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Augmented HLL Riemann solver including slope source

term for 1D mixed pipe flows

Shangzhi Chen, Feifei Zheng and Xin Liu
ABSTRACT
In this paper, the augmented version of finite volume Harten–Lax–van Leer (HLL) solver, including

source terms, is extended to free-surface and pressurized mixed pipe flows over complex and

frictional topography. This augmented HLL Riemann solver is employed for the flux approximation at

the cell interface, where source terms are split into two parts based on the wave propagation speed.

The friction term is treated using a splitting implicit method to maintain stability over dry beds. The

Preissmann slot method is adopted to reproduce pressurized flow in the conduit. The performances

of the numerical model are investigated by several numerical tests and compared with existing

methods showing clear improvements.

Key words | augmented HLL Riemann solver, mixed pipe flow, Preissmann slot method, shallow

water equations
HIGHLIGHTS

• An augmented HLL Riemann solver is extended to mixed pipe flows over complex topography.

• Superiority simulating steady flows over complex topography with different hydraulic flow

regimes.

• Capability simulating transient dambreak pipe flow, including wetting or drying front and the

calculation of the friction term.
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INTRODUCTION
In the context of climate change and rapid urbanization

over the last decades, risks of urban flooding have greatly

increased worldwide with increased runoff at local catch-

ment, that devastating consequences occurred on both

infrastructures and human safety (Zheng et al. ). To

improve risk assessment and evacuation management,

flood inundation models are crucial tools to predict flood

hydrodynamics in cities (Mignot et al. ; Hunter et al.

; Arrault et al. ; Teng et al. ; Chen et al. ).
As an integrated component of urban flooding processes,

drainage networks composed of junctions and pipes are com-

monly modeled by different numerical approaches (Martins

et al. ; Li et al. ). Pipe flows, which are the basic

element of drainage network, are often modeled by the 1D

shallow water equations (Kerger et al. a, b).

During urban flooding, transitions in pipes between free-

surface and pressurized flow conditions can take place

repeatedly. This phenomenon has been studied by many

researchers (Bousso et al. ) and can be modeled using

a method like the shock-fitting method (Wiggert ) or

the shock-capturing method (Abbott & Cunge ;

Vasconcelos et al. ; Vasconcelos et al. ). The exten-

sion of free-surface shallow water equations to the
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pressurized flow to capture the interface has made the

shock-capturing method more attractive than the cumber-

some shock-fitting method. Among them, the Preissmann

slot method (PSM) has been widely used for its simplicity

in model implementation. Lately, Kerger et al. (a,

b) extended the classical PSM by developing a negative

slot to reproduce subatmospheric pressurized flow, and

Maranzoni et al. () extended 1D PSM to 2D accounting

for 2D pressurized flow under the bridge. Except the PSM,

Vasconcelos et al. () and Vasconcelos et al. ()

developed a two-component pressure approach with the

assumption that the pipe walls are elastic. In this way, var-

ious unsteady flows can be simulated effectively, including

free-surface flow, pressurized flow, mixed flow and sub-

atmospheric pressurized flow. PSM is used in the current

study for mixed pressurized and free-surface pipe flows.

1D shallow water equations may be solved numerically

by using a Godunov-type finite volume scheme (Toro &

Garcia-Navarro ). When tackling complex topography

in the framework of Godunov-type scheme, the slope

source term needs to be treated properly to reproduce flow

hydrodynamics. A number of numerical techniques dealing

with the source term have been reviewed in the literature

(Guinot ) to construct well-balanced schemes. For

instance, Liang & Marche () proposed a pre-balanced

shallow water equation that no special treatment is needed

for the source term considering pressure balancing. For cir-

cular cross-sections like pipe flow, Capart et al. ()

reconstructed the momentum flux to account for slope and

non-prismaticity by considering the balance of hydrostatic

pressure with the approximated water surface level to

achieve hydrostatic equilibrium, which was also employed

for mixed pipe flow modeling by Sanders & Bradford

() and Aureli et al. () over complex topography.

The balanced property of the above-mentioned schemes is

achieved by forcing equilibrium among fluxes and source

terms in cases of quiescent water. However, errors on com-

puted discharge will accumulate around the bottom

variation, which can be observed in the results published

in Liang & Borthwick (). To overcome this problem,

Murillo & García-Navarro () presented augmented ver-

sions of the HLL Riemann solvers for shallow water flows,

by incorporating an extra wave that accounts for the pres-

ence of the source term and improved results have been
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
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obtained. In the work of Murillo & García-Navarro (),

LeVeque () and Murillo & García-Navarro (), only

rectangular cross sections in 1D open channel flows are

considered.

Those previous works are extended in the present contri-

bution to circular cross-sections and mixed pipe flows over

complex topography. Based on Murillo & García-Navarro

() and Murillo & García-Navarro (), a source term

adapted to circular sections has been added to the continuity

equation that along with the numerical scheme, and

upgraded celerity calculations, leads to improved simulations

of free-surface and mixed circular pipe flows. Following

Murillo & García-Navarro () and Murillo & García-

Navarro (), the source term is discretized approximately

as a succession of discontinuities separating regions of con-

stant state and split into two parts based on the wave

propagation speed. Governing equations are solved using a

Godunov-type scheme with an augmented HLL approximate

Riemann solve developed for mixed flow (León et al. ).

The friction term is included and discretized by a splitting

implicit method (Liang & Marche ) to maintain stability

for flows over dry beds.

The paper is organized as follows: 1D shallow water

equations with conserved variables A (flow area) and Q

(total discharge) are presented in the ‘Governing equations’

sectionwith the introduction of PSM formixedflowmodeling.

In the ‘Numerical scheme’ section, a first-order Godunov-type

scheme with augmented HLL Riemann solver, including

source terms, is extended to the studied governing system for

mixed pipe flows. The adaptations of the numerical method

presented for simulating free-surface and mixed circular pipe

flows are tested against the method from Sanders & Bradford

() in the ‘Numerical experiments’ section. Conclusions are

drawn in the ‘Conclusions’ section.
GOVERNING EQUATIONS

A hyperbolic conservation law of the 1D shallow water

equations with the conserved variables A and Q may be

expressed in a matrix form as:

@U
@t

þ @F
@x

¼ S (1)
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where t denotes time and x is the distance.U, F and S are the

vectors of conserved variables, fluxes and source terms,

respectively, and are given by:

U ¼ A
Q

� �
F ¼

Q
Q2

A
þ gI

24 35 S ¼ 0
gA(S0 � Sf)

� �
(2)

where A ¼ Ð h0 σ(η)dη is the flow area, Q is the total dis-

charge, g is the gravitational acceleration, S0 ¼ �@zb=@x is

the bottom slope term (zb is the bottom elevation) and I is

the hydrostatic pressure force term, which is defined as:

I ¼
ðh
0

[h� η]σ(η)dη (3)

where h represents the water depth, and σ(η) is the cross-sec-

tional width at elevation η above the bottom (Guinot ).

Sf is the friction slope and may evaluated as:

Sf ¼ n2
m
QjQj
A2R

4
3
h

(4)

where nm is Manning’s roughness coefficient, and Rh is the

hydraulic radius.

To simulate mixed flow with the classical shallow water

equations in closed conduit, the PSM is used that a narrow

slot is inserted into the crown of the conduit. The slot width

can be determined based on the acoustic wave velocity,

which is defined as:

Ts ¼ gAfull

a2
(5)

where Ts is the slot width, Afull is the conduit cross-sectional

area, and a is the conduit acoustic wave velocity. For circu-

lar pipe with diameter D, the flow area A and pressure term

I for free-surface and pressurized flow based on PSM are
://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
given, respectively, as follows (Sturm ):

A ¼
D2

8
(θ � sinθ) h � D

Afull þ (h�D)Ts h>D

8<: (6)

I ¼
D3

24
3sin

θ

2

� �
� sin3 θ

2

� �
� 3

θ

2

� �
cos

θ

2

� �� �
h � D

Afull h�D
2

� �
þ Ts

(h�D)2

2
h>D

8>>><>>>: (7)

where θ is the wetted angle.
NUMERICAL SCHEME

In a finite volume first-order Godunov-type scheme, the vari-

ables can be updated to the next time step based on the

following formula:

Unþ1
i ¼ Un

i �
4t
4x

(Fiþ1=2 � Fi�1=2)þ4tSi (8)

where the subscript i is the cell index, and the superscript n

is the time index. 4t and 4x are the time step and cell size,

respectively. Fiþ1=2 and Fi�1=2 are the fluxes calculated at the

interface iþ 1=2 and i� 1=2, respectively, and Si is the

source term.
Numerical flux calculation

Numerical fluxes are estimated by solving the Riemann pro-

blem at the cell interface. For the 1D mixed flow modeling,

interface fluxes Fiþ1=2 and Fi�1=2 are calculated with the

HLL approximate Riemann solver (Harten et al. ;

León et al. ; Sanders & Bradford ). Taking the

cell interface i� 1=2 as an example, the fluxes Fi�1=2 can

be evaluated by solving a local Riemann problem, i.e.,

Fi�1=2 ¼ F(U�
i�1=2,L, U

�
i�1=2,R), in the context of a Godunov-

type scheme. U�
i�1=2,L and U�

i�1=2,R are the left and right Rie-

mann states, which is used to define the Riemann problem

and hence calculate the fluxes. The solution of the Riemann

problem is approximated by an intermediate region U� of

constant state separated from the left and right states UL

and UR by two shocks. Therefore, the numerical flux Fi�1=2
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is (Toro ):

Fi�1=2 ¼
FL if λ� > 0
λþFL � λ�FR þ λþλ�(UR �UL)

λþ � λ�
if λ� � 0 � λþ

FR if λþ < 0

8>><>>:
(9)

where λ� and λþ are the left and right characteristic wave

speeds calculated by (Toro ; Fraccarollo & Toro ):

λ� ¼ min(uL � cL, u� � c�) λþ ¼ max(u� þ c�, uR þ cR)

(10)

in which u is the averaged flow velocity defined as u ¼ Q=A

and u� is calculated by:

u� ¼ 1
2
(uL þ uR)þ 1

2
(ϕL � ϕR) (11)

For the circular pipe, ϕ is related to θ and its approxi-

mations are given by Sanders & Bradford ():

ϕL,R
≈ β

ffiffiffiffiffiffiffi
gD
8

r
sin

θL,R
4

� �
, β ¼ 6:41 h � D

¼ 2cL,R h>D

8<: (12)

and subsequently,

ϕ� ¼ 1
2
(ϕL þ ϕR)þ

1
2
(uL � uR) (13)

When ϕ� � β
ffiffiffiffiffiffiffiffiffiffiffiffi
gD=8

p
, the flow is under free-surface con-

dition and the intermediate wave speed c� is calculated

using

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gD(θ� � sinθ�)
8sin(θ�=2)

s
(14)

with

θ� ¼ 4arcsin
ϕ�

β
ffiffiffiffiffiffiffiffiffiffiffiffi
gD=8

p !
(15)
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf

4

When ϕ� > β
ffiffiffiffiffiffiffiffiffiffiffiffi
gD=8

p
, the water surface level may reach

the crown of the pipe and the flow becomes pressurized.

The intermediate wave speed c� is then set to be the speed

of the gravity wave c calculated based on the slot width Ts.
Bottom slope source term calculation

The stationary-preserving method to treat the bottom slope

source term used here is first presented by Capart et al.

() for natural channel and further developed by Sanders

& Bradford () for mixed flow modeling. As illustrated in

Figure 1, by assuming the slope of the water surface is mild

and the streamwise component of the sidewall inclination is

small, momentum balance is approximated using an average

elevation of water surface �ζ ¼ (ζ1 þ ζ2)=2 within the control

volume instead of the local free-surface elevation ζ. The

overall pressure thrust acting on control volume ρgIall is

approximated as:

ρgIall ≈ [ρgI � ρgIj�ζ ]x2x1 (16)

As presented by Capart et al. (), when the channel is

rectangular in shape and has a constant width (regardless of

the slope of the water surface) and when the water surface is

horizontal (regardless of channel geometry), momentum

balance is achieved exactly. The bottom slope source term

is treated explicitly and is calculated as:

(gAS0)
n
i ¼ � 1

4x
g I hi þ 1

2
4zb,i

� �
� I hi � 1

2
4zb,i

� �� �
(17)

where 4zb,i ¼ zb,iþ1=2 � zb,i�1=2.

In the following, the above-described schemes with

Equation (17) are referred to as the ‘Sanders & Bradford

()’ scheme.
Augmented HLL Riemann solver including slope source

term

In this section, the numerical scheme on source term discre-

tization presented by Murillo & García-Navarro () and

Murillo & García-Navarro () is extended from rectangu-

lar shape to the currently studied pipe flow system, which is



Figure 1 | Hydrostatic balance of channel reach featuring irregular bathymetry adapted from Capart et al. (2003), where ζ is the free-surface elevation.
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based on the projection of the source term onto the Jaco-

bian’s eigenvector basis.

The introduction of source term in the Riemann solver

has added a stationary shock wave into the source at the dis-

continuity point x ¼ 0: Two inner constant states U�
L and Uþ

R

are introduced as in Figure 2. Therefore, the selection of esti-

mation for the wave speed cannot be directly applied to the

cases with the source term. As suggested by Murillo &

García-Navarro (), the wave speeds λ� and λþ are

approximated using:

λ� ¼ min(fλ�, uL � cL, u� � c�) jS2j ¼ 0fλ� jS2j ≠ 0

(
(18)

λþ ¼ max(fλþ, u� þ c�, uR þ cR) jS2j ¼ 0fλþ jS2j ≠ 0

(
(19)
Figure 2 | Augmented HLL Riemann solutions consisted of two inner constant states

separated by a stationary shock wave at x ¼ 0.

://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
where S2 ¼ �gA(zb,iþ1 � zb,i), fλ� ¼ ~u� ~c and fλþ ¼ ~uþ ~c are

wave estimates of Roe () in Riemann problems when

there are source terms (variable bottom topography),

which are calculated as:

~c ¼ c
AL þAR

2

� �
, ~u ¼ uR

ffiffiffiffiffiffiffi
AR

p þ uL
ffiffiffiffiffiffiffi
AL

pffiffiffiffiffiffiffi
AR

p þ ffiffiffiffiffiffiffi
AL

p (20)

As the approximate Riemann solution consists of only

discontinuities and is constructed as a sum of jumps or

shock for Roe’s linearization, the Harten-Hyman entropy

fix (Toro ) is used to avoid unphysical results. In the

case of left transonic rarefaction λ1i < 0< λ1iþ1, where

λ1i ¼ uL � cL and λ1iþ1 ¼ uR � cR, the wave speed fλ� can be

approximated as:

fλ� ≈ λ1i
(λ1iþ1 �fλ�)
(λ1iþ1 � λ1i )

(21)

For a right transonic rarefraction λ2i < 0< λ2iþ1, where

λ2i ¼ uL þ cL and λ2iþ1 ¼ uR þ cR, the wave speed fλþ can be

approximated as:

fλþ ≈ λ2iþ1
(fλþ � λ2i )

(λ2iþ1 � λ2i )
(22)

The slope source term is discretized approximately as a

succession of discontinuities separating regions of constant
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state as the space derivative of the flux in upwinding

schemes (Guinot ):

ΔxS
nþ1
2
i ¼

X
p

β(p)K(p) ¼ Kβ

β ¼ K�1ΔxS
nþ1
2
i

8>><>>: (23)

where β is a vector formed by components β(p) of the wave

strengths of the source term, and K is the eigenvectors of

1D shallow water Equation (1) with the characteristic

form with K�1:

K�1 ¼ 1
λþ � λ�

λþ �1
�λ� 1

� �
(24)

The total source term in Equation (23) is split into two

parts:

• one part that corresponding to negative wave speeds,

λp < 0, is assigned to the cell on the left-hand side of

the initial discontinuity.

• another part that corresponding to positive wave speeds,

λp > 0, is assigned to the cell on the right-hand side of the

initial discontinuity.

Therefore, the source term can be split into two parts

based on the wave speeds:

Si ¼ Sþ
i�1=2 þ S�

iþ1=2 (25)

The discretization of Equation (8) can be rewritten as:

Unþ1
i ¼ Un

i þ
Δt
Δx

[(Fi�1=2 þ Sþ
i�1=2)� (Fiþ1=2 � S�

iþ1=2)] (26)
The derivation starts from the calculation of wave

strengths β at interface i� 1=2 between the cell i� 1 and i:

βnþ1=2
i�1=2 ¼ K�1ΔxSnþ1=2

i�1=2

¼ 1
λþ � λ�

λþ �1

�λ� 1

� �n
i�1=2

0

gAnþ1=2
i�1=2 (zb,i�1 � zb,i)

" #

¼
gAnþ1=2

i�1=2

λþ � λ�
(zb,i�1 � zb,i)

�1

1

� �
(27)
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
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The source term Si�1=2 at the interface i� 1=2 is split

into two terms S�
i�1=2 and Sþ

i�1=2 based on the wave speeds:

S�
i�1=2 ¼

0 λ� � 0
β(1)K(1) λ� < 0 and
β(1)K(1) þ β(2)K(2) λþ < 0

8<: λþ � 0 (28)

Sþ
i�1=2 ¼

β(1)K(1) þ β(2)K(2) λ� � 0
β(2)K(2) λ� < 0
0 λþ < 0

8<: and λþ � 0 (29)

with

β(1)K(1) ¼
gAnþ1=2

i�1=2

λþ � λ�
(zb,i�1 � zb,i)

�1
�λ�

� �
(30)

β(2)K(2) ¼
gAnþ1=2

i�1=2

λþ � λ�
(zb,i�1 � zb,i)

1
λþ

� �
(31)

In subcritical flow, the wave propagates to both the

upstream and the downstream. Therefore, S�
i�1=2 ¼ β(1)K(1)

and Sþ
i�1=2 ¼ β(2)K(2).

For the momentum term, the second component of the

flux at the interface i� 1=2 is,

Sþ,2
i�1=2 ¼ β(2)K(2) ¼

gAnþ1=2
i�1=2

λþ � λ�
λþ(zb,i�1 � zb,i) (32)

The flow area Anþ1=2
i�1=2 at the interface i� 1=2 between the

cell i� 1 and i is reset to Anþ1=2
i�1=2 ¼ Ai�1 þAi=2:

Sþ,2
i�1=2 ¼ �g

λþ

λþ � λ�
Ai�1 þAiover2ð Þ(zb,i � zb,i�1) (33)

The same derivation can be applied to S�,2
i�1=2, and we

can get,

S�,2
i�1=2 ¼ g

λ�

λþ � λ�
Ai�1 þAi

2

� �
(zb,i � zb,i�1) (34)

For the continuity equation, the source terms developed

by Murillo & García-Navarro () are added to the
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Riemann solver as:

Sþ,1
i�1=2 ¼ �g

λ�λþ

λþ � λ�
Ai�1 þAi

2

� �
zb,i � zb,i�1fλþfλ�
� �

(35)

S�,1
i�1=2 ¼ g

λ�λþ

λþ � λ�
Ai�1 þAi

2

� �
zb,i � zb,i�1fλþfλ�
� �

(36)
Three flow conditions related to dry bed are illustrated

in Figure 3:

• hi�1=2,L < hmin, hi�1=2,R > hmin and ζ i�1=2,R < zbi�1=2,L

As illustrated in Figure 3(a), the left cell is dry and the

right cell is wet but not high enough to flood the left cell.

In this flow condition, no flux exchange takes place. To
Figure 3 | Three flow conditions with dry bed at cell interface i � 1=2. hmin ¼ 10�4 m is the m

://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
balance the flux gradient and source term, the source

terms are given as:
F1
i�1=2 ¼ 0 F2

i�1=2 ¼ 0

S�,1
i�1=2 ¼ 0 Sþ,1

i�1=2 ¼ 0

S�,2
i�1=2 ¼ 0 Sþ,2

i�1=2 ¼ gIi

8>><>>: (37)

• hi�1=2,R < hmin, hi�1=2,L > hmin and ζ i�1=2,L < zbi�1=2,R

As illustrated in Figure 3(b), for the flow condition that

right cell is dry and left cell is wet and no flux exchange
inimum water depth for dry bed.
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occurs, the source terms are given as:

F1
i�1=2 ¼ 0 F2

i�1=2 ¼ 0

S�,1
i�1=2 ¼ 0 Sþ,1

i�1=2 ¼ 0

S�,2
i�1=2 ¼ �gIi�1 Sþ,2

i�1=2 ¼ 0

8>><>>: (38)

• hi�1=2,L < hmin and hi�1=2,R < hmin

As illustrated in Figure 3(c), for the flow conditions that

both cells are dry, all the terms are calculated as 0 as below:

F1
i�1=2 ¼ 0 F2

i�1=2 ¼ 0

S�,1
i�1=2 ¼ 0 Sþ,1

i�1=2 ¼ 0

S�,2
i�1=2 ¼ 0 Sþ,2

i�1=2 ¼ 0

8>><>>: (39)
Friction calculation

The implicit treatment for friction term is necessary to guar-

antee the stable simulation in the very shallow cells due to

that such terms become stiff with very small water depth

in its denominator. The friction source terms are evaluated

using a splitting point-implicit scheme for better stability fol-

lowed by Liang & Marche (), which is equivalent to

solve the following ordinary differential equations:

dU
dt

¼ Sf (40)

where Sf ¼ [0� gASf ]
T with Sf ¼ n2

mQjQj=A2R4=3
h . The fric-

tion term can be isolated and expanded for the

momentum equation dQ=dt ¼ S0f (S0f ¼ �gASf) using a

Taylor series as:

S0nþ1
f ¼ S0nf þ @S0f

@Q

 !n

ΔQþ o(ΔQ2) (41)

where ΔQ ¼ Qnþ1 �Qn. Ignoring the higher-order terms, the

following time-marching formula can then be obtained for Q:

Qnþ1 ¼ Qn þ Δt
S0f
D

 !n

¼ Qn þ ΔtFf (42)

where D ¼ 1� Δt(@S0f=@Q)n ¼ implicit coefficient, and Ff is
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
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the friction source term including the implicit coefficient.

By noting that the maximum effect of friction force is to

stop the fluid, i.e., Qnþ1Qn > 0, the criteria for Ff can be

derived (Liang & Marche ):

Ff
� �Qn=Δt Qn � 0
� �Qn=Δt Qn � 0

�
(43)

The value of Ff will be replaced by the critical one when

it is computed beyond the limit.
NUMERICAL EXPERIMENTS

In this section, the performance of the proposed numerical

model is tested on a number of numerical examples with a

circular cross-section. Pipe flow is simulated in steady or

transient state over complex topography. The numerical

results obtained by using the ‘Sanders & Bradford ()’

scheme on a very fine grid (Δx ¼ 0:005 m) are adopted as

references for model comparisons. The stability of the

numerical scheme is governed by the Courant–Friedrichs–

Lewy criterion as the scheme is explicit. For all the test

cases considered in this work, fixed timestep is used and

the Courant number is less than 0.9 with g ¼ 9:81 m=s2

and ρ ¼ 1,000 kg=m3.

‘Lake at rest’ steady states

In this numerical test, the ability of the proposed numerical

model to preserve the ‘Lake at rest’ steady state for irregular

cross-sections is verified, like pipe flow. To this end, a pipe

flow over irregular bottom topography with one bump is

thus designed, which is defined as:

zb(x) ¼ 0:2� 0:05(x� 10)2 8< x< 12
0 otherwise

�
(44)

The initial conditions are defined as ζ ¼ 0:4 m, over the

whole computational domain [0, 25] so that the bump is

completely submerged. The computed hydraulic variables

(ζ and Q) at t ¼ 1,000 s are shown in Figure 4. Results

show that both methods can preserve ‘lake at rest’ steady

states for water surface elevation, but the proposed model



Figure 4 | Computed results at ‘Lake at rest’ steady state.
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outperforms the ‘Sanders & Bradford ()’ model consid-

ering the total discharge computed.

Free-surface pipe flow over a bump

This test case aims to evaluate the performance of the pro-

posed model to deal with a bump for free-surface pipe

flow in steady state. A permanent flow is thus simulated

with a spatially varying bottom elevation and without

friction. The ability of the numerical scheme to deal with

variable bottom is tested for a subcritical (T2a), transcritical

(T2b) and hydraulic jump (T2c). The bed elevation is defined

as Equation (45) with pipe diameter D ¼ 0:6 m:

zb(x) ¼ 0:2� 0:05(x� 10)2 8< x< 12
0 otherwise

�
(45)

The reference solution for the test case is obtained on a

very fine grid (Δx ¼ 0:005 m) using the ‘Sanders & Bradford

()’ model. The reference for test case T2a (subcritical

flow) is established using Qupstream ¼ 0:05 m3 � s�1 and

hdownstream ¼ 0:4 m. For the hydraulic jump (T2c), the dis-

charge Qupstream ¼ 0:1 m3:s�1 and hdownstream ¼ 0:3 m. For

the transcritical case (T2b), the discharge

Qupstream ¼ 0:05 m3:s�1, and no water depth is necessary at

the boundary since the flow is controlled by a critical depth

(such as Fr ¼ 1) that appears at xm (middle of the bump).
://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
For three hydraulic regimes, the domain length is

L ¼ 25 m with a mesh of uniform cell 0:1 m. The initial vel-

ocity of this test is set to be zero. An initial water surface

elevation ζini¼ 0.4 m is set for test case T2a and T2c, and

ζini¼ 0.2 m is given for test case T2b. The computational

parameters are given in Table 1. The simulation is carried

out until steady flow conditions are reached over the compu-

tational domain (after barely 1,000 s).

The simulation results of three flow regimes are

presented in Figure 5. Comparing with the reference,

numerical results show that the proposed model provides

more accurate predictions of the computed hydraulic vari-

ables (ζ and Q) than the ‘Sanders & Bradford ()’

model, whatever the hydraulic flow regime is. For subcriti-

cal flow, the proposed method provides better estimations

of the water surface elevation above and upstream of the

bump, which can be clearly observed in the zoomed com-

parison in rectangular. For transcritical and hydraulic

jump, the proposed method has better estimation of

water surface elevation upstream the bump and more

accurate shock position for hydraulic jump. Regarding

the water discharge, the proposed method provides the

exact value for sub- and transcritical flow, except one

cell for hydraulic jump, which is located downstream the

top of the bump. For the ‘Sanders & Bradford ()’

model, the errors accumulated upstream and downstream

of the top point are due to the HLL solver adopted, which



Table 1 | Parameters for the test case over a bump (T2)

Symbol Meaning Value

D Pipe diameter 0:6 m

L Domain length 25 m

L0 Bump length 4 m

xm Middle of bump 10 m

zb0 Minimum bottom elevation 0 m

zbm Maximum bottom elevation 0:2 m

Δx Cell size 0:1 m

ζ ini Initial water surface elevation (T2a) 0:4 m

Initial water surface elevation (T2b) 0:2 m

Initial water surface elevation (T2c) 0:4 m

Prescribed total discharge at the upstream boundary (x ¼ 0 m)

Qupstream For subcritical flow (T2a) 0:05 m3 � s�1

For transcritical flow (T2b) 0:1 m3 � s�1

For transcritical flow with a jump (T2c) 0:05 m3 � s�1

Prescribed water depth at the downstream boundary (x ¼ 25 m)

hdownstream For subcritical flow (T2a) 0:4 m

For transcritical flow (T2b) Free-outlet

For transcritical flow with a jump (T2c) 0:3 m
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can also be observed in the results presented by Liang &

Borthwick ().
Mixed pipe flow over a bump

In this test case, mixed pipe flow modeling is performed to

evaluate the performance of the proposed model to deal

with a bump in steady state, and a permanent flow is thus

simulated with a spatially varying bottom elevation without

friction. The maximum bottom elevation has been increased

to 0:4 m for the mixed flow, and the system is assumed to be

ventilated. Two flow regimes are tested for free-surface con-

dition, which are subcritical flow (T3a) and hydraulic jump

(T3b), and one for pressurized flow (T3c). The bed elevation

is defined as Equation (46) with pipe diameter D ¼ 0:6 m

and Ts ¼ 0:002 m:

zb(x) ¼ 0:4� 0:1(x� 10)2 8< x< 12
0 otherwise

�
(46)
The reference solution for this test case is obtained on

a very fine grid (Δx ¼ 0:005 m) using the ‘Sanders &
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf

4

Bradford ()’ model. The reference for test case T3a (sub-

critical flow) is established using Qupstream ¼ 0:1 m3 � s�1 and

hdownstream ¼ 0:7 m. For the hydraulic jump (T3b), the dis-

charge Qupstream ¼ 0:1 m3 � s�1 and hdownstream ¼ 0:55 m.

For the pressurized flow, Qupstream ¼ 0:4 m3 � s�1, and free-

outlet is used at the right side of the boundary. Same numeri-

cal parameters as free-surface pipe flow are used for this test

case, which are listed in Table 2. The simulation is carried

out until steady flow conditions are reached over the compu-

tational domain (after barely 1, 000 s).

The simulation results of mixed pipe flow are presented

in Figures 6 and 7 for pressurized flow. Numerical results

show that the proposed model provides better estimations

of the computed water surface elevation ζ than the ‘Sanders

& Bradford ()’ model, including upstream water surface

elevation, shock position and transition between free-sur-

face and pressurized flow. Regarding the water discharge,

transition between free-surface and pressurized flow has

caused additional oscillations for both models. For the

‘Sanders & Bradford ()’ model, the errors accumulated

around the bump can still be observed for mixed or pressur-

ized flow due to the adoption of HLL solver.



Figure 5 | Comparison of simulated water surface elevation (left), zoomed comparison in rectangular (middle) and total discharge (right) of free-surface flow over a bump: subcritical flow

(top), transcritical flow (middle) and hydraulic jump (bottom).
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Dambreak with bottom discontinuity

This test case aims at validating the convergence ability of

the model on a transient dambreak problem over a discon-

tinuous bottom with no friction. Two cases are tested with

different bottom topography: step-up case (T4a) and step-

down case (T4b). The domain length is L ¼ 45 m with a

mesh of uniform cell 0:1 m. The bottom step (discontinuity)

is positioned at x ¼ 0. For the step-up case (T4a), the bottom

elevations at left and right sides of the discontinuity

are zb,L ¼ 0 m and zb,R ¼ 0:2 m, respectively. For the
://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
step-down case (T4b), the bottom elevations at left and

right sides of the discontinuity are zb,L ¼ 0 m and

zb,R ¼ �0:1 m, respectively. The dam is located at x ¼ 0 m,

and water velocity is zero everywhere at t ¼ 0 s. For the

test case T4a, the water surface levels at the left and right

sides of the dam are ζL ¼ 0:5 m and ζR ¼ 0:3 m, respect-

ively. For the test case T4b, the water surface levels at the

left and right sides of the dam are ζL ¼ 0:5 m and

ζR ¼ 0 m, respectively. The dam-break flows instan-

taneously start at t ¼ 0 s. The computational results with

different mesh sizes are compared at t ¼ 5 s when the



Table 2 | Parameters for the test case over a bump (T3)

Symbol Meaning Value

D Pipe diameter 0:6 m

Ts Preissmann slot width 0:002 m

L Domain length 25 m

L0 Bump length 4 m

xm Middle of bump 10 m

zb0 Minimum bottom elevation 0 m

zbm Maximum bottom elevation 0:4 m

Δx Cell size 0:1 m

ζ ini Initial water surface elevation 0:4 m

Qupstream Prescribed total discharge at the upstream boundary (x ¼ 0 m)

For subcritical flow (T3a) 0:1 m3 � s�1

For hydraulic jump (T3b) 0:1 m3 � s�1

For pressurized flow (T3c) 0:4 m3 � s�1

Prescribed water depth at the downstream boundary (x ¼ 25 m)

hdownstream For subcritical flow (T3a) 0:7 m

For hydraulic jump (T3b) 0:55 m

For pressurized flow (T3c) Free-outlet

Figure 6 | Comparison of simulated water surface elevation (left), zoomed comparison in rectangular (middle) and total discharge (right) of mixed flow over a bump.
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Figure 7 | Comparison of simulated water surface elevation and total discharge of pressurized flow over a bump.
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wave fronts are not reached the domain boundaries. The

simulation parameters of this test are summarized in

Table 3. The pipe diameter is D ¼ 0:6 m.

The simulation results at t ¼ 5 s of the two test cases

with bottom stepping up or down, respectively, are pre-

sented in Figure 8. It shows that, for both test cases, the

solutions converge as mesh is refined. No numerical instabil-

ity is produced at the position of the bed discontinuity during

the dam-break process. Notice that for the step-up case T4a, a

spike is observed at x ¼ 0 m, this may be due to that the con-

tact wave is ignored in the HLL Riemann solver adopted in

the current study.
Table 3 | Parameters for the dambreak problem with bottom discontinuity (T4)

Symbol Meaning

D Pipe diameter

L Domain length

4x Cell size

zb,L Bottom elevation on the left-h

Bottom elevation on the righ

zb,R For test case T4a

For test case T4b

h0,L Initial water depth on the left

h0,R Initial water depth on the rig

t Computation time

://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
Transient mixed pipe flow of dambreak

In this test case, the capability of the proposed method to

reproduce transient flow over complex topography is

tested by a mixed pipe flow experiment performed by

Aureli et al. (), involving friction term. The experimental

settings are illustrated in Figure 9. The red line represents

the initial flow conditions with a pressure head of

0:225 m, and blue lines are the six gauges from G1 to G6

as illustrated in Table 4. The black line represents the

pipe’s bottom and top. The total length of the pipe is 12 m,

and the first part of the pipe is 7 m with slope 8:4%. The
Value

0:6 m

45 m

0:1 m

and side of the dam 0 m

t-hand side of the dam

0:2 m

�0:1 m

-hand side of the dam 0:5 m

ht-hand side of the dam 0:1 m

5 s



Figure 8 | Convergence test of dambreak flow with bottom discontinuity.
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length of the second pipe is 5 m with slope �27:7%. The

inner diameter is 0:192 m, and the wall thickness is 4 mm.

At t ¼ 0 s, the gate 5 m from the upstream inlet opens and

then the water flows out. The left end of the pipe is partly

closed to maintain the initial water height, and the right

side is fully open to maintain a ventilated system.

This experiment mainly aims to study simple transient

flow behavior in a single sloped Plexiglas pipe as the
om http://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
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effect of the boundary conditions has been ignored.

The numerical model proposed and the method

developed by Sanders & Bradford () is used to repro-

duce the experimental results. The cell size dx ¼ 0:04 m,

and time step δt ¼ 0:001 s. Manning coefficient is set to

nm ¼ 0:009 m�1=3 � s, and wave celerity is chosen as

a ¼ 12 m � s�1 with Ts ¼ 0:002 m. Transmissive and closed

boundaries are used in this work (Toro ). The numerical



Figure 9 | Bottom topography and initial flow conditions of Aureli et al. (2015). Please refer to the online version of this paper to see this figure in color: doi:10.2166/hydro.2021.155.

Table 4 | Location of the measuring gauges (x is the distance along the pipe axis)

Pressure Gauges x (m)

G1 1.00

G2 3.00

G3 4.50

G4 6.80

G5 7.32

G6 8.52
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results are compared with the measurement data illustrated

in Figure 10. The horizontal line in each graph is the pipe

crown.

As presented in Figure 10, compared with the exper-

imental data, results show that two methods tackling

slope source term can both reproduce transient mixed

pipe flow of dambreak, and the curve fitting between

them is satisfied. Differences can also be identified that

simulated pressure is higher than the experiment in

gauges G4 and G5 and lower in G6. This may be due

to the minimum water depth used and ϕ adopted for

free-surface flow calculation. One can observe that

both the proposed scheme and Sanders & Bradford

() show satisfying agreement with experimental

measurements.
://iwa.silverchair.com/jh/article-pdf/23/4/831/910725/jh0230831.pdf
CONCLUSIONS

In this paper, an augmented HLL Riemann solver is

extended to circular cross-sections and mixed pipe flows

over complex topography. The proposed model provides

accurate predictions in reproducing steady flows with differ-

ent hydraulic flow regimes. The summarized main features

of this scheme are presented as follows:

• An augmented HLL Riemann solver has been extended

from rectangular shape to the currently studied pipe

flow system by projecting the source term onto the Jaco-

bian’s eigenvector basis; the source term is discretized

approximately as a succession of discontinuities separ-

ating regions of constant state.

• The proposed model performs better than the reference

solution obtained with the ‘Sanders & Bradford ()’

method when simulating steady flows over a bump,

including sub-, trans-critical and hydraulic jump.

• More accurate estimations than the reference are gener-

ated by the proposed model for mixed and pressurized

pipe flow.

• Transient dambreak pipe flow has been reproduced by

the proposed model, including wetting or drying front

and the calculation of the friction term.

The effectiveness and robustness of the proposed

numerical scheme are verified by comparing the simulated

http://10.2166/hydro.2021.155


Figure 10 | Comparison of mixed flow in circular pipe between experimental data and numerical results.
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results with numerical or measurement results. This method

can also be applied to other cross-sections like trapezoid

with the calculation of Riemann invariant over complex

topography.
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