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An accurate and efficient scheme involving unsteady friction for transient pipe flow
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ABSTRACT

A robust prediction system should monitor all possible hydraulic transients, which is significant for the appropriate and safe operation of pipe

systems. A second-order finite volume method (FVM) Godunov-type scheme (GTS) considering unsteady friction factors is introduced to

simulate hydraulic transients, which was rarely involved in previous work. One explicit-solution source item approach developed in this

work is crucial for the proposed GTS to easily incorporate various forms of the existing unsteady friction models, including original convolu-

tion-based models (Zielke model and Vardy–Brown model), simplified convolution-based model (Trikha–Vardy–Brown (TVB) model), and

Brunone instantaneous acceleration-based model. Results achieved by the proposed models are compared with experimental data as

well as predictions by the classic Method of Characteristics (MOC). Results show that the MOC scheme may produce severe numerical

attenuation in the case of a low Courant number. The proposed second-order GTS unsteady friction models are accurate, efficient, and

stable even for Courant numbers less than one and sparse grid, and only need much less grid number and computation time to reach

the same numerical accuracy. The TVB convolution-based model and Brunone model in the second-order GTS are suggested for further appli-

cations in hydraulic transients due to their high accuracy and efficiency.
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HIGHLIGHTS

• A Godunov-type scheme involving unsteady pipe friction is developed.

• An explicit-solution source item approach is introduced to incorporate unsteady friction.

• The numerical models are validated by the experimental data.

• The proposed models are accurate, efficient, and stable for transient pipe flow.

• A Brunone unsteady friction model is more efficient than the convolution-based model.
NOTATION

The following symbols are used in this paper:
a

This is an

redistributi

4.0/).

://iwa.silverch
wave speed

�A
 linearized coefficient matrix

A*
 coefficient of original turbulent weighting function

B
 coefficient matrix

B*
 coefficient of original turbulent weighting function

C
 coefficient matrix

Cr
 Courant number

C*
 Vardy’s shear decay coefficient

D
 pipe diameter

f
 flux term

g
 gravitational acceleration

H
 piezometric head
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piezometric head to left and right of interface

Hr
 upstream reservoir pressure head

i
 index for cell, reach

Ii
 ith cell

JQ
 the head loss by the quasi-steady friction

Ju
 the head loss due to unsteady friction

k
 the unsteady friction coefficient in Brunone model

L
 pipeline length

mi
 the weighting coefficient

m�

i
 the scaled universal weighting coefficient

n
 index for time t

ni
 the weighting coefficient

n�
i
 the scaled universal weighting coefficient
N
 number of cells along the pipeline

R
 pipe radius

Re
 Reynolds number

s
 source term

t
 time

u
 flow variables H and V

U
 cell mean value of u

U; U
 intermediate flow variables in Runge–Kutta scheme

Un

L;U
n
R
 average cell value of u to the left and the right of interface at time nΔt
V
 the average cross-sectional velocity

VL, VR
 average cell velocity to the left and right of interface

V0
 initial steady pipe flow velocity

W (t)
 a weighting function

x
 distance along pipeline

Yai(t)
 the weighting function

Δt
 time increment

Δτ
 4vΔt/D2
Δx
 reach length

κ
 coefficient of original turbulent weighting function

ρ
 the density of the liquid

τ
 the dimensionless time

τu
 unsteady shear stress

ν
 kinematic viscosity of the fluid

�li
 eigenvalues of A

ɛ
 pipe wall roughness
ABBREVIATIONS
CFD
silver
computational fluid dynamics

CFL
 Courant–Friedrichs–Lewy

FDM
 finite difference method

FVM
 finite volume method

MINMOD
 MINMOD slope limiter function

MOC
 method of characteristics

MUSCL
 monotone upstream-centered scheme for conservation laws

GTS
 Godunov-type schemes

TVB
 Trikha–Vardy–Brown
INTRODUCTION

The complicated hydraulic transients often occur during the energy conversion process in the pipe system of hydropower
station and pumped storage station. Dangerous water hammer events caused by some inappropriate operations of pump/tur-

bine/valve in the water system and likely produce abnormally high pressures, which may induce pipe rupture and damage
other hydraulic devices (Wylie et al. 1993). Therefore, the accurate and efficient numerical simulations of all the possible
hydraulic events become more important for the proper design and safe operation of the real pipe systems.
chair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf
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Various numerical solution schemes, including method of characteristics (MOC) and finite difference method (FDM)

(Chaudhry & Hussaini 1985), have been introduced in the traditional one-dimensional (1D) water hammer model to simulate
the hydraulic transients for various pipe systems (Wylie et al. 1993). Among these methods, MOC proved to be popular among
water hammer experts since it is simple, efficient, and accurate.

The real water pipe systems often contain various pipe sections with different materials and lengths. So, the MOC approach
has to employ either interpolation or wavespeed adjustment in pipes since it is impossible to make the Courant number
exactly equal to one in all pipes of a complex pipe system. Several significant and complicated interpolation techniques
have been proposed in order to deal with the discretization problem associated with applying fixed-grid MOC to pipeline sys-

tems (Ghidaoui & Karney 1994; Karney & Ghidaoui 1997; Ghidaoui et al. 1998). Alternatively, Wylie & Streeter (1970) and
Chaudhry & Hussaini (1985) solved the water hammer equations by FDM schemes. It was found that the second-order FDM
schemes can get much better results than the first-order MOC; in particular, the implicit methods are stable for large time

steps. However, implicit FDM schemes increase both the computation time and the storage requirement (Chaudhry & Hus-
saini 1985).

Moreover, the finite volume method (FVM) Godunov-type schemes (GTS) have been introduced for the solution of classic

water hammer equations not involving the unsteady friction factor (Guinot 2000; Zhao & Ghidaoui 2004; Zhou et al. 2017,
2018a). The results show that the first-order FVM GTS is identical to the fixed-grid MOC scheme, and importantly, the
second-order FVM GTS is more robust for simple water hammer events. However, it is necessary to further investigate

the feasibility of GTS for more complicated hydraulic transient problems, including the incorporation of the unsteady friction.
Computational fluid dynamics (CFD) methods have also been applied to realize the three-dimensional (3D) flow simu-

lations in the whole water system from the upstream and downstream reservoirs. Results show that the 3D CFD methods
are feasible to accurately predict the transient pressures and energy transformation, and its significant advantage is to vividly

reveal the physical process (Martins et al. 2014; Wang et al. 2016; Zhou et al. 2018b). However, it is extremely difficult to
realize the fast dynamic simulating and monitoring by using the 3D CFD methods due to the extremely time-consuming
and less efficient computations (Wang et al. 2016; Zhou et al. 2018b).

The main purpose of this work is to develop an accurate and efficient 1D numerical approach, which is significant
for the dynamic prediction system monitoring all possible hydraulic transients in various real pipe systems, such as at
the hydropower station and the pumped storage station. The second-order FVM GTS considering the unsteady friction

factors was developed to realize the accurate and efficient simulations on the hydraulic transients, which is rarely
involved in previous published work. One explicit-solution source item approach is proposed for the GTS to incorpor-
ate various forms of the existing unsteady friction models, including original accurate convolution-based models
(Zielke model and Vardy–Brown model), the efficient simplified convolution-based models (Trikha–Vardy–Brown

(TVB) model), and the Brunone instantaneous acceleration-based model. Results calculated by the proposed
second-order GTS unsteady friction models are compared with published experimental data as well as predictions
by the classical MOC scheme. The accuracy and efficiency of the proposed approach are discussed carefully.
MATERIALS AND METHODS

The experimental pressures of Bergant et al. (2001) and Adamkowski & Lewandowski (2006) are used to verify the
proposed models. The experimental system of Bergant et al. (2001) consists of an upstream constant pressure tank, an

upward sloping straight pipeline with a 5.45% slope, a downstream ball valve, and a downstream pressure tank.
Adamkowski & Lewandowski (2006) designed a similar experimental setup with higher upstream constant pressure
and smaller pipe diameter. Figure 1 displays the experimental apparatus layout.

Initially, the pipe flow reaches a steady velocity V0 by adjusting the downstream outlet pressures. All the experimen-

tal water hammer events of Bergant et al. (2001) and Adamkowski & Lewandowski (2006) were initiated by quickly
closing the downstream ball valve. In the experiments of Bergant et al. (2001), upstream inlet pressure Hr ¼ 32 m,
pipeline length L¼ 37.23 m, pipe inner diameter D¼ 0.0221 m; wave speed a¼ 1,319 m/s; pipe wall thickness e¼
1.63 mm and water temperature¼ 15.4 °C. In the experiments of Adamkowski & Lewandowski (2006), Hr¼ 127.47 m,
L¼ 98.11 m, D¼ 0.016 m; a¼ 1,298.4 m/s; e¼ 1 mm and water temperature¼ 20 °C. The initial experimental conditions
are summarized in Table 1.
://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf



Table 1 | Conditions for the experimental cases

Case no. V0 (m/s) Re Flow regime Data source

1 0.1 1,870 Laminar flow Bergant et al. (2001)

2 0.2 3,750 Turbulent flow

3 0.3 5,600 Turbulent flow

4 0.631 10,634 Turbulent flow Adamkowski & Lewandowski (2006)

5 0.94 15,843 Turbulent flow

Figure 1 | Schematic diagram of the experimental setup in Bergant et al. (2001) and Adamkowski & Lewandowski (2006).
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WATER HAMMER EQUATIONS INVOLVING UNSTEADY FRICTION

The classic water hammer equations considering the friction factors can be written as (Wylie et al. 1993):

@H
@t

þ a2

g
@V
@x

¼ 0 (1)

@H
@x

þ 1
g
@V
@t

þ JQ þ JU ¼ 0 (2)

whereH is the piezometric head; V is the average flow velocity; a is the wave speed; g is the gravitational acceleration; x is the

distance; t is the time; D is the pipe diameter; JQ is the head loss caused by the quasi-steady friction which is determined by
using the Hagen Poiseuille law and Colebrook–White formula (Adamkowski & Lewandowski 2006); Ju is the head loss due to
unsteady friction.

In this work, the original convolution-based models, the simplified convolution-based model of Vardy & Brown (2004a,
2007), and the Brunone instantaneous acceleration-based model are all represented for the unsteady friction simulation of
transient pipe flow.

Original convolution-based unsteady friction models

Zielke (1968) developed pioneering work on the original convolution-based model by considering the convolution of pre-

vious fluid accelerations and a weighting function to express the unsteady friction items for laminar flow as follows
(Zielke 1968):

JU ¼ 4
rgD

tw ¼ 16n
gD2

ðt
0

W(t� u)
@V
@t

(u)du (3)
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Zielke (1968) proposed the staggered-grid MOC scheme for the unsteady friction solution by the first-order approximation

of convolution integral. Here, in the rectangular-grid MOC scheme solution, the unsteady friction can still be calculated by
the first-order approximation of convolution integral:

JU ¼ 16n
gD2

Xk�1

j¼1,2...

(Vi, jþ1 � Vi, j) W (k� j)Dt� Dt
2

� �

¼ 16n
gD2

Xk�1

j¼1,2...

(Vi, k�jþ1 � Vi, k�j) W jDt� Dt
2

� � (4)

The effects of the past velocity can be described by using the Zielke weighting function W(t):

t . 0:02: W(t) � W(t) ¼
X5
i¼1

enit (5)

t � 0:02: W(t) � W(t) ¼
X6
i¼1

mit
(i�2)=2 (6)

t ¼ 4n
D2 (k� j)Dt (7)

where j and k are multiples of the time step Δt; ν is the kinematic viscosity; τ is the dimensionless time; and coefficients of
weighting function W(τ) {ni, i¼ 1,…, 5}¼ {� 26.3744, �70.8493, �135.0198, �218.9216, �322.5544} and {mi, i¼ 1,…,

6}¼ {0.282095, �1.25, 1.057855, 0.937500, 0.396696, �0.351563}.
Subsequently, for the turbulent flow, Vardy & Brown (1995, 1996, 2003, 2004b) developed the original turbulent weighting

functions related to the Reynolds number and time (Vardy & Brown 1995, 1996, 2003, 2004b):

W(t, Re) ¼ A�e�B�tffiffiffi
t

p (8)

where A� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(4p)

p
and B� ¼ Rek=12:86, k ¼ log(15:29=Re0:0567) for smooth pipes and A� ¼ 0:0103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re=(1=D)0:39

q
and

B� ¼ 0:352Re=(1=D)0:41 for flows in rough pipes. The ratio ɛ/D is called the relative roughness.

Efficient simplified convolution-based model

The original convolution-based models are numerically accurate and nevertheless are computationally inefficient due to their
continual involving all the past velocity. In order to improve computational efficiency, the Zielke model and Vardy–Brown
model have been simplified by the introduction of the so-called effective weighting functions. Trikha (1975) carried out the
first research to develop an effective method of solving the integral convolution. Later, Kagawa et al. (1983), Suzuki et al.
(1991), Schohl (1993), Vardy & Brown (2004a, 2007), Vítkovský et al. (2004), Ghidaoui & Mansour (2002), and Urbanowicz
& Zarzycki (2012) had improved the applicability range of effective weighting function as well as its degree of fit to the orig-
inal weighting function.

The Trikha–Vardy–Brown (TVB) efficient simplified model (Vardy & Brown 2004a, 2007) with the ranges of 10�8 �Δτ,∞

Dt ¼ 4nDt
D2

� �
for laminar flow and 10�9 �Δτ� 10�1 for turbulent flow is introduced to simulate the unsteady friction of tran-

sient pipe flows since the possible range of Δτ is ranged from 10�7 to 10�5 according to the experimental parameters of

Bergant et al. (2001) and Adamkowski & Lewandowski (2006), and the computational time step Δt (being associated with
the grid length Δx, Δt¼Cr·Δx/a).

The TVB method of evaluating the unsteady shear stress τu is

tu(tþ Dt) � 2rn
R

XN
i¼1

Yai(t)e�(nin=R2)Dt þ miR2

ninDt
(1� e�(nin=R2)Dt)(V(tþ Dt)� V(t))

� �
(9)
://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf
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For laminar flow, an efficient implementation of the Zielke weighting function can be realized by the effective weighting

functions with {ni, i¼ 1,…, 9}¼ {26.3744; 102; 102.5; 103; 104; 105; 106;107;108} and {mi, i¼ 1,…, 9}¼ {1; 2.1830; 2.7140;
7.5455; 39.0066; 106.8075; 359.0846; 1107.9295; 3540.6830}.

Similarly, for turbulent flow, Vardy & Brown (2004a, 2007) recommend the adoption of a scaling procedure proposed by

Vitkovsky et al. (2004) to simplify the original Vardy–Brown weighting function, and presented the effective weighting func-
tions with the scaled universal weighting coefficients n�

i (n�
i ¼ ni � B�) and m�

i (m�
i ¼ mi=A�) {n�

i , i¼ 1,…, 17}¼ {10; 101.5;
102; 102.5; 103; 103.5; 104; 104.5; 105; 105.5; 106; 106.5; 107; 107.5; 108; 108.5; 109} and {m�

i , i¼ 1,…, 17}¼ {9.06; �4.05; 12;
8.05; 22.7; 35.2; 65.9; 115; 206; 363; 664; 1,070; 2,060; 3,630; 6,640; 10,700; 26,200}.
Brunone instantaneous acceleration-based unsteady friction model

Brunone et al. (1991) presented the unsteady friction part with the instantaneous local acceleration and instantaneous con-
vective acceleration. Original Brunone formulation was improved as shown below (Bergant et al. 2001; Vítkovský et al.
2006):

JU ¼ k
g

@V
@t

þ a � sign(V)
@V
@x

����
����

� �
(10)

in which sign(V) ¼ 1 for V� 0, and sign(V) ¼ �1 for V, 0. The Brunone friction coefficient k can be predicted either empiri-
cally by trial and error or analytically using Vardy’s shear decay coefficient C*:

k ¼
ffiffiffiffiffiffi
C�p

2
(11)

where C* depends on the flow regime. For laminar flow, C*¼ 0.00476; for turbulent flow, C� ¼ 7:41=[Relog10(14:3=Re
0:05)] pre-

sented by Vardy & Brown (1995), are used in this work.
NUMERICAL SOLUTION BY USING SECOND-ORDER FVM

The first-order fixed-grid MOC scheme is widely used to solve the water hammer equations with the unsteady friction factors
(Bergant et al. 2001; Vítkovský et al. 2006). In this work, since the effects of Courant number (Cr¼ a·Δt/Δx) are considered,
the space-line interpolation fixed-grid MOC scheme can give along Cþ and C� characteristic lines, as follows (Wylie et al.
1993):

Cþ: Hnþ1
i � Hn

i �
aDt
Dx

(Hn
i �Hn

i�1)
� �

þ a
g

Vnþ1
i � Vn

i � aDt
Dx

(Vn
i � Vn

i�1)
� �� 	

þ aDt(JQ(i�1) þ JU(i�1)) ¼ 0 (12)

C�: Hnþ1
i � Hn

i �
aDt
Dx

(Hn
i �Hn

iþ1)
� �

� a
g

Vnþ1
i � Vn

i � aDt
Dx

(Vn
i � Vn

iþ1)
� �� 	

� aDt(JQ(iþ1) þ JU(iþ1)) ¼ 0 (13)

Hnþ1
i and Vnþ1

i can be calculated by combining Equations (12) and (13). However, as shown in Equations (12) and (13),
when Δt, Δx/a (Cr, 1) occurs in some complex pipe system with short pipe section or different pipe material, the space-
line interpolation inevitably causes numerical damping, which is discussed later.

Alternatively, a robust second-order FVM GTS is presented for the water hammer solution considering the unsteady fric-
tion factors. The water hammer equations can be written in the form of a Riemann problem:

@u
@t

þ @f(u)
@x

¼ s(u), f(u) ¼ �Au (14)

where u ¼ H
V

� �
; �A ¼ 0 a2=g

g 0

� �
; and s ¼ 0

�g(JQ þ JU)

� �
.
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Godunov-type scheme for water hammer equations

Figure 2 displays the FVM grid system, in which the pipeline is divided into N reaches by the fixed-grid length Δx. For the ith
control volume, the integration of Equation (14) between control interfaces i� 1/2 and iþ 1/2 yields

Unþ1
i ¼ Un

i �
Dt
Dx

(fniþ1=2 � fni�1=2)þ
Dt
Dx

ðiþ1=2

i�1=2

sdx (15)

where Ui is the average value of u within [i� 1/2, iþ 1/2]; the superscripts n and nþ 1 indicate the t and tþ Δt time levels,

respectively; fiþ1/2 and fi�1/2 are the mass and momentum fluxes at the control interfaces i� 1/2 and iþ 1/2, which is deter-
mined by solving a local Riemann problem at each cell interface (Zhao & Ghidaoui 2004; Toro 2009; Zhou et al. 2017,
2018a).

Applying Rankine–Hugoniot conditions Df ¼ �ADu ¼ �liDu where the eigenvalues l1 ¼ �a and l2 ¼ a, the fluxes at iþ 1/2
for all internal nodes and for t[[tn, tnþ1] can be calculated by the following equation:

fiþ1=2 ¼ �Aiþ1=2uiþ1=2 ¼ 1
2
�Aiþ1=2

1 a=g
g=a 1

� �
Un

L � �1 a=g
g=a �1

� �
Un

R

� 	
(16)

in which �Aiþ1=2 ¼A; Un
L ¼ average value of u to the left of interface iþ 1/2 at time n; and Un

R ¼ average value of u to the
right of interface iþ 1/2 at time n.

The estimation approach of Un
L and Un

R determines the accuracy order of the numerical scheme. In the first-order accuracy,
Un

L ¼ Un
i and Un

R ¼ Un
iþ1. Herein, the MUSCL-Hancock method is used to achieve second-order accuracy in space and time,

while the MINMOD limiter is suggested to avoid the spurious oscillations. The details of the MUSCL-Hancock method and

the MINMOD limiter can be found in Toro (2009).
In the Godunov scheme, the Rankine–Hugoniot condition across each wave of speed li gives the following relations:

a
g
(Viþ1=2 � VR)� (Hiþ1=2 �HR) ¼ 0 (17)

a
g
(Viþ1=2 � VL)þ (Hiþ1=2 �HL) ¼ 0 (18)

For the upstream boundary (i¼ 0), coupling this Riemann invariant of Equation (17) with a head-flow boundary relation

determines u1/2(t)¼ (H1/2, V1/2), f1=2 ¼ �A1=2u1=2(t). Similarly, for the downstream boundary (i¼N), coupling the Riemann
invariant of Equation (18) with a head-flow boundary relation determines uNþ1/2(t)¼ (HNþ1/2, VNþ1/2),
fNþ1=2 ¼ �ANþ1=2uNþ1=2(t). Alternatively, virtual control volumes I�1 and I0 adjacent to I1, and virtual control volumes INþ1

and INþ2 adjacent to IN, are used to realize the direct solution of the Riemann problem for the boundary unknowns U1,
Figure 2 | Grid system in the FVM Godunov scheme.

://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf
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U2, UN�1, and UN. Here, Unþ1
�1 ¼ Unþ1

0 ¼ U1=2, and Unþ1
Nþ1 ¼ Unþ1

Nþ2 ¼ UNþ1=2, where U1=2 and UNþ1=2 are calculated by combin-

ing the Riemann invariant with a head-flow boundary relation at time n.

Incorporation of unsteady friction terms

The unsteady friction item is incorporated into the source terms s(u). Herein, a second-order Runge–Kutta discretization is
introduced in the solution of the source terms s(u) of Equation (15), as the following explicit procedure.

First step:

�U
nþ1
i ¼ Un

i �
Dt
Dx

(fniþ1=2 � fni�1=2) (19)

Second step:

U
nþ1

i
¼ �U

nþ1
i þ Dt

2
s(�U

nþ1
i ) (20)

where s(�U
nþ1
i ) ¼ 0

�g(JQ(�U
nþ1
i )þ JU(Un

i ))

� �
. Note: JQ(�U

nþ1
i ) is updated by using �U

nþ1
i , and JU(Un

i ) is only related to the past

variables Un
i rather than �U

nþ1
i .

Last step:

Unþ1
i ¼ �U

nþ1
i þ Dts(U

nþ1

i ) (21)

where s(U
nþ1

i ) ¼ 0

�g(JQ(U
nþ1

i )þ JU(Un
i ))

 !
. Note: JQ(U

nþ1

i ) is updated by using U
nþ1

i , and JU(Un
i ) is still calculated by the past

variables Un
i .

The calculation procedure of the proposed algorithm is presented in Figure 3.

The Courant–Friedrichs–Lewy (CFL) criterion Cr ¼ aDt=Dx � 1 is satisfied in advance (because a is constant) by taking Dt
small enough for given Δx. However, the second-order Runge–Kutta procedure also has the stability constraint:

U
nþ1

i

�U
nþ1
i

������
������ � 1 and

Unþ1
i

�U
nþ1
i

�����
����� � 1 (22)

Thus, the permissible time step for the source term (Δtmax,s) is given by:

Dtmax,s ¼ min �4
�U
nþ1
i

s(�U
nþ1
i )

, � 2
�U
nþ1
i

s(U
nþ1

i )

0
@

1
A (23)

Finally, the maximum permissible time step is given by:

Dtmax,s ¼ min(Dtmax,CFL, Dtmax,s) (24)

In the water hammer simulations of this work, when Δt¼ Δx/a, a little stability may occur due to the unsteady friction con-
sidered in the source terms s(u). Thus, the stability constraint Cr ¼ aDt=Dx � 0:9 is suggested, in which Cr near 0.9 is validated

to get stable and considerably accurate results.

RESULTS AND DISCUSSION

The specific purposes of this section are (1) validation of the second-order FVM GTS unsteady friction model by comparing
the calculated and measured data; (2) exploration of the accuracy and efficiency of various unsteady friction models in the
om http://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf
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Figure 3 | Procedure of the proposed algorithm.
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water hammer simulations by using the second-order FVM GTS; and (3) comparison of the stability and the accuracy of both
the second-order FVM GTS and the MOC in the water hammer unsteady friction simulations by using different Courant

number and grid number.

Validations of original convolution-based model and Brunone model in 2nd GTS

The original accurate convolution-based models (Zielke model and Vardy–Brown model) and the Brunone instantaneous
acceleration-based model in both the proposed second-order FVM GTS and the MOC scheme are used to simulate the

five experimental cases listed in Table 1. In the simulations, grid number N¼ 256; Cr¼ 0.9 and 1.0 are, respectively, used
in the second-order FVMGTS and the MOC scheme. Figures 4 and 5 display the computed and observed pressure oscillation
patterns of water hammer events in five cases. The experimental pressure was recorded by a pressure transducer at the pipe

end.
The experimental Case 1 with initial velocity V0¼ 0.1 m/s and Re¼ 1870 is of laminar flow. So, Zielke model as the orig-

inal accurate laminar-flow unsteady friction model is chosen to simulate the water hammer pressures in Case 1. Figure 4(a)

shows that the quasi-steady friction model only predicts the first pressure peak, but seriously underestimates the pressure
damping in the later pressure oscillations. The second-order GTS Zielke model can well reproduce the pressure attenuation.
Moreover, the second-order GTS Brunone model seems to better predict the period of the whole pressure histories, but to

produce a little excessive pressure damping.
Case 2 with Re¼ 3750 and Case 3 with Re¼ 5600 represent low Reynolds number turbulent flows. So, Vardy–Brown

model as the original accurate turbulent-flow unsteady friction model is chosen to simulate the water hammer press-
ures in Cases 2 and 3. Compared with Case 1, the similar behavior and conclusion of both the quasi-steady friction

model and the second-order GTS unsteady friction models can be found in Cases 2 and 3, as shown in Figure 4(b) and
4(c). In the cases of Reynolds number of a higher order of magnitude (104) shown in Figure 4(d) and 4(e), the second-
order GTS Vardy–Brown model and the Brunone model can still better reproduce the experimental pressure traces

compared with the quasi-steady model.
To further validate the proposed second-order GTS, the classic MOC scheme is also introduced to simulate the experimen-

tal cases in Table 1. Figure 5 gives the pressure oscillations predicted by Zielke model, Vardy–Brown model, and the Brunone
://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf



Figure 4 | Comparison of the measured data and the results calculated in the second-order GTS: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4;
and (e) Case 5.
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model in the MOC scheme. Comparisons of the results in Figures 4 and 5 indicate that the proposed second-order GTS
unsteady friction models can produce the nearly identical pressure oscillations with the classic MOC unsteady friction
models.

To quantificationally evaluate the proposed models, the root-mean-squared error (RMSE) and Nash–Sutcliffe efficiency coef-
ficient (NSE, also known as R2) are used to identify the error magnitude. Table 2 shows simulation error values in numerical
simulations of experimental Cases 1 and 3 (representing the laminar and turbulent flows, respectively). In theory, as the RMSE

value decreases and the NSE is close to 1, the proposed model becomes more accurate. Results in Table 2 also show that (1) the
proposed second-order GTS has the nearly identical accuracy with the classic MOC and (2) the unsteady models (Vardy–Brown
model and Brunone model) can obtain more accurate results than the quasi-steady model.

Overall, the proposed second-order GTS unsteady friction models are capable of well reproducing the experimental
pressure oscillations and accurately predicting the pressure damping of the water hammer pipe flow.
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Figure 5 | Comparison of the measured data and the results calculated in the MOC scheme: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; and
(e) Case 5.
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Evaluation of the second-order GTS TVB model

Some efficient simplified convolution-based models have been developed to approximate the original accurate convolution-
based models (Zielke model and Vardy–Brown model). However, the simplified models have different application range

associated with values of Dt ¼ 4nDt
D2 . The efficient TVB model (Vardy & Brown 2004a, 2007) with the ranges of 10�8�

Δτ,∞ for laminar flow and 10�9 �Δτ� 10�1 for turbulent flow is preliminarily chosen for the current simulations, since
the range of Dt is around from 10�7 to 10�5 in this work. Figure 6(a)–6(e) gives the numerical pressure oscillations of
Cases 1–5 computed by the TVB model, which are compared with those calculated by the Zielke model and the Vardy–

Brown model.
Figure 6(a)–6(e) indicates that the efficient TVB model has the identical accuracy with the original accurate Zielke model

and the Vardy–Brown model in the simulations of water hammer events. Importantly, the TVB model is much more efficient

than the original convolution-based models. For example, Lenovo ThinkPad T440 with Intel(R) Core(TM) i7-4510 U CPU
://iwa.silverchair.com/jh/article-pdf/23/4/879/910266/jh0230879.pdf



Figure 6 | Comparison of the results calculated by the 2nd GTS Vardy–Brown model and the 2nd GTS TVB model: (a) Case 1; (b) Case 2; (c)
Case 3; (d) Case 4; and (e) Case 5.

Table 2 | Simulation error values for the experimental cases

Case no. Model RMSE (m) NSE or R2

Case 1 MOC Quasi-steady 2.990 0.911
Zielke 2.623 0.932
Brunone 2.351 0.945

2nd GTS Quasi-steady 2.990 0.911
Zielke 2.574 0.934
Brunone 2.435 0.941

Case 3 MOC Quasi-steady 4.020 0.980
Vardy–Brown 2.885 0.990
Brunone 2.877 0.990

2nd GTS Quasi-steady 4.020 0.980
Vardy–Brown 2.883 0.990
Brunone 2.832 0.990
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and 8 GB RAM were used here to run the Fortran Codes of simulating five experimental cases. The computational time for

different models in the numerical simulation of three cases is shown in Table 3. The TVB model takes only a few seconds to
calculate the results in each case of Figure 4, whereas the Zielke model or Vardy–Brown Model consumes more than 1 h.

Consequently, the second-order GTS TVB model is accurate and efficient, and can represent the original accurate convolu-

tion-based models (Zielke model and Vardy–Brown model) to describe the unsteady friction in the simulations of transient
pipe flow.

Stability of the second-order GTS and the MOC scheme for unsteady friction models

Courant number Cr and grid number N are the most important factors in determining the numerical accuracy. The exper-
imental Case 1 was simulated by both the TVB model and the Brunone model in the solutions of both the proposed
second-order GTS and the MOC scheme, in which N¼ 32 or 256 computational reaches and Cr¼ 0.1, 0.5, 0.9, and 1.0
(Cr¼ aΔt/Δx).

The MOC scheme

Figure 7 gives the pressure oscillations simulated by the MOC TVB model with N¼ 256 and 32, Cr¼ 0.1, 0.5, and 1.0. It can

be found in Figure 7(a) that as Courant number decreases from 1.0 to 0.1, obvious numerical damping occurs after the first
several periods of the pressure oscillations. In particular, when the coarse grid is used (N¼ 32 in Figure 7(b)), the numerical
attenuation in the pressure results becomes more severe. The same behavior of numerical damping also arises in the simu-
lation results of the MOC Brunone model, as shown in Figure 8(a) and 8(b). Actually, the numerical damping is attributed

to the space-line interpolation of the fixed-grid MOC scheme. As shown in Equations (12) and (13), when Cr¼ aΔt/Δx, 1,
the linear interpolation approach is used to calculate the variables at the MOC nodes at n time.

The second-order Godunov-type scheme

Figures 9 and 10 display the pressure results of Case 1 predicted by both the second-order GTS TVB model and the second-
order GTS Brunone model with N¼ 256 and 32, Cr¼ 0.1, 0.5, and 0.9. It can be found in Figures 9(a) and 10(a) that the
pressure oscillations of Cr¼ 0.1 and 0.5 are nearly consistent with that of Cr¼ 0.9 in the simulations of both the second-

order GTS TVB model and the second-order GTS Brunone model. Even when coarse grid and small Courant number are
used (in Figures 9(b) and 10(b)), the second-order GTS only produces slight numerical attenuation. Therefore, when Courant
Table 3 | Computational time of the Brunone model and the TVB model in the schemes of the MOC and the second-order GTS at the same
conditions

Model – Computation time Case 1 Case 2 Case 3 Case4 Case5

2nd GTS Zielke or Vardy–Brown model-T1 (s) 6,375 6,680 6,044 7,450 8,163

2nd GTS TVB model-T2 (s) 8.594 8.764 7.262 9.615 10.465

Figure 7 | Influences of Courant number and grid number in the MOC TVB model: (a) N¼ 256; (b) N¼ 32.
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Figure 9 | Influences of Courant number and grid number in the second-order GTS TVB model: (a) N¼ 256; (b) N¼ 32.

Figure 10 | Influences of Courant number and grid number in the second-order GTS Brunone model: (a) N¼ 256; (b) N¼ 32.

Figure 8 | Influences of Courant number and grid number in the MOC Brunone model: (a) N¼ 256; (b) N¼ 32.
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number is less than one, for the given Courant number and grid number, the second-order GTS is much more accurate than
the MOC scheme.

Importantly, the second-order GTS is much more efficient than the MOC scheme. Table 4 presents the RMSE values and

NSE coefficients of both MOC and the second-order GTS Brunone model when Cr¼ 0.5 with different grid numbers. It can
be found that, for example, the second-order GTS with a sparse grid (N¼ 32) and small Courant number (Cr¼ 0.5) in
Figure 10(b) can produce nearly consistent accuracy with the MOC scheme with the fine grid (N¼ 256) in Figure 8(a).
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Table 4 | Error values when Cr¼ 0.5

Model Cr N RMSE NSE or R2

MOC Brunone 0.5 32 4.589 0.792
256 2.115 0.956

Second-order GTS Brunone 0.5 32 2.268 0.949
256 0.189 1.000
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In all the numerical simulations of this paper, Lenovo ThinkPad T440 with Intel(R) Core(TM) i7-4510 U CPU and 8 GB
RAMwas used here to run the Fortran Codes of simulating all the cases. The computational time in the numerical simulations

of Case 1 is shown in Table 5. When Courant number is less than one, for example Cr¼ 0.1 or 0.5 as shown in Table 5, for the
same accuracy, the efficiency of the second-order GTS Brunone model is nearly 20 times that of the MOC Brunone model.
More surprisingly, the second-order GTS TVB model is more than 100 times faster than the MOC TVB model.

Overall, for the water hammer simulations, the second-order GTS is accurate, efficient, and stable for Courant number less
than one, even when a sparse grid is used. This is so important for the complicated pipe system, since it is difficult to ensure
that Courant number is exactly equal to one, which inevitably causes the numerical dissipation in the traditional MOC
scheme.

Efficiency of the second-order GTS and the MOC scheme for unsteady friction models

Numerical efficiency is also an important factor to evaluate the numerical model. Table 6 shows the computational time of
Brunone model and TVB model in both the MOC scheme and the second-order GTS.
Table 5 | Computational time of the MOC scheme and the second-order GTS for the given numerical accuracy

Model

MOC scheme Second-order GTS

T9/T10Case 1 T9 (s) Case 1 T10 (s)

Brunone model N¼ 256, Cr¼ 0.5 0.7344 N¼ 32, Cr¼ 0.5 0.0313 23.5
N¼ 256, Cr¼ 0.1 3.5471 N¼ 32, Cr¼ 0.1 0.1412 25.1

TVB model N¼ 256, Cr¼ 0.5 32.1412 N¼ 32, Cr¼ 0.5 0.3125 102.9
N¼ 256, Cr¼ 0.1 162.1875 N¼ 32, Cr¼ 0.1 1.3594 119.3

Table 6 | Computational time of the Brunone model and the TVB model in the schemes of the MOC and the second-order GTS at the same
conditions

Case 1

N¼ 256 N¼ 32

Cr¼ 0.5 Cr¼ 0.1 Cr¼ 0.5 Cr¼ 0.1

MOC Brunone model-T5 (s) 0.7344 3.5471 0.0156 0.0681

MOC TVB model-T6 (s) 32.1412 162.1875 0.8125 3.1251

2nd GTS Brunone model-T7 (s) 1.6412 8.3282 0.0313 0.1412

2nd GTS TVB model-T8 (s) 12.0781 63.6702 0.3125 1.3594

T6/T5 43.8 45.7 52.1 45.9

T8/T7 7.4 7.6 10.0 9.6

T7/T5 2.2 2.3 2.0 2.1

T6/T8 2.7 2.5 2.6 2.3
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As shown in Table 6, for the given simulation conditions (Cr and N ), the Brunone model is more efficient than the TVB

model in both the MOC scheme and the second-order GTS. The main reason is that the computation of the weighting func-
tions (Equation (9)) in the TVB model takes more time and storage than Brunone model.

Interestingly, for the given Cr and N, the second GTS TVB model is two times faster than the MOC TVB model, but the

second GTS Brunone model is a little slower than the MOC Brunone model. The main reasons are (1) in the MOC
scheme, each calculation of the pressure and velocity at i node involves twice computations of the unsteady friction items
at i� 1 and iþ 1 nodes, as shown in Equations (12) and (13); (2) in the Godunov scheme, each calculation of the pressure
and velocity at i cell only involves once computation of the unsteady friction items at i cell, as shown in Equations (20) and

(21); (3) the MUSCL-Hancock method of the Godunov scheme takes more computations than the Brunone formulation, but
far less than the weighting function of the TVB model.

Importantly, as discussed in the previous section, as shown in Table 5, for the same accuracy, both the Brunone model and

the TVB model in the second-order GTS are much faster than those in the MOC scheme.
CONCLUSIONS

The second-order FVM GTS unsteady friction models are developed to simulate the water hammer events in pipe systems.
The explicit-solution source item approach is proposed for the GTS to easily incorporate various forms of the existing
unsteady friction models, including original accurate convolution-based models (Zielke model and Vardy–Brown model),

the efficient simplified convolution-based models (TVB model), and the Brunone instantaneous acceleration-based model.
Results calculated by the proposed second-order GTS unsteady friction models are compared with published experimental
data as well as predictions by the classical MOC scheme. The main conclusions are:

1. The explicit-solution source item approach is simple and feasible to incorporate various forms of the existing unsteady fric-
tion models in the water hammer solution of the second-order FVM GTS.

2. Both the experimental data and the results of the classic MOC scheme validate that the proposed second-order GTS
unsteady friction models are capable of well reproducing the experimental pressure oscillations and accurately predicting
the pressure damping of the water hammer pipe flow.

3. For the convolution-based unsteady friction models in the second-order Godunov scheme, the simplified TVB model has
the identical accuracy with the original accurate Zielke model and the Vardy–Brown model in the current simulations of
water hammer events. The proposed second GTS TVB model is much more efficient than the original convolution-based

models.
4. The proposed second-order GTS unsteady friction models are accurate, efficient, and stable even for Courant number less

than one. For the given Courant number and the same accuracy, the second-order GTS unsteady friction models are far
more efficient than the MOC unsteady friction models.

5. The Brunone instantaneous acceleration-based model is computationally faster than the accurate convolution-based
models in both the second-order GTS and the classic MOC scheme.
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