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Uncertainty analysis of monthly river flow modeling in

consecutive hydrometric stations using integrated

data-driven models

Karim Amininia and Seyed Mahdi Saghebian
ABSTRACT
The flow assessment in a river is of vital interest in hydraulic engineering for flood warning and

evacuation measures. To operate water structures more efficiently, models that forecast river

discharge are desired to be of high precision and certain degree of accuracy. Therefore, in this study,

two artificial intelligence models, namely kernel extreme learning machine (KELM) and multivariate

adaptive regression splines (MARS), were applied for the monthly river flow (MRF) modeling. For this

aim, Mississippi river with three consecutive hydrometric stations was selected as case study. Using

the previous MRF values during the period of 1950–2019, several models were developed and tested

under two scenarios (i.e. modeling based on station’s own data or previous station’s data). Wavelet

transform (WT) and ensemble empirical mode decomposition (EEMD) as data processing approaches

were used for enhancing modeling capability. Obtained results indicated that the integrated models

resulted in more accurate outcomes. Data processing enhanced the model’s capability up to 25%.

It was observed that the previous station’s data could be applied successfully for MRF modeling

when the station’s own data were not available. The best-applied model dependability was assessed

via uncertainty analysis, and an allowable degree of uncertainty was found in MRF modeling.

Key words | consecutive stations, EMD, KELM, pre-processing, river discharge
HIGHLIGHTS

• Kernel extreme learning machine (KELM) and multivariate adaptive regression splines (MARS)

approaches were used for MRF modeling in three successive hydrometric stations.

• The WT and EEMD as pre-processing methods were used for improving the model’s efficiency.

• Monte Carlo uncertainty analysis was applied to investigate the dependability of the applied

models.
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GRAPHICAL ABSTRACT
INTRODUCTION
River flow is one of the most important issues in river

engineering. Accurate estimation and prediction of river

flow is essential to various activities in hydrological and

water resources management, such as monitoring pollutant

load, calculating sediment transport, controlling flood

and drought, determining environmental flows, power

generation, reservoir operation and agricultural irrigation,

as well as water supply to industry and households. Suffi-

cient flow in a river not only guarantees socioeconomic

development but also maintains a healthy river system.

River flows, like many other natural processes, are governed

by dynamical and nonlinear physical mechanisms or sys-

tems which have various different independent variables,

primarily precipitation, temperature, evaporation, water

use for socioeconomic growth, river channel seepage, as

well as forest-vegetation coverage and soil characteristics

in the catchment. Therefore, reliable river discharge

prediction is particularly important for hydrological oper-

ations and hydro-environmental management. A variety of

methods have been developed to predict the flow of a

river, including time series methods (linear and nonlinear),
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conceptual models, physical models, artificial intelligence

(AI) models, and models integrating two or more of these

approaches (Garg & Jothiprakash ). Land use, land

cover, topography, soil, precipitation, intensity of rainfall,

and other hydrometeorological parameters are required for

the conventional models (Talei et al. ; Yaseen et al.

). The availability of such dataset for all locations is

very difficult. In such a case, the missing parameters are nor-

mally assumed for that location or basin, which influences

the effectiveness of the model. On the other hand, theoreti-

cal models are based on the physical behavior of the water

cycle (Evsukoff et al. ). Several researchers estimate

river discharge using the complex relation of several partial

differential equations (Koycegiz & Buyukyildiz ). These

equations are very difficult, and researchers did not find a

reliable solution (Solomatine & Dulal ). There is high

risk of error during solution of these equations. Moreover,

for water management, the researcher and scientist look

for a quick solution with high precision.

Due to the complexity and nonlinearity of the process

and validated models, it is difficult to simulate the accurate
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amount of discharge carried by rivers. Therefore, it is

necessary to use other methods with higher efficiency. In

the past few decades, several AI methods (e.g. artificial

neural networks (ANNs), neuro-fuzzy (NF) models, genetic

programming (GP), multivariate adaptive regression splines

(MARS), support vector machine (SVM), and kernel

extreme learning machine (KELM)) have been developed

and applied for assessing the complex hydraulic and hydro-

logic phenomena efficiency. Real-time flood forecasting,

longitudinal dispersion coefficients computing in natural

streams (Azamathulla & Wu ), prediction of rainfall

time series (Wu & Chau ; Haidar & Verma ), fore-

casting of streamflow discharges (Taormina & Chau ),

prediction of flow parameters in 90� open-channel (Gholami

et al. ), side weir discharge coefficient modeling (Aza-

mathulla et al. ), predicting bedload in sewer pipes

(Roushangar & Ghasempour ), daily suspended sedi-

ment concentration modeling (Kaveh et al. ), scour

depth prediction around pier groups (Ebtehaj et al. ),

flood prediction (Mosavi et al. ), flood management

(Fotovatikhah et al. ), form roughness coefficient model-

ing in alluvial channels (Saghebian et al. ), and

predicting Standardized Streamflow Index (SDI; Shamshir-

band et al. ) are some examples.

In AI models, we are looking for a learning machine

capable of finding an accurate approximation of a natural

phenomenon, as well as expressing it in the form of an inter-

pretable equation. However, this bias toward interpretability

creates several new issues. The computer-generated hypoth-

eses should take advantage of the already existing body of

knowledge about the domain in question. However, the

method by which we express our knowledge and make it

available to a learning machine remains rather unclear

(Babovic ). Machine learning, a branch of AI, deals

with the representation and generalization using data

learning technique. Representation of data instances and

functions evaluated on these instances are part of all

machine learning systems. Generalization is the property

that the system will perform well on unseen data instances;

the conditions under which this can be guaranteed are a key

object of study in the subfield of computational learning

theory. There is a wide variety of machine learning tasks

and successful applications (Mitchell ). In general, the

task of a machine learning algorithm can be described as
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
follows: Given a set of input variables and the associated

output variable(s), the objective is learning a functional

relationship for the input-output variables set. It should

be noted that AI models typically do not really represent

the physics of a modeled process; they are just devices

used to capture relationships between the relevant input

and output variables. However, when the interrelationships

among the relevant variables are poorly understood, finding

the size and shape of the ultimate solution is difficult, and

conventional mathematical analysis methods do not (or

cannot) provide analytical solutions; these methods can pre-

dict the interest variable with more accuracy.

On the other hand, hybrid models based on signal

decomposition can be effective in increasing the time

series prediction method’s efficiency (Pachori et al. ).

Wavelet analysis is one of the commonly used methods for

signal decomposition. The wavelet transform (WT) as

signal pre-processing method provides useful information

in the temporal and frequency domains for non-stationary

signals. Besides the WT, the empirical mode decomposition

(EMD) method has been used recently for signal decompo-

sition. This method is suitable for nonlinear and non-

stationary time series (Huang et al. ). Unlike wavelet

decomposition, EMD extracts the data oscillatory mode

components without a priori determining the basis functions

or level of decomposition (Labate et al. ).

Since river flow’s accurate prediction in watersheds has a

significant impact on efficient management of water projects,

in the current study, the KELM and MARS approaches were

used for monthly river flow (MRF) modeling in three succes-

sive hydrometric stations. KELM as a kernel-based approach

is a relatively new important method based on the different

kernels type which is based on statistical learning theory

initiated. Such model is capable of adapting itself to predict

any variable of interest via sufficient inputs. This method can

model nonlinear decision boundaries, and there are many

kernels to choose from. A kernel-based approach is also

fairly robust against overfitting, especially in high-dimensional

space. Also, MARS is a non-parametric method and deter-

mines a nonlinear relationship between dependent and

independent variables through adjunction of several linear

models. The training of this method is fast, has high accuracy,

and the probability of occurrence of data overtraining in this

method, is less.
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Also, the WT and ensemble EMD (EEMD) were used as

data processing methods to improve the model’s efficiency.

In integrated models, the inputs data were decomposed

into subseries by WT and EEMD. Then, the most effective

subseries were used as inputs in KELM and MARS methods.

MRF data of the Mississippi river in the period of 1950–2019

were used for this aim. Various models were developed

using only the previous values of river flow time series.

Two scenarios were considered in the modeling process.

In the first scenario, the intended parameter of each station

was estimated using the station’s own data, and in the

second scenario, the MRF was estimated using the previous

station’s data. In fact, in the second scenario, the impacts of

the existing sub-basins between the consecutive stations on

the flow regime of the downstream station were assessed.

Also, Monte Carlo uncertainty analysis was applied to inves-

tigate the dependability of the applied models.
MATERIALS AND METHODS

Study area

The Mississippi river is the second longest river and chief

river of the second-largest drainage system on the North

American continent. From its traditional source of Lake

Itasca in northern Minnesota, it flows generally south for

3,730 km to the Mississippi River Delta in the Gulf of

Mexico. In the current study, river flow data of three con-

secutive stations, namely station 1 (7010000), station 2

(7020500), and station 3 (7022000), were selected and

MRF was investigated under two scenarios. In the first scen-

ario, modeling was done based on each station’s data, and in

the second scenario, the previous stations’ data were used.

Figure 1 shows the location of the selected stations and

their MRF. To compare the performance of applied

models, the total data were divided into three sets: the train-

ing, validation, and testing sets. The first 70% of the whole

data were used for training the models, and the last 30%

of data were used for validating and testing the models

(15% for validating and 15% for testing). The training set

trains the scheme on the basis of a minimization criterion,

and the validation set is used as a stopping criterion for

training to avoid overfitting to the data. The testing set is
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used to evaluate the generated model and assess its general-

ization capability (Kitsikoudis et al. ).
Pre-processing approaches

One of the most popular approaches in time series proces-

sing is the WT (Farajzadeh & Alizadeh ). The WT uses

flexible window function (mother wavelet) in signal proces-

sing. The flexible window function can be changed over time

according to the signal shape and compactness (Mehr et al.

). After using WT, the signal will decompose into two

approximation (large-scale or low-frequency component)

and detailed (small-scale component) components. The

other approach for time series processing is EMD. The

EMD method is an effective self-adaptive dyadic filter

bank which applied to the white noise. By applying this

method, each signal can be decomposed into a number of

inherent mode functions (IMFs) which can be used to

process nonlinear and non-stationary signals. One of

the advantages of this method is the ability to determine

the instantaneous frequency of the signal. At each step

of the signal decomposition into its frequency components,

the high-frequency components are separated first and this

process must continue until the component with the

lowest frequency remains (see Lei et al. () for more

details). EEMD is developed based on EMD. The main

benefit of EEMD is solving the mode mixing problem of

EMD which determines the true IMF as the mean of an

ensemble of trials (Wu & Huang ). The EEMD algor-

ithm can be described as: (1) for a given signal x(t),

random white noise is added to the signal, (2) the noise-

added signal is decomposed using EMD for obtaining IMF

series, (3) steps 1 and 2 are repeated until the number of

added white noises be greater than or equal to the number

of trials, (4) for obtaining the ensemble IMF, the average

of the sum of all IMFs is computed (Ij(t)), and (5) the orig-

inal signal is formed as x(t) ¼ Pn
j¼1 Ij(t).
Data-driven methods

Two data-driven techniques, namely KELM and MARS,

were used to predict MRF. In the following, a description

of these methods is given.



Figure 1 | The location of selected consecutive stations of Mississippi river and their MRF.
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Kernel extreme learning machine

The ELM method is a single-layer feed-forward neural net-

work (SLFFNN) preparing initially introduced by Huang

et al. (). SLFFNN is a straight framework where infor-

mation weights linked to hidden neurons and hidden layer

biases are haphazardly chosen, while the weights among

the hidden nodes are resolved logically. This strategy like-

wise has preferred execution and adapts progressively over

the bygone era learning methods (Huang et al. ), in

light of the fact that not at all like traditional techniques

that involve numerous variables to setup, demonstrating a
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
complex issue utilizing this technique does not need much

human intercession to accomplish ideal parameters (Ebte-

haj et al. ). The standard single-layer neural system

with N random information (ai,bi), M hidden neurons, and

the active function f(a) are shown as follows:

ai ¼ [ai1, ai2, . . . , ain]
T ∈ Rn (1)

bi ¼ [bi1, bi2, . . . , bin]
T ∈ Rm (2)

XN
i¼1

αif(wiαj þ ci) ¼ Xj j ¼ 1, 2, . . . , N (3)
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where wi ¼ [wi1, wi2, . . . , win]
T is the weight vector that

joins the input layer to the hidden layer, and

αi ¼ [αi1, αi2, . . . , αin]
T is the weight vector that joins

hidden layer to the target layer. ci shows the hidden

neuron biases. The general SLFFNN network with the M

hidden neuron and the activation function f(a) can

predict N information with an average zero errorPN
i¼1 kXj �Xik ¼ 0

� �
, in which:

XN
i¼1

αif(wiαj þ ci) ¼ Yj j ¼ 1, 2, . . . , N (4)

Equations (4) can be summarized as:

Aα ¼ K (5)

A(w1, . . . , wM, c1, . . . , cM, a1, . . . , aM)

¼
f(w1a1 þ c1) � � � f(wNa1 þ cM)
. . .
f(w1aN þ c1) � � � f(wMaN þ cM)

2
4

3
5
N×M

(6)

K ¼
pT1
:
:
pTN

2
664

3
775
N×L

, α ¼
αT
1

:
:
αT
N

2
664

3
775
M×L

(7)
The matrix K is identified as the target matrix of the

hidden layers of the neural network. Huang et al. ()

also introduced kernel functions in the design of ELM.

Now number of kernel functions is used in the design of

ELM such as linear, radial basis, normalized polynomial,

and polynomial kernel functions. Kernel function-based

ELM design is named as kernel extreme learning machine.

For more detail about KELM, readers and researchers are

referred to Huang et al. ().

Multivariate adaptive regression splines

MARS as a non-parametric method determines a nonlinear

relationship between dependent and independent variables

through adjunction of several linear models (Sharda et al.

). The MARS approach modeling process includes

several forward and backward steps. The selection of appro-

priate independent variables is done at forward step;

however, in backward stepwise, unnecessary variables are

removed to prevent model over-fitting and enhance the
om http://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
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efficiency of the model (Sharda et al. ). The MARS

approach is based on basis functions in which variable X

is projected to variable Y through applying one of the follow-

ing basis functions:

Y ¼ max(0, X�m), Y ¼ max(0, m�X) (8)

where m is a threshold value. In the MARS model, the

desired basis function numbers are determined at the first

step. The selected basis function numbers are applied in

the model in forward phase, while in the backward stepwise,

the model is simplified by removing the less important basis

functions.
Performance criteria

In this study, three criteria were used to assess the applied

model’s capability including determination coefficient

(DC), root-mean-square errors (RMSEs), and mean absolute

percentage error (MAPE). These statistical criteria are for-

mulated as:

DC ¼ 1�

PN
i¼1

(lo � lp)
2

PN
i¼1

(lo � lp)
2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

(lo � lp)
2

N

vuut

MAPE ¼ l

lo

Pn
i¼1

jlo � lpj
N

× 100

(9)

where lo, lp, lo, lp are the observed, estimated, mean

observed, mean estimated values, respectively. N is the

number of data. The DC measures the fraction of the var-

iance in the data explained by the model. The RMSE

describes the average difference between predicted and

measured values corresponding to the predicted values,

and the MAPE indicates the absolute differences between

estimated and observed values as depicted in Equation (9).

These measurements are not oversensitive to extreme

values (outliers), but are rather sensitive to additive and pro-

portional differences between model predictions and
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observations. Therefore, correlation-based measures (e.g.

DC) can indicate that a model is a good predictor (Legates

& McCabe ). Evidently, a high value for DC (up to

one) and a small value for RMSE and MAPE indicate a

high efficiency of the model. It should be noted that in this

study, all input variables were scaled between 0 and 1 for

eliminating the input and output variable dimensions.
Table 1 | Considered models in the study

Model Inputs

Scenario 1

Station 1, 2, and 3

I Q (t� 1)

II Q (t� 1), Qw (t� 2)

III Q (t� 1), Q (t� 2), Q
(t� 3)

Scenario 2

Station 2 Station 3

IV Q1 (t) VII Q1 (t), Q2 (t)

V Q1 (t), Q1 (t� 1) VIII Q1 (t� 1),
Q2 (t� 1)

VI Q1 (t), Q1 (t� 1),
Q1 (t� 2)

IX Q2 (t), Q2 (t� 1)
Uncertainty analysis

The aim of a model uncertainty analysis is to determine the

statistical characteristics of the outputs of that model as a

function of the uncertainty of the input parameters (Noori

et al. ). Uncertainty is a factor associated with the esti-

mation result which determines the estimation values

range. Its value indicates the level of confidence that the

actual measured value falls within the specified range

(Noori et al. ). In the current research, the Monte

Carlo method proposed by Abbaspour et al. () was

used to evaluate the uncertainty of the AI models in the

MRF series modeling. To verify model results uncertainties,

95% confidence interval (95PPU) and bandwidth factor

(d-factor) which is the average distance between the upper

(XU) and lower (XL) uncertainty bands should be used

(Noori et al. ). In this regard, the considered model

should be developed many times (1,000 times in this

research), and the empirical cumulative distribution prob-

ability of the models should be calculated.

The appropriate confidence limits are mostly from

measured data within the width of 95PPU and have a

reasonable average width (d-factor→ 0) (Abbaspour et al.

). For evaluating the mean width of the confidence

band, Abbaspour et al. () suggested the below equation:

d�factor ¼ dx
σx

(10)

where σx and dx are the observed data standard deviation

and the confidence band’s average width, respectively. The

percentage of the data within the confidence band of 95%

is calculated as:

Bracketed by 95PPU ¼ 1
k
Cont(jjXL <Xreg <XU) (11)
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
where 95PPU shows 95% predicted uncertainty, k shows the

number of observed data, and Xreg shows the current regis-

tered data.
Model development

Appropriate selection of input combination has a significant

impact on the accuracy of developed models. River flows

can be affected by various different independent variables

such as primarily precipitation, temperature, evaporation,

river channel seepage, as well as soil characteristics in the

catchment. The use of all mentioned dataset for all locations

is very difficult. Therefore, according to Table 1, in this

research, only monthly previous values of river flow time

series over the period of 1950–2019 were used as inputs to

predict the next month river flow value. In fact, it was

tried to achieve accurate results by developing several

simple models. In the modeling process, two states were

considered: in the first state, the selected stations’ river

flow was predicted based on the station’s own data, and in

the second state, modeling was done based on the data

from previous stations. For all defined combinations, t

demonstrates the time step (monthly step), and Q(t� 1)

and Q(t� 2) represent river flow values at time (t� 1) and

(t� 2), respectively. The output is the river flow in the cur-

rent time step (i.e. MRF(t)). The WT and EEMD were



Figure 2 | Considered modeling process in the study.
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applied to decompose river flow series. WT is a very useful

technique for time series data processing of many aspects

(Ercelebi ). WT is suitable for analyzing time series

data since it is an effective method for time series data

reduction. WT can detect sudden signal changes well

because it transforms an original time series data into two

types of wavelet coefficients: approximation and detail.

Approximation wavelet (low-frequency) coefficients capture

rough features that estimate the original data, while detail

wavelet (high-frequency) coefficients capture detail features

that describe frequent movements of the data. WT is useful

in supporting multiresolution analysis. In addition to pro-

jecting a time series into approximation and detail wavelet

coefficients, WT decomposes these coefficients into various

scales (Chaovalit et al. ).

The minimum decomposition level (L) in the WT

method can be obtained as following:

L ¼ int [log N] (12)

In this study, L¼ 3 was used for data decomposition.

Also, the EEMD method was used for the additional decom-

posing of the high-frequency time series decomposed by WT

due to the nonlinearity and non-stationarity of MRF series.

Besides the WT, EEMD is another efficient noise reduction

technique, which enables adaptive decomposition based

only on signal characteristics. EEMD and WT donated

incredible vision in time and frequency domain of data to

capture the nonlinear and seasonal properties. The EMD

represents an adaptive method to recognize oscillations

from the signal. Analogously to Discrete Wavelet Transform

(DWT), EEMD describes signal via IMFs as details (high-fre-

quency oscillations), and residual as approximation (low-

frequency oscillations) from the last decomposition level.

This new method is based on the insight from recent studies

of the statistical properties of white noise, which showed

that the EMD method is an effective self-adaptive dyadic

filter bank when applied to the white noise (Wu & Huang

). On the other hand, studies demonstrated that noise

could help data analysis in the EMD method. All these

investigations promote the advent of the EEMD method.

An attempt was done to choose the most dominant subseries
om http://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
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based on their correlation with original time series. Figure 2

shows the considered modeling process.
RESULTS AND DISCUSSION

The results of kernel-based approaches

The capability of kernel-based approaches was assessed in

predicting the river flow using the main data (i.e. without

processing). It should be noted that each AI method has

its own parameters which for achieving the desired results,

the optimized amount of these parameters should be deter-

mined. For example, in designing the kernel-based

approaches, the selection of appropriate type of kernel func-

tion is needed. A number of kernels are discussed in the

literature (Gill et al. ). In this research, river flow was

predicted using different kernel types. Therefore, the

model (III) was run via KELM and according to Figure 3,

the radial basis functions (RBFs) kernel was found as the

best kernel function. According to Noori et al. (), the

RBF kernel is very desirable to be used in prediction of

hydraulic and hydrological features since: (1) unlike the

linear kernel, the RBF kernel can handle the case when

the relation between class labels and attributes is nonlinear.



Figure 3 | Performance of the KELM method with different kernel functions for the model (III).
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(2) The RBF kernels tend to give better performance under

general smoothness assumptions. (3) It has fewer tuning par-

ameters than the polynomial and the sigmoid kernels.

Therefore, RBF kernel was used as the core tool of KELM.

Also, in the MARS model, maximum number of basis func-

tion was set as 25, and the best model performance is

obtained with 10 basis functions.

It should be noted that monthly river flows can be

affected by various hydrometeorological parameters. How-

ever, the use of all them for all cases is not possible. In this

research, it was assumed that by using only previous values

of river flow time series, an accurate prediction of MRF

could be obtained. Therefore, several simple models were

developed based on only monthly previous values of river

flow time series. The selection of input combinations was

done based on train and error process, and the most accu-

rate combinations were selected. The obtained results from

data-driven single models are listed in Table 2. As it could

be seen, the used models slightly showed similar results in

the selected stations. Among the used models, the KELM

model yielded to better predictions. According to Li et al.

(), the simulation performance can be affected by the

size and distribution characteristics of the streamflow. As

the distribution range becomes wider, the prediction per-

formance gradually becomes unstable. Considering the

obtained statistical indicators and according to Figure 4, it

could be stated that the MARS and KELM models did not

lead to acceptable efficiency in modeling the maximum

and minimum amounts of river flow. From the obtained

results, it could be stated that in the first state, the model

(III) with input parameters of Q(t� 1), Q(t� 2), Q(t� 3) per-

formed better than the others. Based on the results, it could

be seen that adding Q(t� 2), Q(t� 3) parameters to input
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
combinations increased the model’s accuracy. In the

second state, for the station 2, the model (VI) with par-

ameters of Q1(t), Q1(t� 1), Q1(t� 2) was selected as the

superior model and for the station 3, the model (VII) with

parameters of Q1(t), Q2(t) led to better predictions. Figure 4

illustrates the scatter plots between observed versus pre-

dicted river flow for the KELM model.

Data processing impacts on model’s efficiency

In this section, the effect of pre-processing of time series on

increasing of model’s accuracy was investigated. Therefore,

the time series were decomposed using the WT method.

To decompose the time series by WT, a mother wavelet

which is more similar to the signal should be selected.

There are different types of mother wavelets such as

Daubechies (db), Haar, Morlet, Symlets (sym), Coifets,

and Meyer. According to Roushangar et al. (), in hydro-

logical processes, the db and sym mother wavelets perform

better than others. In this study, the daubechies (db2, db4)

and Symlets (sym2, sym4) mother wavelets were trained

for decomposition of Q(t� 1) in station 1. According to

Figure 5(a), it was found that the db4 mother wavelet led

to better outcomes. Therefore, db4 mother wavelet and

decomposition level 3 were used for time series decompo-

sition. Four subseries (one approximation and three

detailed) were obtained for each time series. In the second

step, two first detail subseries (i.e. details 1 and 2) were

further decomposed via EEMD. The principle of EEMD is

decomposition of signal to different IMFs and one residual

signal. The sum of these signals will be the same original

signal. The formation of IMFs is based on subtracting the

basic function from the original signal. This process



Table 2 | The results obtained for the scenario 1 in the MRF modeling

Method Model

Validation Test Validation Test

DC RMSE MAPE DC RMSE MAPE DC RMSE MAPE DC RMSE MAPE

State 1

Station 1 Station 2

MARS I 0.512 0.161 20.15 0.413 0.173 21.37 0.484 0.150 18.5 0.420 0.159 19.62

II 0.557 0.155 19.51 0.446 0.169 20.87 0.512 0.146 18.125 0.445 0.153 18.87

III 0.576 0.148 18.37 0.498 0.164 20.25 0.539 0.143 17.75 0.469 0.150 18.5

KELM I 0.523 0.153 18.87 0.415 0.166 20.54 0.494 0.147 18.05 0.423 0.155 19.42

II 0.568 0.146 17.6 0.449 0.162 20.05 0.523 0.138 17.125 0.448 0.147 18.25

III 0.588 0.140 15.8 0.521 0.158 19.5 0.550 0.135 16.75 0.481 0.142 17.62

Station 3

MARS I 0.537 0.148 18.37 0.462 0.166 20.52

II 0.569 0.145 18 0.489 0.162 20.01

III 0.599 0.141 17.5 0.513 0.158 19.5

KELM I 0.554 0.138 17.12 0.476 0.157 19.37

II 0.587 0.135 16.75 0.503 0.152 18.75

III 0.618 0.132 16.37 0.530 0.141 17.5

State 2

Station 2 Station 3

MARS IV 0.720 0.090 11.12 0.703 0.097 12 VII 0.748 0.071 8.75 0.705 0.080 9.29

V 0.743 0.079 9.75 0.722 0.086 10.62 VIII 0.715 0.119 14.75 0.616 0.135 17.76

VI 0.741 0.082 10.12 0.729 0.084 10.37 IX 0.510 0.147 18.25 0.288 0.173 22.11

KELM IV 0.782 0.071 8.75 0.753 0.074 9.12 VII 0.758 0.062 7.62 0.735 0.064 9.41

V 0.788 0.061 7.59 0.767 0.069 8.54 VIII 0.744 0.119 14.75 0.647 0.126 16.7

VI 0.797 0.062 7.62 0.785 0.066 8.12 IX 0.531 0.137 17.08 0.308 0.162 20.82

Bold values show the superior model in each state.
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continues until the residual signal remains almost constant.

In this study, details 1 and 2 subseries were decomposed

into nine IMFs and one residual signal. Further decompo-

sition using EEMD leads to more stationary and with less

noise subseries. In Figure 5(b), the Q(t� 1) decomposed sub-

series by db4-EEMD was shown for station 1. Since the

number of input data increased after time series decompo-

sition, the correlations of subseries with original signal

were calculated. Figure 5(c) shows the correlations among

the IMFs subseries and MRF series. Each subseries which

its correlation was more than the average value of corre-

lations of all subseries was taken as significant out of

others. The selected subseries were used as inputs in data-

driven methods to predict the MRF.
om http://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
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The results of the integrated pre-processing models are

listed in Table 3. According to the results presented in

Tables 2 and 3, it could be induced that data pre-processing

significantly improved the results’ accuracy and integrated

models were more accurate than data-driven methods. In

fact, the use of WT and further decomposition of the

detailed series led to an improvement in the outcomes. For

example, for station 3 in scenario 1, the RMSE values of

the MARS and KELM models for the model (III) were

0.158 and 0.141, respectively; the values of RMSE for the

WT-EEMD-MARS and WT-EEMD-KELM models

decreased to 0.091 and 0.087, respectively. It could be

seen that using the integrated models, the river flow model-

ing was done with higher accuracy and the applied methods



Figure 4 | Scatterplot of MRF modeling via KELM superior models.
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were successful in the modeling process. Alizadeh et al.

() tried to design, construct, and evaluate the efficiency

of the wavelet-ANN model for flow time series forecasting.

They showed that the integrated models (wavelet-ANN) pro-

vide acceptable predictions of the monthly flow discharge. It

was found that the WT is a powerful tool which has a great

ability to extract useful information from time series. Conse-

quently, it increases the ANN models’ performances

significantly. However, in this study, the MRF time series

decomposed to various periodicity scales with WT and

further decomposition of subseries using EEMD to obtain

more stationary subseries. In general, the data pre-
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
processing by WT-EEMD increased the model’s accuracy

approximately up to 25%.

From the results, it could be seen that the integrated

methods resulted in desirable accuracy in both scenarios

and the use of previous station’s data could be applied as

a reliable scenario to predict river flow values for the

stations with the lack of the observational data. Also, it

could be seen that the use of upstream flow models caused

a significant improvement in the performance levels. This

issue indicated that the existing sub-basins between the con-

secutive stations may have noticeable physical impacts (i.e.

increasing drainage area) on the flow regime of the



Figure 5 | (a) The RMSE values for decomposed Q(t� 1) using different mother wavelets for the station 1, (b) decomposed Q(t� 1) time series using db4-EEMD for the station 2, and

(c) correlation between detail subseries and original MRF input series.
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Table 3 | The results obtained for the scenario 2 in the MRF modeling

Validation Test Validation Test

Method Model DC RMSE MAPE DC RMSE MAPE DC RMSE MAPE DC RMSE MAPE

State 1

Station 1 Station 2

MARS I 0.743 0.088 10.87 0.708 0.102 12.625 0.729 0.081 10 0.697 0.089 11

II 0.808 0.085 10.51 0.743 0.097 12 0.772 0.080 9.87 0.718 0.085 10.52

III 0.834 0.081 10 0.831 0.094 11.62 0.812 0.078 9.62 0.749 0.083 10.21

KELM I 0.773 0.083 10.2 0.730 0.095 11.75 0.758 0.077 9.5 0.724 0.085 10.53

II 0.841 0.080 9.87 0.763 0.093 11.5 0.803 0.075 9.25 0.745 0.081 10

III 0.873 0.076 9.35 0.854 0.090 11.12 0.845 0.074 9.12 0.814 0.078 9.62

Station 3

MARS I 0.817 0.079 9.75 0.708 0.099 14.25

II 0.865 0.078 9.62 0.745 0.097 13.08

III 0.910 0.076 9.37 0.791 0.091 12.92

KELM I 0.859 0.074 9.12 0.739 0.093 11.5

II 0.897 0.072 8.87 0.786 0.090 12.14

III 0.913 0.071 8.75 0.833 0.087 10.87

State 2

Station 2 Station 3

MARS IV 0.809 0.078 9.625 0.790 0.084 10.37 VII 0.885 0.057 7.12 0.835 0.063 8.85

V 0.834 0.069 8.51 0.810 0.075 9.25 VIII 0.846 0.097 12.84 0.729 0.106 15.08

VI 0.832 0.071 8.75 0.819 0.074 9.12 IX 0.603 0.120 14.88 0.502 0.135 19.14

KELM IV 0.881 0.062 7.62 0.859 0.065 8.08 VII 0.897 0.050 6.25 0.890 0.050 7.143

V 0.906 0.051 6.37 0.881 0.063 7.75 VIII 0.881 0.094 12.02 0.764 0.101 14.28

VI 0.902 0.053 6.62 0.893 0.060 7.37 IX 0.628 0.112 13.87 0.518 0.126 17.85

Bold values show the superior model in each state.
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downstream station. According to Figure 6, it could be seen

that the extreme values in the river flow series calculated

more correctly by the data processing methods.

Uncertainty analysis results

In this part of the study, the uncertainty analysis was done in

order to find the uncertainty of the integrated superior

model (i.e. WT-EEMD-KELM). In the proper confidence

level, two important indices should be considered. First,

the 95PPU band brackets most of the observations, and

second, the d-factor should be smaller than the standard

deviation of the observed data. The two mentioned indices

were applied for accounting input uncertainties. The
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
obtained results for test series are listed in Table 4 and

shown in Figure 7. Based on the values obtained for the d-

factor and 95PPU, it could be indicated that for the inte-

grated model, most of the observed and predicted values

were within the 95PPU band for MRF predictions. For

example, in station 1, the amount of d-factor was 0.125

which was smaller than the standard deviation of the

observed data (i.e. 0.142). Also, for verifying the uncertainty

analysis results, the lower bound and upper bound esti-

mation (LUBE) method was used. The upper bound and

the lower bound are calculated according to the forecasting

value and the confidence level. The accuracy of the point

forecasting has played a key in the obtained results accuracy.

The LUBE tries to directly approximate upper and lower



Figure 6 | Scatterplot of MRF modeling via WT-EEMD-KELM superior models.

Table 4 | Uncertainty indices of the WT-EEMD-KELM model

Station

Performance criteria

Station

Performance criteria

95PPU d-factor 95PPU d-factor

Monte Carlo method

1 77% 0.125 3 89% 0.165

2 84% 0.162

LUBE method

1 75% 0.127 3 86% 0.169

2 81% 0.169
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bounds of prediction intervals (PIs) which is prevalent

measure for the assessment of prediction/forecast uncertainty.

PIs deal with the uncertainty in the prediction of a future

realization of a random variable and account for more sources

of the uncertainty (model misspecification and noise var-

iance). As it is seen from Table 4, for all cases, most of the

observed values were within the 95PPU band and d-factor

values were smaller than the standard deviation of the

observed data. In general and according to the results, it

could be induced that the MRF modeling via WT-EEMD-

KELM model led to an allowable degree of uncertainty.



Figure 7 | Comparative plots of observed and predicted the MRF by WT-EEMD-KELM for

test series via Monte Carlo method.
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CONCLUSION

Prediction of river flow plays a crucial role in various fields

of water resource projects. Therefore, in this study, the MRF

was investigated via AI and data pre-processing methods. In

this regard, under two scenarios, different models were

developed based on station’s own data and previous

stations’ data. The efficiency of developed models was

tested via single and integrated AI methods. In the inte-

grated models, time series were decomposed to several

subseries using WT and further decomposition was per-

formed via EEMD and most effective subseries were used

as inputs for MARS and KELM models. The results

showed that the single methods led to poor predictions

based on the obtained statistical indicators. It was observed

that data pre-processing improved the model’s efficiency up

to 25%. The maximum and minimum values of river flow

were well predicted using the integrated models. The
://iwa.silverchair.com/jh/article-pdf/23/4/897/910121/jh0230897.pdf
integrated methods resulted in desirable accuracy in both

considered scenarios and it was proved that the previous

stations’ data could be used as a reliable scenario in river

flow prediction for stations without data. Also, the superior

applied model dependability was investigated using uncer-

tainty analysis. The results showed that the KELM model

had an allowable degree of uncertainty in MRF modeling.

Therefore, the integration of data-driven models with data

processing methods could be useful for accurate prediction

of the MRF time series as a more suitable and reliable

method. It should, however, be noted that the KELM and

MARS are data-driven models and the KELM- and MARS-

based models are data sensitive, so further studies using

data ranges out of this study or using other AI techniques

should be carried out in the future studies. Also, the use of

other input combinations based on precipitation, tempera-

ture, evaporation, and river channel seepage is suggested

to find the merits of the intelligence models in MRF

modeling and investigate the impact of the mentioned inde-

pendent variables on the modeling process.
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