) show positively skillful forecasts; white pixels (�5 to 5%) show neutrally (little or no) skillful forecasts; red pixels (<� 5%) show negatively skillful forecasts.
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MLMs to MPFs, hyperparameter optimization may be the

most important factor affecting the forecasting skill. We

have reason to believe that by excessively optimizing the

hyperparameters, the small-scale predictions will be in

good agreement with the observations.

Therefore, in order to comprehensively evaluate the

deterministic forecasting performance, we have generated

gridded MPFs with a resolution of 0.5� (3824 grid cells),

almost spanning the entire Chinese mainland. In this case,

it is almost impossible to repeatedly and accurately optimize

the hyperparameters of each grid cell (although the continu-

ous development of the Automatic Machine Learning

method provides the possibility for the subsequent research

of gridded hyperparameter optimization, it has not yet been

applied to the hydrological community). The application of

the same hyperparameters to all grid cells provides certain

evidence for the general adaptation and performance of

forecasting. Meanwhile, XGB and LGB have been proven

to have advanced structures and weak sensitivity to hyper-

parameters (Chen et al. ; Chen & Guestrin ; Ke

et al. ), which is also the basis of this prediction attempt.

Moreover, due to the variety of large-scale climate predic-

tors, as well as the complexity of the relationship between

the precipitation and predictors, the main purpose of this

study is to analyze the difference of MPFs between MLMs

and GCMs in the above assumptions, rather than to explore

what are the significant predictors that affect the precipi-

tation in a specific region.

What calls for special attention is the evaluation of the

second part. The forecasting skill of raw ensemble MPFs

from SEAS4 and SEAS5 are much worse than climatology

(not shown), this is the reason why we chose to compare cali-

brated GCMs with climatology instead of raw ensemble

GCMs. Meanwhile, although only the ensemble mean

values are used as the input of the calibration process, the

BJP modeling approach has been proven to be a viable

option for producing ensemble time-series MPFs (Hawthorne

et al. ; Peng et al. b; Schepen & Wang ; Schepen

et al. ; Khan et al. ; Shrestha et al. ).

In addition, Molteni et al. () and Johnson et al. ()

have shown that the forecasting performance of SEAS4 and

SEAS5 decreased (e.g. in terms of CRPSS) with the lead

time increasing from 0 to one month. However, the 130

types of climate predictors provided by CMA have a
://iwa.silverchair.com/jh/article-pdf/23/4/914/910174/jh0230914.pdf
one-month lag time, i.e. 0-month lead time forecasts

cannot be generated by MLMs in this study (as shown in

the upper half of Figure 2). For this reason, this study focuses

on the comparison with the one-month lead time. In the

future, we will continue the research to evaluate the fore-

casting performance between MLMs and GCMs with

different lead times.
CONCLUSIONS

In this study, 130 types of large-scale climate predictors and

two advanced MLMs (namely XGB and LGB) were applied

to generate deterministic MPFs with a resolution of 0.5�

across China. Meanwhile, the latest ECMWF’s GCMs

(namely Seasonal Forecast System 5 and its predecessor

System 4) were used to compare with the above two

MLMs for the same lead time and grid cells. Moreover,

the BJP post-processing modeling approach was employed

to calibrate the raw deterministic MPFs and to generate

the corresponding ensemble MPFs. Raw and post-proces-

sing MPFs were put against gridded observations with

different precipitation regimes for all months over the

period of 1981–2015.

Deterministic evaluation of raw MPFs was evaluated by

RB, MAE, and PCC in terms of bias, accuracy, and corre-

lation. Compared with GCMs, the results indicated that

the MLMs represented obviously smaller RB (Figure 4),

similar MAE (Figure 5) as well as poorer PCC values

(Figure 6). It can be concluded that the forecasting perform-

ance of MLMs was more inclined to generate random

forecasts around the mean value. In contrast, due to the sig-

nificant PCC values, the GCMs could reflect the increasing

or decreasing trend of precipitation to some degree. How-

ever, the forecasting performance of raw deterministic

MPFs was strongly dependent on forecasting regions and

months.

Probabilistic evaluation of post-processing MPFs was

evaluated by RB, CRPSS, PITSS, and IQRSS in terms of

bias, accuracy, reliability, and sharpness. Since the BJP mod-

eling approach had been proven to be effective in calibrating

raw forecasts, we directly compared the post-processing

ensemble MPFs with climatology that was also generated

by BJP. The results indicated that the four post-processing
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ensemble MPFs were unbiased (Figure 7) and reliable

(Figure 9). Meanwhile, in contrast to climatology, reliability

(Figure 10) and sharpness (Figure 11) were all significantly

improved. The results of the overall accuracy metric

(Figure 8) showed that the ensemble MPFs generated from

MLMs were similar to climatology, with no obvious differ-

ence. In contrast, the ensemble MPFs generated from

GCMs achieved better forecasting skills and were not

dependent on forecasting regions and months.
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