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Water leakage detection and localization using hydraulic

modeling and classification

Eliyas Girma Mohammed, Ethiopia Bisrat Zeleke

and Surafel Lemma Abebe
ABSTRACT
A significant percentage of treated water is lost due to leakage in water distribution systems. The

state-of-the-art leak detection and localization schemes use a hybrid approach to hydraulic modeling

and data-driven techniques. Most of these works, however, focus on single leakage detection and

localization. In this research, we propose to use combined pressure and flow residual data to detect

and localize multiple leaks. The proposed approach has two phases: detection and localization. The

detection phase uses the combination of pressure and flow residuals to build a hydraulic model and

classification algorithm to identify leaks. The localization phase analyzes the pattern of isolated leak

residuals to localize multiple leaks. To evaluate the performance of the proposed approach, we

conducted experiments using Hanoi Water Network benchmark and a dataset produced based on

LeakDB benchmark’s dataset preparation procedure. The result for a well-calibrated hydraulic model

shows that leak detection is 100% accurate while localization is 90% accurate, thereby outperforming

minimum night flow and raw- and residual-based methods in localizing leaks. The proposed

approach performed relatively well with the introduction of demand and noise uncertainty. The

proposed localization approach is also able to locate two to four leaks that existed simultaneously.
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HIGHLIGHTS

• Water leak detection and localization (LDL) approaches based on a hybrid of hydraulic modeling

and classification, and statistical approaches are proposed.

• Combined residual data of pressure and flow are used to enhance LDL.

• By separating the detection and classification phase, multiple leaks are localized.
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INTRODUCTION
The urgency of managing challenges due to leakage in pipe

networks has become greater in recent years due to water

shortages caused by recent droughts, increase in demand
along with environmental, social and political pressures

(Dighade et al. ). The significance of leak detection

stems from the fact that many water scarce and arid

countries in the world have limited options for water

resources development. Although there is awareness that

efficient management of water resources is a growing neces-

sity, non-revenue water due to physical losses such as

leakage is still excessive in many cities. A World Bank
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study states that the global estimate of physical water losses

is about 32 billion cubic meters each year, half of which

occurs in developing countries (Bhagat et al. ).

One of the greatest challenges considered in the water

distribution system (WDS) is the occurrence of leaks (Li

et al. ). Reducing leakage volume not only saves water

to supply the ever-growing population, but potentially

avoids or at least delays costly expansions of the distribution

system through hydraulic works and reduces costs related to

energy and environmental losses (Ferrante et al. ). Lost

revenue due to leakage is estimated to be around USD 2.9

billion every year in developing countries alone (Bell ).

In the case of intermittent supply, which is frequently

caused by excessive leakage, the urban poor often suffer

most, as they cannot afford proper storage facilities and

pumps, and often have to buy water from vendors during

non-supply hours. Reducing physical losses will make

more water available and enable water utilities to increase

coverage, improve quality of services, and reduce expansion

and distribution costs.

Water leak detection and localization (LDL) is one of

the main activities done in the effort to reduce water leakage

volume. Several researchers propose different software-

based methods to help in detecting and localizing water

leakage as early as possible. Software-based methods

rely on algorithms and data-analyzing tools for finding

anomalies like leaks in the hydraulic data pattern. In these

methods, hydraulic sensors are used to measure time-series

data of vital parameters like pressure, flow rate, and temp-

erature. The main theme for software-based methods is

having predicted system states and comparing them with

the current observation of the system state for finding abnor-

mal events like leakage and contamination. The approaches

used in software-based methods could be classified as

hydraulic modeling and data-driven-based approaches.

The use of hydraulic modeling in water LDL is custom-

ary in many studies (Lah et al. ). The advancement of

these hydraulic modeling tools makes it easier to predict

system states in the WDS under different conditions. A

well-calibrated hydraulic WDS model is used as a reference

for comparing subsequent time-step hydraulic data in leak-

age detection. In model-based WDS analysis, the quantity

and quality of the available data are the main factors

for building a well-calibrated model that results in better
://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
LDL (Kirstein et al. ). The detection of leakages with

the hydraulic model is mostly based on either residual analy-

sis between the WDS hydraulic model predictions and the

WDS observations (Pudar & Liggett ; Pérez et al.

, , ; Casillas Ponce et al. ; Ferrandez-

Gamot et al. ; Soldevila et al. , ) or WDS state

estimates pattern evaluation (Jung & Lansey ; Anjana

et al. ; Jung et al. ; Khalilabad et al. ). The

focus of this paper is on the residual analysis approach.

Data-driven approaches extract meaningful information

in time-series data using different statistical (Romano et al.

, ; Jung & Lansey ) and artificial intelligence

(Mounce & Machell ; Aksela et al. ; Mounce

et al. ; Mounce et al. ; Ravichandran et al. )

algorithms. These approaches have shown promising results

in pattern recognition and anomaly detection (Mounce ;

Mounce et al. ). The approaches, however, fail to cap-

ture the dynamic nature of WDS and are not robust in

boundary changes like pump and valve operational changes

(Wu & Liu ). Such characteristics of WDS are usually

solved with a calibrated hydraulic modeling (Okeya ).

Hence, the combination of the two approaches is used to

get a better result in LDL (Mashford et al. ; Ferrandez-

Gamot et al. ; Soldevila et al. , ). The idea of

localizing multiple leaks, however, is an open challenge,

and the prior works focuses only on single leak localization.

Based on the previous hybrid approach, this study

proposes a leakage detection and localization approach. The

approach essentially generates leaky and non-leaky residuals

using the calibrated hydraulic model and feeds it to a statistical

binary classifier for training. After training the classifier,

measured pressure and flow values are compared to generate

new residuals that are fed to the classifier for isolating leaky

and non-leaky residuals. Once a leak is detected, the leaky

residual is further analyzed for finding leak locations. In the

proposed approach, the outliers in the residual space for mul-

tiple time steps are considered as leaking nodes.

To assess the performance of the proposed approach, we

conducted five sets of experiments using Hanoi Water

Network (Fujiwara & Khang ) Benchmark and a realistic

dataset produced based on LeakDB benchmark’s dataset

preparation procedure. The accuracy of the well-calibrated

hydraulic model was compared against the state-of-the-art

LDL approaches: minimum night flow (MNF) (Vrachimis &
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Kyriakou ), and hybrid approach (Soldevila et al. ;

Carreno-Alvarado et al. ); and robustness when subjected

to noise and demand uncertainty was evaluated. The results

show that for a well-calibrated hydraulic model, the detection

of leaks is 100% accurate, while localization is 90% accurate.

The comparison with the state-of-the-art works shows that the

proposed method outperforms MNF, and raw and residual-

based methods in localizing leaks. The proposed method per-

formed relatively well with the introduction of demand and

noise uncertainty, where leaks of size 5 cm had resilience for

noise and demand uncertainty. The localization method has

shown effectiveness in locating two to four leaks that existed

simultaneously.

The main contribution of this research is the use of

combined residual data of pressure and flow to detect and

localize multiple leaks. The state-of-the-art works focus on

localization of single leakage. In addition, the research

uses the hybrid approach for localization only, not for detec-

tion. The hybrid approach makes the localization of multiple

leaks from a single testing sample challenging. The proposed

approach, which is in line with the state of the art in using a

hybrid approach, however, detects and localizes multiple

leaks using residual of pressure and flow data.
METHODOLOGY

In order to localize multiple leaks, a method based on

residual analysis is proposed. The proposed approach has

two main phases: detection and localization. In the

detection phase, we used hydraulic modeling to generate a

dataset containing each node’s residual of pressure and

flow that represent the system state. The generated dataset

is used to build a classifier model. The model is then used

to classify new observational residual data into leaky and

non-leaky. If the new observational residual data is classified

as leaky, localization is instantiated.

The localization phase uses the residual data to localize

nodes that are leaking. The rationale behind using the

residual data for localization is that a leaking node will

have the highest peak residual value of all neighboring

nodes. At a particular timestamp, a water distribution net-

work could have multiple leaks. The residual value for

leaks at different locations and times could also be different.
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Hence, in this study, we translated the problem of leak

localization into finding a local maximum for multiple

leak scenarios and finding a global maximum for a single

leak scenario at a given timestamp. To identify the maxi-

mum residual values, we propose to use a dynamic

threshold value, τ, that is dependent on the current residual

data. The threshold value, τ, is set to be the upper quartile of

the local or global residual dataset. All residual values that

are higher than the threshold value are considered as poten-

tial leaking nodes. Our approach, finally, identifies the final

candidate leaking node(s) by taking the intersection of

potential leaking nodes at different timestamps in a given

period of time.

The general overview of the approach is shown in

Figure 1. Details of the proposed approach along with the

description of residual analysis are provided below.
Residual analysis

Our proposed approach is based on residual analysis.

Residual analysis is a method used for anomaly detection,

where the residue is calculated as the difference between

the field measured hydraulic data and prior established base-

line data. The baseline data is generated either from

previous predicted patterns using data-driven approaches

or by using hydraulic modeling software systems. Prior

works (Perez et al. ; Soldevila et al. ) depend on

pressure residuals. This residual vector, R, is determined

by the difference between the measured pressure at inner

nodes where sensors are installed and the estimated

pressure at these nodes (see Equation (1)).

R(t) ¼ p(t)� po(t) (1)

where p is the measured pressure at inner nodes at time t,

and po is the estimated pressure at these nodes at the same

time, t. po is obtained using the network model considering

a leak-free scenario. In this work, the same procedure is

followed to calculate the flow residuals.

In previous studies, these pressure residuals are com-

pared with a given threshold value, τ, for the detection of

leak events. The threshold is calculated by considering the

measurement noise and model uncertainty of the given



Figure 1 | General overview (d1, d2 … dn¼ demand patterns for every node; ci¼ boundary conditions; fi¼ leaks that are simulated in nodes; vi¼measurement noise that could potentially

appear in the measured data).
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WDS. If the residuals are greater than this threshold, leak is

detected and localization is instantiated. The choice of this

threshold affects the quality of detection and localization.

Setting too high a value makes the detection fail to identify

leak events, while setting the threshold value too low results

in many false positives (FPs).

In this research, we used a classification algorithm to

detect leaks and residual analysis for localization. In the

residual analysis, we used a dynamic threshold value, τ, that

is dependent on the current residual values to identify candi-

date leaking nodes. The threshold value, τ, in this study, is

set to be the upper quartile of the current residual values.
Detection phase

This phase utilizes both hydraulic modeling and data-driven

approach to detect leaks. The hydraulic modeling is used to

generate residuals that represent the system state under

leaky and non-leaky scenarios. The residuals are computed

using Equation (1). The generated leaky and non-leaky

residuals are then fed to the classifier to build a model.

The major difference from previous works is that the pro-

posed approach uses a combination of pressure and flow

residuals for training and testing. We conjecture that com-

bining the two residuals will improve the leak detection

accuracy. The detection phase consists of generating input

data, selection and training of the classifier, followed by

the detection of leaky and non-leaky residuals.
://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
Data generation

Hydraulic data that is representative of different leak sizes is

generated using a modeling software. The generated data is

used to train the classifiers. To make the data closer to rea-

lity, modeling, demand, and measurement uncertainty are

taken into consideration during data generation. This is

shown using vector v in Figure 1. After hydraulic data is gen-

erated, flow and pressure residuals are calculated using

Equation (1). The two residuals are used as features of the

classifier input data.

The data generation step shown on the left side of

Figure 1 is adopted from previous works (Pudar & Liggett

; Pérez et al. , ; Casillas Ponce et al. ;

Ferrandez-Gamot et al. ; Soldevila et al. , ).

The symbols in the figure are input values that are provided

to the model. Demand patterns, d1, d2…dn, are adopted

from LeakDB benchmark dataset. The boundary conditions,

ci, do not contain pump and valve characteristics as the

selected model, i.e., the Hanoi Water Network, is a rela-

tively simple network.
Training the classifier

The second step after generating representative leak

residuals is training the classifier. The classifier used for

detection is a binary classifier. The training residuals are

labeled with two classes, i.e., 0 – no leak and 1 – leak. The
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pressure and flow residuals for different magnitudes of leak

amount and location are combined in a single dataset. Then,

the combined dataset will be split for training and testing. In

this research, support vector machine (SVM) (scikit-learn

developers ) is used for classification. The rationale

behind selecting SVM as a classifier is that it has the ability

to treat high-dimensional inputs. Due to its robust nature,

SVM can also cater for noisy residuals that are a conse-

quence of demand variation. From the generated residuals,

50% are used for training and the remainder for testing.
Detection

After training, the classifier model is provided with a new

observational residual data. The new input data will be the

difference between field measured pressure and flow data

and the baseline pressure and flow non-leaky data. The

same procedure used to generate the residuals is adopted.

Following this, the classifier model built during the training

phase decides if the given residual is leaky or non-leaky. If

the residual is found to be leaky, the localization phase is

instantiated. In our experiment, to simulate the real observa-

tional data, we used the testing dataset.
Localization phase

The localization phase uses a statistical method to find the

leaking node after a leak is detected in the system. The

occurrence of a leak increases the incoming flow and

reduces the pressure downstream. The effect of one leak in

any node can be seen on the other nodes, especially on

nodes that are looped like the Hanoi network. However,

the effect is not the same in every node. The input for the

localization phase is the timestamp where the leak is first

detected. The phase adopts the following procedures.

• First, the absolute value of each residual after the sus-

pected timestamp is taken. Using the absolute value will

make the deviation that is caused by pressure and flow

rate to come in one dimension.

• By taking the absolute value, all the residuals show a

positive value. However, their values are not the same.

Neighborhood nodes to the leaking node show larger

residual values than the other nodes. The leaking node
om http://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
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in particular shows the highest peak value of all neighbor-

ing nodes. Therefore, finding a leaking node translates

into finding a local maximum for multiple leak scenarios

and finding a global maximum for a single leak scenario.

• A node is considered as a potential leaking node when its

pressure residual value is greater than the threshold value,

τ. The threshold, τ, in our experiment is calculated as the

upper quartile (75% quartile) of the residual data at a

given timestamp. Taking the upper quartile of the residual

data at a given timestamp helps to capture the network situ-

ation at that specific time. The threshold is calculated for

the residual data computed at each timestamp, which

could give different threshold values. The final candidate

leaking nodes are the nodes selected from the list of poten-

tial leaking nodes at every timestamp. This is done by

taking the intersection of potential leaking nodes at every

timestamp in a given time period. Taking the intersection

over a given time period helps to identify continuously leak-

ing nodes. The final list of nodes is candidate leaking nodes

that require the attention of the water authority. Algorithm

1 illustrates the pseudo-code for localization.

Algorithm 1 Localization Pseudo-code

t0¼ starting timestamp

c1, c2,…cn//candidate for a time step

for t0,…,Tf do

τ¼ 4th quartile

for all nodes do

if node’s residue �τ then

Ci [x]¼ node

end if

end for

end for

Final Candidate¼ c1∩c2∩…∩cn
EXPERIMENT

The dataset for evaluating the proposed approach is pre-

pared based on Leakage Diagnosis Benchmark (LeakDB)

(Vrachimis & Kyriakou ), and modeling was done

using the Hanoi Water Network Benchmark shown in
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Figure 2. The main reason for using the Hanoi Water Net-

work is that it is simple and includes a loop. The Hanoi

Water Network is used in several previous similar studies

(Casillas Ponce et al. ; Soldevila et al. ; Carreno-

Alvarado et al. ; Vrachimis & Kyriakou ), which

facilitates comparison. LeakDB also used this network to

generate the datasets. All the datasets and experiments in

the proposed LDL system are implemented using the

Python water network tool for resilience (Klise et al. ).
Experimental setup

A total of five sets of experiments were conducted to evalu-

ate the proposed approach. Based on their intended goal,

the experiments are grouped into three major categories.
Experiment 1: leak detection and localization

In this experiment, the two phases of the proposed approach

are implemented and compared with related previous

works. The experiment has three sub-experiments.
Experiment 1.1: detection comparisons with the MNF
approach

MNF analysis is the oldest and customary way of detecting

leaks in a district metered area. In this work, a modified
Figure 2 | Hanoi Water Network (Fujiwara & Khang 1990).

://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
version of MNF which is proposed by Eliades & Polycar-

pou () is used. LeakDB (Vrachimis & Kyriakou )

also uses this detection approach to compare newly pro-

posed detection algorithms. A moving window, w, is

defined in order to calculate the MNF during some con-

secutive M days. MNF is defined as w(l) which is the

average night-flow measured for the lth period and a

threshold δ(l) is selected for a time window of M days

(see Equation (2)).

δ(l) ¼ w(l)�min{w(l�M), . . . , w(l� 1)} (2)

Let l be the day a leakage is detected, such that

l ¼ argmin δ(l)> hw, where hw is a detection threshold

which is selected off-line by using historical measurements,

in order to minimize FPs and maximize true positives

(TPs). In this experiment, m¼ 3 days and thresholds of

hw ¼ 60, 70, 85, and 100 l/s are chosen.
Experiment 1.2: detection comparisons with approaches
based on raw and residual data

In this experiment, the proposed combined residual

approach is compared with the use of raw and residual

pressures. In this experiment, we have also computed detec-

tion results while using only raw flow and residual flow data

for comparison.
Experiment 1.3: single leak localization

This experiment compares the proposed approach with

similar hybrid approaches that are described in Car-

reno-Alvarado et al. () and Soldevila et al. ().

The approach proposed by Soldevila et al. () uses

pressure residuals and multi-label classifier, K-Nearest

Neighbor, to localize leaks. The proposed approach

was tested on the Hanoi water network by taking

pressure residuals of two nodes as input features and

26 nodes as an output class. Because the implementation

of Soldevila et al.’s approach was not available, we have

replicated their approach following the brief description

provided in their paper.
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Experiment 2: robustness to uncertainty

To cater for noise during pressure measurement and reduce

inevitable demand variations, we conducted a second cat-

egory of experiment which quantifies the robustness of the

proposed approach. This is done by introducing demand

uncertainty, noise addition, and application of both uncer-

tainties to the model. In this experiment, 10 different

leakage areas are created in the range between 1 and

10 cm with 1 cm increment. During the data generation

phase, a 2 and 4% uncertainty of the average daily base

demand is added before simulation. The same amount of

Gaussian noise is also added in the pressure and flow

measurement to check robustness of the proposed approach

in the presence of noise.

Experiment 3: multiple leak localization

To evaluate the proposed localization approach when sub-

jected to more than one leakage at a time, another set of

experiments was conducted. In these experiments, the

number of leaking nodes is varied from two to five leaks

at a time. The aim of these experiments is to assess the abil-

ity of the proposed approach in localizing multiple leaks. In

this experiment, four variants of multiple leaks, ranging

from two to five simultaneous leaks, are simulated. For

each variant of leak presented, 20 scenarios are run. The

number of scenarios where the proposed approach was

able to accurately localize the simulated number of leaks

added to different nodes was documented.

Evaluation metrics

To evaluate the proposed approach, we used the data labels

provided with the datasets for calculating the standard

classification metrics. The metrics are computed using a

confusion matrix. The confusion matrix is composed of

TP, FP, true negative (TN), and false negative (FN) values.

TP refers to cases where an actual leak is detected as a

leak. TN refers to cases where non-leaky data is identified

as non-leaky. FP refers to cases where a leak is alarmed

while there is no leak. FN refers to cases where a leak is

identified as non-leaky. Commonly used classification

metrics such as precision, recall, F-measure, and accuracy,
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which are described below, can be computed using the con-

fusion matrix.

Precision is a ratio of the number of correctly identified

leaks to the total number of leaks identified by the detection

module. Precision is computed using Equation (3).

prescision ¼ TP
TPþ FP

(3)
Recall, also known as TP Rate, measures the proportion

of TPs to the actual total number of leaks. Recall is com-

puted using Equation (4).

Recall ¼ TP
TPþ FN

(4)
F-measure is the harmonic mean of precision and recall.

F-measure is computed using Equation (5).

F�score ¼ 2�Recall�Precision
Recallþ Precision

(5)

Accuracy is a rate of positive classifications, i.e., both

leaky and non-leaky, over the total classification samples

and it is defined using Equation (6).

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(6)
RESULTS AND DISCUSSION

Experiment 1: leak detection and localization

Experiment 1.1: detection comparisons with the MNF
approach

Table 1 shows the precision result of different scenarios for

using MNF analysis in comparison with the proposed

approach (i.e., the use of combined residuals).

As shown in Table 1, the proposed approach detects

different leakage sizes with 100% accuracy. Precision of

MNF for τ ¼ 60 l/s is less than 50%. The low precision

scores for MNF analysis are due to many FP reports,



Table 1 | Comparison of detection precisions (in percentage)

Detection method

Leak diameter (m)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Proposed approach 100 100 100 100 100 100 100 100 100 100

MNF (l/s) τ ¼ 60 25 40 40 50 50 50 50 50 50 50
τ ¼ 70 – 33.3 66.6 66.6 100 100 100 100 100 100
τ ¼ 85 – – – 66.6 100 100 100 100 100 100
τ ¼ 100 – – – – 66.7 100 100 100 100 100
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especially for small leak diameters ranging from 0.01 to

0.03 m. When considering τ ¼ 70 l/s for MNF, large lea-

kages (with leak diameter 0.05–0.1) were detected with

100% precision, whereas the detection of small leakages

lacked accuracy. With a threshold of τ � 85 l=s, MNF can

detect large leakages, but small leakages are still undetected.

The results shown in Table 1 suggest that it is preferable

to use the classifier-based approach than the MNF analysis

approach. The proposed approach is free from thresholds,

and different leak sizes can be detected with the classifier

automatically. This is mainly because the leaky patterns

can easily be captured from the dataset.
Experiment 1.2: detection comparisons with approaches
based on raw and residual data

To see the effect of using residual data on leak detection, we

compared the proposed approach with the approaches that
Table 2 | Comparison of input data type accuracy (in percentage)

Leak Diameter (m)

Raw data

Flow Pressure Com

0.01 66.7 66.3 66.

0.02 66.7 66.4 66.

0.03 66.7 66.1 66.

0.04 66.7 70.1 69.

0.05 66.7 70.5 70.

0.06 66.7 66.1 66.

0.07 66.7 69.3 73.

0.08 100 99.4 99.

0.09 93.4 74.1 72.

0.1 66.7 66.1 66.

://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
use raw data. For proper comparison, the flow counterparts

are also included in the experiment. Table 2 shows the result

for leak sizes between 0.01 and 0.1 m.

From Table 2, the use of residuals generally outperforms

the use of raw data in the detection accuracy. In terms of

accuracy, adding flow residual data to pressure residual

data did not show any improvement. Where flow measure-

ments are scarce, pressure residuals can be used in place

of the combined residual approach because they give similar

results to that of the combination. From an application point

of view, this presents a practical solution by reducing

reliance on measurements.
Experiment 1.3: single leak localization

Carreno-Alvarado et al. () used raw pressure residuals as

input and the output classes are categorized into three

zones. The loops in Figure 2 show the three classes.
Residual

bined Flow Pressure Combined

5 66.7 100 100

6 66.7 100 100

3 66.7 100 100

6 100 100 100

7 100 100 100

3 100 100 100

1 100 100 100

6 100 100 100

7 100 100 100

3 100 100 100
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Carreno-Alvarado et al.’s work is similar to that of

Ferrandez-Gamot et al. () and Soldevila et al. ().

However, they used raw pressure data instead of pressure

residuals. Hence, we compared our approach with both

types of approaches. For this comparison, the experiment

is conducted by taking 24 h time step data with a sampling

time of 1 h. Table 3 shows the results.

In Table 3, values in the first column represent the

number of nodes used as input for the classifier. The results

show that the proposed approach localizes single leak nodes

better than the other two approaches. For all approaches,

using the data from all nodes increases the localization accu-

racy. The result also shows that the use of raw pressure data

gives the least accuracy compared to the others.

In Experiment 1, the proposed approach was evaluated

against the threshold-based MNF approach in detecting

leaks with size varying from 1 to 10 cm. While the proposed

approach identified leaks across all sizes, the MNF

approach was only able to detect relatively larger leaks.

Having performed well across all leak sizes, accuracy of

the proposed approach was compared against raw-based

(Carreno-Alvarado et al. ) and residual-based (Soldevila

et al. ) approaches for localizing single leaks. The pro-

posed approach outperformed both approaches and gave

similar leak detection results with the use of pressure

residuals (see Table 2). The performance of the proposed

approach was further evaluated for its ability to localize

single leaks against approaches that used raw pressure
Table 4 | Robustness to 2% uncertainty (F-measure in percentage)

Approaches

Leak diameter (m)

0.01 0.05

Noise Demand Both Noise

Proposed approach 3.1 43.5 41.5 72.5

MNF at τ ¼ 70 0 0 – 20

Table 3 | Comparison of single leak localization accuracy (in percentage)

No. of
nodes

Proposed
approach

Carreno-Alvarado et al.
(2017)

Soldevila et al.
(2016)

26 nodes 96.1 94.4 95

2 nodes 57.3 52.3 53.5
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data by varying the number of nodal data that was used as

classifier input as shown in Table 3. The effect and signifi-

cance of the number of input nodal data is translated in

the accuracy of single leak detection across all approaches,

where better performance was seen with higher input

nodal data.

Experiment 2: robustness to uncertainty

Experiment 2.1: detection

To test the robustness of leakage detection, we conducted

two experiments in the presence of 2 and 4% noise and

demand uncertainties. For purposes of comparison, the

same degrees of uncertainty were added on the MNF detec-

tion approach described earlier. Tables 4 and 5 show the

F-measure for 2 and 4% uncertainties. The result shows

that the proposed approach is robust to demand variation

for large leakages greater than 0.05 m. The results for

small leakage sizes of 0.01 m, however, show that the

approach is not robust to uncertainties.

For MNF analysis, the addition of uncertainty gives poor

results except for demand variation. The blanks in Tables 4

and 5 are undefined values due to the calculation of the F-

measure. The other noticeable fact is that when the degree

of uncertainty increases (i.e., from 2 to 4%), the detection

score decreases. Large leak sizes greater than 0.05 m, how-

ever, are not significantly affected by the increased

measurement noise.

The results of both experiments show that under the per-

fectly modeled condition, the detection of small leakages,

less than the 0.05 m range, is possible. However, when the

degree of uncertainty increases, the detection accuracy

gets lower. On the contrary, large leak sizes, which are

greater than 0.05 m, show resistance to noise and demand
0.09

Demand Both Noise Demand Both

97.2 65.3 95.6 100 95.9

75 – 20 75 –



Table 5 | Robustness to 4% uncertainty (F-measure in percentage)

Approaches

Leak diameter (m)

0.01 0.05 0.09

Noise Demand Both Noise Demand Both Noise Demand Both

Proposed approach 2 1.2 – 39.2 100 3.6 97.2 100 23.8

MNF at τ ¼ 70 0 0 – 66.6 75 – 66.6 75 –
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uncertainty. This is because the residuals of small leakages

are very small and are affected by the demand and noise

addition. The addition of noise will distort the pattern in

the residual space, which in turn makes it difficult to accu-

rately classify. In a total stochastic condition, the result

gets worse (see Table 5).
Experiment 2.2: localization

To assess the impact of uncertainty on localization, we

conducted four groups of experiments, each with 20 scen-

arios. In each scenario, the leaking nodes are randomly

selected.

Table 6 shows the results of single leak localization

under different uncertainties. For an ideal scenario, where

there is no uncertainty, the proposed approach detected

90% of the leaking nodes. When the uncertainties are intro-

duced, the number of correctly identified leaking nodes has

reduced. An important observation from this experiment is

that when the leaking node is closer to the reservoir (i.e.,

nodes 2 and 3), it provides wrong localization results.

Since the leaking nodes were selected randomly in the

data generation phase, some leaking nodes were nodes 2

and 3. Therefore, the localization always fails to locate

them. This is mainly because the proposed approach could
Table 6 | Precision of single leak localization (each experiment has 20 scenarios)

Experiment Located Mislocated
Precision
(%)

Only leakage 18 2 90

Leakageþ 4% noise 14 6 70

Leakageþ 4% demand 15 5 75

Leakageþ 4% demandþ 4% noise 13 7 65
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not notice the change in pressure difference as they are

very close to the reservoir.

When a single leak scenario is considered, the solution

is the global maximum according to the localization phase

of the proposed approach. For proper localization, it is pre-

ferred to consider neighboring nodes that show higher

residual values like the actual leaking node.

Experiment 2 assesses the effect of demand uncertainty

and noise on the overall performance of the proposed LDL

approach. The results of the experiments shown in Tables 4

and 5 confirm that the best performance is obtained when

using the proposed approach. With noisy measurements,

accuracy of the proposed approach is higher for relatively

larger leaks. The proposed approach also outperforms the

MNF approach for relatively smaller leak sizes. When sub-

jected to demand uncertainty, which is the most widely

observed real-world uncertainty, the proposed approach

showed better resilience to larger leak sizes and demon-

strated an overall robustness to demand uncertainty. For

both noise and demand uncertainty, the resilience of the

proposed approach reduced with increase in uncertainty

from 2 to 4% but still shows relatively better robustness

than the MNF analysis in leak detection. In the localization

phase of the experiment, it is apparent that nodes closer to

the water supply source having relatively lower pressures

did not have significant pressure discrepancies to be recog-

nized by the approach. However, for nodes located

elsewhere that are subjected to uncertainty, the results

showed good performance.

Experiment 3: multiple leak localization

In this experiment, multiple leaks are added on different

nodes at the same time. Four variants of multiple leaks are

tested, each having 20 scenarios.



Table 7 | Localization of multiple leaks

Leaks
presented

Localized leaks

Overall
Accuracy (%)None One Two Three Four Five

Two – 8 12 80

Three – 5 11 4 65

Four – 2 4 12 2 67.5

Five – – 8 9 3 – 55
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Table 7 shows the results for multiple leak localization

experiments. The overall accuracy in Table 7 is computed as

the weighted average of the 20 scenarios for each multiple

leaks. The results show that for the majority of the scenarios,

the proposed approach is able to detect at least half of the

leaks present in the system for more than half of the scen-

arios. For example, when there were two leaks, the

proposed approach has identified both leaks in 12 of the

20 scenarios. In the remaining eight scenarios, the approach

is able to locate one of the leaks. When there were five leaks,

the approach was able to detect at least three leaks in 12 out

of the 20 scenarios. Closely looking at the leaks that are

missed, we have noticed that they are usually closer to the

reservoir, i.e., nodes 2 and 3.

The suitability of the proposed approach in detecting

multiple leaks was demonstrated in Experiment 3 by separ-

ating the detection and classification phase. Prior mixed

approaches are unable to locate multiple leakages using

their classifier approach because they classify one class at

a time. From the four variants of multiple leaks tested, exper-

iment results show that at least two of the three leaks that

take place in the network can be located. However, when

the number of leaks is increased, the localization of multiple

leaks has decreased. It is possible to conclude that the pre-

dicted leaks under each scenario are satisfactorily close to

the exact number of leaks simulated, and the discrepancy

is mainly due to the random selection of nodes which

include nodes close to the reservoir.
CONCLUSION

This research proposed a leak detection approach that uses

hydraulic modeling and classification approaches for
om http://iwa.silverchair.com/jh/article-pdf/23/4/782/910054/jh0230782.pdf
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detection, and a statistical approach for localization. Pre-

vious hybrid approaches lack the ability to localize

multiple leakages. This research attempts to fill the gap of

localization of multiple leakages. In doing so, this research

conducted experiments on the Hanoi Water Network

which were grouped into three major categories. The exper-

iments were done to compare output of the proposed

approach with that of previous works, to evaluate the

robustness of the approach to uncertainty, and to evaluate

the capacity of localizing multiple leaks. The results show

that the combined residual approach is robust to demand

uncertainty, outperforms the separate raw- and residual-

based approaches in localizing single leaks, and can detect

multiple leaks in a given time period.

The proposed approach was tested on a model that is

based on a realistic benchmark dataset. This was considered

as a viable option, as there was limited access to real-time

field data in the city this study was conducted. For an

enhanced uptake of the approach, it is recommended to

test it on a real dataset taken from water distribution compa-

nies and other large academic water networks. The final

output of the localization phase is the identification of can-

didate leaking nodes (i.e., leaking nodes and their

neighbors). The candidate leaking nodes could further be

refined using search space reduction techniques such as

optimization and statistical process control methods.
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