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A deep learning technique-based automatic monitoring

method for experimental urban road inundation
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Xujun Gao, Feng Su, Zhaofeng Wang, Qiuhua Liang and Jiahui Gong
ABSTRACT
Reports indicate that high-cost, insecurity, and difficulty in complex environments hinder the

traditional urban road inundation monitoring approach. This work proposed an automatic monitoring

method for experimental urban road inundation based on the YOLOv2 deep learning framework.

The proposed method is an affordable, secure, with high accuracy rates in urban road inundation

evaluation. The automatic detection of experimental urban road inundation was carried out under

both dry and wet conditions on roads in the study area with a scale of a few m2. The validation

average accuracy rate of the model was high with 90.1% inundation detection, while its training

average accuracy rate was 96.1%. This indicated that the model has effective performance with high

detection accuracy and recognition ability. Besides, the inundated water area of the experimental

inundation region and the real road inundation region in the images was computed, showing that the

relative errors of the measured area and the computed area were less than 20%. The results

indicated that the proposed method can provide reliable inundation area evaluation. Therefore, our

findings provide an effective guide in the management of urban floods and urban flood-warning, as

well as systematic validation data for hydrologic and hydrodynamic models.
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HIGHLIGHTS

• First experimental urban road inundation automatic detection study using YOLOv2.

• Proposed an inundation area computation method based on a deep learning technique.

• Good performance on an experimental urban road inundation detection was tested.
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GRAPHICAL ABSTRACT
INTRODUCTION
Rising urbanization has caused increased stormwater

runoff in recent years. This phenomenon has been attributed

to the transformation of previous semirural environments

into urban infrastructure setup (Baek et al. ; Chan

et al. ; Li et al. ). Consequently, this has led to an

increase in urban impermeable surface areas with severe

road water, runoff pollution, and ecological damage

(Paule-Mercado et al. ; Hou et al. ; Li et al. ).

Meanwhile, the frequent urban flood inundation causes una-

voidable disruption of transport and economic losses (Ruin

et al. ; Lv et al. ). Nonetheless, monitoring the

urban flood inundation can minimize the damages and

losses (Versini ). Monitoring of the urban road inunda-

tion plays a key role in the application of urban flood

inundation evaluation. Therefore, it is vital to monitor the

urban road inundation to avert urban flood disaster.

Conventional urban flood inundation (e.g., road

inundation) measurement methods (e.g., manual measure-

ment, auxiliary mark method) have demonstrated several

disadvantages under complicated climate and topographic

surroundings, including insecurity, time-consuming, and

high cost (Nair & Rao ; Zhang et al. ). In contrast

with the traditional manual measurement mode, the sensors

in modern measurement systems exhibit high precision.

Nevertheless, the sensors might be damaged and buried by

frequent flood events (Lin et al. ). Also, the measure-

ment readings could be affected by local electricity supply

and Internet access (Amin ). Additionally, deep learning

techniques have been effectively used in object recognition.

For instance, they are widely used for the automatic
://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
detection of objects in water (Kang et al. ; Cheng et al.

; Zhou et al. ). Notably, deep learning technology

has a better accuracy advantage compared with convention-

al artificial neural networks; besides, it utilizes the available

large amount of unlabeled data (Wu et al. ). The deep

learning technique has demonstrated excellent capabilities

to automatically learn complex and key features from raw

data with better accuracy in image object detection (Yu

et al. ; Zhou et al. ). Meanwhile, the advanced

deep learning technique can effectively help to establish

accurate prediction models (Le et al. ). Thus, unlike

the conventional manual measurement and sensors in

urban flood inundation (e.g., road inundation) monitoring,

the deep learning technique extracts feature information

of objects with low-cost, security, and satisfactory

performance.

In recent years, the potential deep learning frameworks

have applied Convolutional Neural Networks (CNNs;

Srivastava et al. ) to train the network, including

Faster R-CNN (Ren et al. ), Mask R-CNN (Yu et al.

), SSD (Sun et al. ), R-FCN (Si et al. ), and

YOLO (Redmon & Farhadi ). These methods were

well applied in image automatic recognition and classifi-

cation problems (Van et al. ). Out of these, YOLO is a

state-of-the-art framework for object detection and classifi-

cation with a very deep layer and special residual net

(Redmon et al. ; Zhang et al. ). The object detection

can directly be evaluated by image pixels as a single

regression problem using YOLO, the bounding boxes, and

class probabilities. A single CNN in YOLO simultaneously
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predicts multiple bounding boxes and their class probabil-

ities (Koirala et al. ). CNN harbors an intelligent

learning mechanism, hence easier classification or predic-

tion of objects, and learning the essential features of the

object images from a small number of samples (Geng et al.

). The original YOLO network was referred to as

YOLOv1. Furthermore, it was enhanced to YOLOv2

based on the YOLOv1 model. Therefore, YOLO v2 is also

a state-of-the-art detection framework, with improved detec-

tion speed under stable accuracy. The great speed and

accuracy of YOLOv2 was an improvement of YOLOv1, it

uses a pass-through layer, higher resolution classifier, and

anchor boxes (Redmon et al. ). Scholars confirmed

that YOLOv2 has an advantage in image object detection

(Redmon & Farhadi ; Arcos-García et al. ; Zhang

et al. ). Besides, the current YOLOv2 can be inferenced

in real-time and is still robust for object detection tasks com-

pared with other methods (Ye et al. ). Based on the

above analysis, this study used YOLOv2 due to its excellent

detection accuracy and speed.

Nonetheless, limited studies have conducted urban road

inundation detection using the deep learning technique

(Rokni et al. ; Lin et al. ). For example, Rokni

et al. () developed a novel method of integrating pixel-

level image fusion and image classification techniques on

the lake surface water change detection. Elsewhere, Lin

et al. () resolved the automatic water-level detection of

the river channels using the computer vision technique.

Zhang et al. () utilized the NIR-imaging video camera

to obtain water-level measurements for rivers. The above-

mentioned studies suggest that water-level information of

rivers and lakes can be obtained using other techniques;

however, these methods have not yet been used to investi-

gate the urban road inundation. Previous studies explored

inundation areas (Lv et al. ; Bhola et al. ), but a

few limitations have been reported. For instance, Lv et al.

() developed a raindrop photometric model (RPM)

that extracted information from an inundation region; how-

ever, the area was not computed, and the stability of the

camera and rain can easily affect the implementation of

this method. Bhola et al. () adopted both deep learning

and edge detection techniques to forecast flood inundation,

but they primarily focused on identifying the water surface

depths of a small river rather than inundated road. So far,
om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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no study has systematically detected urban road inundation

based on deep learning techniques. Thus, this study aims to

provide a novel idea for experimental urban road inundation

automatic monitoring using the YOLOv2 deep learning fra-

mework based on the collected images dataset. We believe

that this could easily produce better performance on urban

road inundation accurate detection considering the different

scene images, including experimental rainwater collecting

tanks inundation and urban road inundation with water.
METHODOLOGY

To automatically identify the urban road inundation, this

work applied the YOLOv2-based Darknet-19 network to

extract inundation areas. Moreover, the camera technology

was applied to support the collection of images.

An automatic monitoring method for experimental

urban road inundation based on the deep learning

technique

This work proposed an automatic monitoring method

applied to experimental urban road inundation based on

the YOLOv2 deep learning detection framework. The

method was used to evaluate the water areas in the object

region. The YOLOv2 framework was coded in the Python

programming language using the available Python standard

library. YOLOv2 was adopted as the object detector frame

and the model was implemented on TensorFlow. Tensor-

Flow object detection API was also used to complete part

of the experimental setup. The structure of the urban inun-

dation detection framework based on YOLOv2 is plotted

in Figure 1. The results of object bounding boxes and class

probabilities were predicted by full image pixels. An image

was split into finer pixels then classified and used to gener-

ate inundation statistics. The features of collected images

were extracted using initial convolutional layers of the net-

work, and the last convolutional layer predicted the output

probabilities and coordinates. Also, to further compute

urban road inundation area, the model used hand-picked

anchor boxes to predict bounding boxes based on the

offsets of these anchors at every location in a feature map

(Arcos-García et al. ). The k-means clustering on the



Figure 1 | The experimental urban road inundation detection framework is based on YOLOv2. ‘Concat’ refers to ‘concatenation layer’, ‘Reorg’ refers to ‘reorganize’, and ‘Detection’ refers

to ‘object detection’.
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training set bounding boxes automatically predicted suitable

anchor boxes (Redmon & Farhadi ).

The network of Darknet-19 is a novel classification

model used as the base of YOLOv2 (Redmon & Farhadi

). Here, Darknet-19 was applied to perform object detec-

tion as a feature extractor. The Darknet-19 comprised 19

convolutional layers and 5 max-pooling layers, the fully
Figure 2 | Network structure of Darknet-19. ‘Conv’ refers to ‘convolutional layer’ and ‘Max po

://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
connected layers were removed as shown in Figure 2. The

characteristic of network structure was in alternating convo-

lutional pooling layers with the organization of their

neurons in a grid (Vasconcelos & Vasconcelos ). In

the convolution layer, a few convolution kernels were equiv-

alent to a set of linear filters used to obtain the features of

the input image. After the convolution layer, pooling layers
oling’ refers to ‘Max-pooling layer’.
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down-sampled the output of the convolution layer, reducing

a great deal of data processing while the important features

image information was retained in this step (Geng et al.

). Thus, Darknet-19 doubled the number of feature

maps after every pooling layer and mostly used 3 × 3 filters.

Then, it adopted a global average pooling to predict with 1 ×

1 filters, reducing the dimensionality of the feature space

between 3 × 3 convolutions (Lin et al. ). Besides, the

model used a batch normalization that regularized the

model and improved model convergence, thereby providing

better model computational performance and preventing

overfitting in the model training process (Wang et al. ).

Every batch normalization layer was applied after the con-

volutional layer and the last output of the activation

function ReLU (Rectified Linear Unit) layer. Also, the non-

linear transformations function as ReLU was used to train

the model, where the weights and variables of each layer

were calculated during the training process.

As mentioned above, a comprehensive process of

achieving experimental urban road inundation detection is

shown in Figure 1. An original input resolution of 448 ×

448 was used in the YOLO v2 model. To predict the objects

with the addition of anchor boxes, the resolution was chan-

ged to 416 × 416 instead of 448 × 448 as reported by Redmon

& Farhadi (). Therefore, this study also used an input

resolution of 416 × 416. For the training of YOLOv2, the

batch size was 32 while 5 was the type of anchor box size.

The learning rate parameter was set as 0.001 while the

epochs for training the network were 50. Notably, all the

images trained together were collectively called one epoch.

First, it was necessary to collect the experimental urban

inundation images dataset before training the model on

these images. Also, the object inundation region with

water in the collected experimental urban inundation

images was labeled before model training, and then these

labeled images were used to train the model. Therefore, it

was important to make the correct labels of the water

object in the images, marking the location and labels for

an object within the images, and reshaping the original

images into 2D image format. The two consecutive layers

of convolution and max-pooling had 3 × 3 convolutions

(Figure 2). Finally, the network was modified for detection

by removing the last convolutional layer and replaced by

adding three 3 × 3 convolutional layers with 1,024 filters
om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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each followed by a final 1 × 1 convolutional layer with the

number of outputs for the object detection (Arcos-García

et al. ). The output results described the confidence

scores and bounding boxes with green color for each input

image. Overall, the automatic detection of experimental

urban road inundation was established based on the

YOLOv2, where the feature information of water position

and the predicted anchor boxes in images were automati-

cally identified.
Inundation area computation approach

As mentioned before, the proposed novel idea was used to

obtain information for the experimental urban road inunda-

tion. The inundation area was computed for the images

captured by the cameras in the vertical orientation.

Additionally, if the images were collected from different

angles, the object images were converted into an overlooked

perspective as new test images using the inverse perspective

transformation technique (Kim ), and then transformed

images were used to estimate the inundation area. The

inverse perspective transformation method transforms a

two-dimensional image into a three-dimensional real-world

space image, generating a bird-view (or top-view) image.

The spatial calibration was performed using this image pro-

cessing method to correct the barrel distortion of images; it

is because some images are taken by a surveillance camera

which is equipped with a wide-angle lens. Given that a

different inundation region size appeared in the images,

the proposed different assessment methods were used to cal-

culate the inundation area under two scenarios. Figure 3

shows the flowchart of the inundation area computation

process. Moreover, the CNN algorithm was applied to accu-

rately predict the number of more detection anchor boxes

within images (Koirala et al. ). For the first scenario, if

the inundation region with water was an irregular area,

the inundation area was obtained from the accumulation

area of smaller predicted detection anchor boxes that cov-

ered the entire water region in the images. The

formulation of the inundation area is as follows:

S1 ¼ S
M

×N (1)



Figure 3 | The flowchart of the inundation area computation process.
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where S1 represents the computed inundation detection

result area covered water in the region of each image; S rep-

resents the measured inundation area covered water in the

region of each image reflecting the actual scene; N represents

the number of predicted detection anchor boxes covered

water; and M represents the number of predicted detection

anchor boxes which covered the region of the entire image.

Furthermore, anchor box coordinate prediction was

directly provided by the YOLOv2 detection framework

based on labeled images dataset (Redmon & Farhadi ;

Pi et al. ). After the model learned to predict objects

in the images with an anchor box directly from the

images, the coordinate values of the box covered water in

each image were calculated. For the second scenario, if

the inundation region with water was nearly covered by a

predicted larger anchor box, the inundation area was evalu-

ated by the area of this box coverage water region, reflecting

the inundation region in the actual scene. Thus, the inunda-

tion area is also calculated using the formula:

S2 ¼ (xmax � xmin)(ymax � ymin)
xI

× S (2)

where S2 depicts the computed inundation detection result

area covered water in the region of each image; S represents

the measured inundation area covered water in the region of

each image reflecting actual scene; xI depicts the pixel

values of each input image with the size of 416 × 416;
://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
(xmin, ymin) and (xmax, ymax) are the pixel values of the

upper-left and lower-right points of the predicted anchor

box in each image, representing the coordinates value of

the predicted anchor box. Additionally, the origin coordi-

nate (0, 0) was at the upper-left corner of the image region.

To evaluate the performance of the method using the col-

lected images dataset, we used the relative error of the

measuredareawith the computed area. The smaller the relative

error indicated a better performance by the proposed method.
Experimental images dataset acquisition and

preprocessing

Experimental image acquisition

Considering the reasonableness of the images dataset and

the safety of collecting images for this study, datasets were

set up to improve the detection accuracy. The experimental

images were acquired from the scene of experimental road

water-logging and low-lying land flooded region in the

Xi’an University of Technology, Xi’an, China. Meanwhile,

some actual road inundation images were also used in this

work. The automatic detection of experimental urban road

inundation was carried out under both dry and wet con-

ditions on roads. In order to effectively learn and extract

the detailed features information of object water, some dry

roads were tested in this work. The outside temperature

was 30 �C. The experimental images were collected using
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a smartphone camera with high resolution in different

periods, including morning and afternoon under varying

light intensity, different road types, and reflection effect in

water. Small memory per image collected by a smartphone

camera was contributed to image storage and preprocessing.

Therefore, all collected images were stored in JPEG format

with a high resolution. A total of 1,000 original images

were captured under different angles and positions (Figures 4

and 5). Besides, to justify the usefulness of the proposed

method, a few images were collected using a high-definition

camera with the larger inundation areas. To memorize the

detailed water features information based on YOLOv2, a

simple geographical environment with a clear border

around the water in the images, avoiding the impact of the

complex terrain environment on important feature extrac-

tion. The experimental inundation images with water were

considered as the important training dataset to enhance
Figure 4 | Example of experimental water-logging road images.

om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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the accuracy rate of the actual inundation detection test.

Moreover, to verify the performance of the method, the

actual raining urban road inundation images were selected

for the model test (Figure 6). The following section describes

the image preprocessing.

Image preprocessing

To enhance the performance of the model training and

show reliable detection results, the image preprocessing

was performed before the model training. For example,

the resolution of the original image was 2,352 × 1,568

pixels. The original image was down-scaled to 416 × 416

pixels. To prevent overfitting of the model due to the simi-

larity of images and improving the reliability and diversity

of images, the numbers of experimental images dataset

were expanded via image preprocessing. The color



Figure 5 | Example of experimental low-lying land flooded region images.

Figure 6 | Example of actual road inundation images.
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transformation, image rotation, and salt and pepper noise

removal methods were applied to make an expansion pro-

cessing on images numbers from 1,000 to 3,000. Among
://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
them, image rotation and salt and pepper noise removal

methods were applied to make an expansion processing

on images numbers from 700 to 2,000. The images
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numbered from 300 to 1,000 were expanded by the color

transformation method. The acquired 3,000 images were

subdivided into two groups, including model train dataset

and validation dataset with the number of images being

2,500 and 500, respectively. The validation dataset com-

prised 100 actual raining urban road inundation.

Besides, added 50 samples were used to evaluate the inun-

dated area. Figure 7 shows the preprocessing for the

original image to the preprocessed image. Besides, the

training images first need to be marked, then the position

and features information can be memorized by the model.

The water region of the images as the detection object was

labeled with the box using the labeling software. The

labeled water images are shown at the bottom of Figure 7.

Moreover, the model input requirement was primarily

composed of down-scaled images dataset and XML files.

These preprocessed images as the model input were

applied in the model training. The information of coordi-

nates and inundation region with water in the labeled

image was described and saved as an XML file.
Figure 7 | Process of the images preprocessing.
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EXPERIMENTAL RESULTS AND DISCUSSION

The detection results of experimental urban road inundation

based on YOLOv2 are described in the ‘Experimental recog-

nition accuracy evaluation’ section; besides, we provided the

recognition accuracy rate of experimental object detection

evaluation. The new method for evaluating the experimental

inundation area considering two scenarios is introduced in

the ‘Evaluation of the inundated area’ section.
Experimental recognition accuracy evaluation

The accuracy rates in recognition of the model training and

validation with an apparent change pattern are shown in

Figure 8. As shown, the recognition accuracy rates increased

at the beginning then reached a steady state for both the vali-

dation and train curves after 30 epochs. It was apparent that

both model training and validation were higher than 0.9 and

0.8, respectively, and more than 10 for the model training

epoch. As summarized in Table 1, the optimal training and



Table 1 | Accuracy rate evaluation

Network
Iterations
number

Average accuracy
rate for model
training

Average accuracy rate
for model validation

Darknet-19 50 96.1% 90.1%

Figure 8 | Recognition rate curves of the model training and validation. Figure 9 | Loss value curves of the model training and validation.
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validation average accuracy rates were 96.1 and 90.1%,

respectively, indicating a better performance for model train-

ing and validation under the dataset. This phenomenon

reflected that a steady state appeared in two curves (Figure 8)

with higheraccuracy rates, indicating that the training and vali-

dation reached a satisfactory convergence state. Meanwhile,

there was a small error of approximately 10% compared

with themodel validation average accuracy rate (90.1%).Nota-

bly, weather factors (Lv et al. ) or human labeling errors in

the image preprocessing potentially affected the validity of the

algorithm (Koirala et al. ).Moreover, as shown in Figure 9,

the loss values of the model training and validation gradually

decreased at the beginning then reached a steady state.

Again, the deviation in prediction loss of the model gradually

decreased when the loss function of the small sample batches

kept updating during the training process (Yu et al. ),

hence a better performance of model training.

The detection findings of experimental road inundation,

experimental low-lying land flooded region, and actual road

inundation based on the model under a similar training

images dataset are illustrated in Figures 10–12. The results
://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
revealed that the object inundation recognition exhibited a

higher degree of confidence based on Figures 10–12. The

method of water inundation detection performed better

with a greater image recognition accuracy rate. Moreover,

it showed the highest detection accuracy rate (99%) in the

upper-left corner of the anchor box with green in these

images (Figures 10 and 11). Generally, any classifier

achieved an accuracy rate of 100% with difficultly, due to

the effects of the lights, shadows, and complex obstacles

(Geng et al. ). Meanwhile, the model recognition results

were potentially influenced by human errors when labeling

the training image dataset (Yu et al. ). Therefore, the

findings suggested a satisfactory rationality in automatically

extracting the inundation features using the proposed

method and was examined and certified.

Figures 11 and 12 reveal the appearance of water

accumulating in the low-lying region of the roads. The dimen-

sion of detection boxes with green changed automatically

based on the size of the inundation region covered by

water. The finer validation for the actual road inundation

detection had a better accuracy rate (Figure 12). The model

test images were from the actual road inundation scenes

(Figure 6). The results showed that the established model

for inundation detection could be also applied to automati-

cally extract the appearance boundary features via model

training and autonomous learning. Higher recognition

results indicated that the method had a significant and effec-

tive detection performance for inundated urban roads. Rokni

et al. () reported a satisfactory performance of detecting



Figure 10 | Experimental low-lying land flooded region detection results. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/hydro.2021.156.
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the lake surface water change in the global change detection,

hence, confirming that the result of surface water detection

effectively managed flood monitoring and warning. How-

ever, smaller-scale surface water was not considered.

Therefore, these findings guide the monitoring of urban

road inundation based on our automatic detection analysis.

Evaluation of the inundated area

Scenario 1

A reliable result of the high performance of the estab-

lished model for the detection of the inundated region
om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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is provided in the previous section. In this subsection,

the novel proposed method was used for computing inun-

dation areas covered by water via adjusting the size of

predicted anchor boxes when the inundation region

with water had an irregular area scenario. For example,

Figure 13 shows the measured water area and recognition

result with 10 anchor boxes. Besides, a green mark

above these boxes shows the confidence score and classi-

fication information for model output detection result. As

shown in Figure 13(a), the water shape approximated

ellipse in the image with the dimension of 53 cm ×

29 cm and the inundation area were calculated by the

ellipse area formula approximately 1,207.1 cm2.

https://doi.org/10.2166/hydro.2021.156
https://doi.org/10.2166/hydro.2021.156


Figure 11 | Experimental road inundation detection results. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/hydro.2021.156.
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Figure 13(b) shows a scenario where the entire inunda-

tion region with water was almost covered by 10 boxes

in the image. This was because the fixed small size of

detection anchor boxes was defined before model

training.

Based on Figure 13, the measured area of the real

image region had a dimension of 115 cm × 115 cm, cov-

ered by 121 detection anchor boxes under this scenario.

Therefore, the inundation area was obtained via the stat-

istic number of detection anchor boxes, as shown in

Equation (1). The area of a detection box was

109.3 cm2, and the entire covered inundation area of 10

detection boxes was about 1,093 cm2. A comparison was

conducted between the computed detection area based
://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
on the model and the measured area of the image water

region with the relative error being approximately 10%,

indicating the feasibility of the method and a good

reliability for inundation area evaluation. In contrast

with the inundation area of the traditional measurement

method (Lin et al. ), we confirmed that the proposed

method quickly assessed the inundated region area with

accuracy. Above all, the deep learning technique for inun-

dated region detection obtained the information of an

area and extracted precise object features via training

and autonomous learning. Moreover, the bad weather

potentially affected the model detection precision of the

results due to the object surroundings reflection and

bright light mixed in the image.

https://doi.org/10.2166/hydro.2021.156
https://doi.org/10.2166/hydro.2021.156


Figure 12 | Actual road inundation detection results. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/hydro.2021.156.
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Scenario 2

For the second scenario, the inundation area was obtained

to compute the predicted box region area covered by

water when the inundation region was nearly covered by a

predicted larger anchor box. Fifty cases were tested in this

section, and the experimental 20 images with the larger

inundated region area were collected using a surveillance

camera with high resolution. For instance, the example of

four typical cases is shown in Figure 14, there was a better

accuracy rate in the inundation automatic detection. The

images were captured under a similar experiment site and

taken in the vertical orientation (Figure 14(a) and 14(b)).

Also, after the object images were converted into an
om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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overlooked perspective, the larger inundated region area

was accurately computed as shown in Equation (2)

(Figure 14(c) and 14(d)). Therefore, the total measured

area in the real scene for these images was directly

measured with the image input pixel of 416 × 416. More-

over, the predicted values of (xmin, ymin) and (xmax, ymax)

coordinate of the anchor box for two images are listed in

Table 2, which calculated the area proportion of the detec-

tion box coverage area to the total measured area, with

the origin coordinates (0, 0) being at the upper-left corner

of the image region.

Thereafter, the inundation area in the images is com-

puted by Equation (2). Unlike the measured and computed

areas for the inundation region with water, the relative

https://doi.org/10.2166/hydro.2021.156
https://doi.org/10.2166/hydro.2021.156


Figure 13 | Evaluation of the inundation area. (a) Measured area. (b) Recognition result with boxes. Please refer to the online version of this paper to see this figure in color: https://doi.org/

10.2166/hydro.2021.156.

Figure 14 | Example of the inundated region area evaluation.
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Table 2 | Coordinate information of the anchor box and inundation area computation error

No. xmax xmin ymax ymin Measured area (cm2) Computed area (cm2) Error percentage (%)

A 405.65 4.15 416.00 195.02 1,434 1,551 8.2%

B 366.19 118.02 348.55 94.17 3,850 4,414 14.6%

C 415.95 1.00 413.83 151.73 74,600 77,049 3.3%

D 415.27 0.83 416.00 151.77 83,400 77,581 7.0%
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error percentages of 50 cases are illustrated in Figure 15,

with the average relative error percentage of 7.7%. It is

clear that the relative error percentages of all cases were

less than 20%. In addition, the detailed coordinate infor-

mation of the anchor box and the inundation area

computation error of four typical cases are listed in

Table 2, showing that the relative error percentage of

image A, B, C, and D were 8.2, 14.6, 3.3, and 7.0%, respect-

ively. The permissible smaller error showed a satisfactory

prediction and area evaluation for the proposed method

under the second scenario. Some of the explanations for

the errors of inundation area evaluation could be affected

by the shaking of the general camera (Lv et al. ). Mean-

while, the wet road or low-lying land flooded region with no

inundation potentially affected the result detection, causing

an error in evaluation of the inundation area. It is also poss-

ible that the varying light reflection of the water surface and

complex geometry shape of water border could cause some

errors. Above all, the experimental findings confirmed that

the proposed idea could be applied to complete the
Figure 15 | Curve of relative error of the measured area with the computed area.

om http://iwa.silverchair.com/jh/article-pdf/23/4/764/910488/jh0230764.pdf
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inundation area computation with a better performance.

Based on the above-mentioned analysis, our study produced

a more complete evaluation for inundation area compu-

tation under two scenarios, hence providing an efficient

strategy for monitoring urban road inundation.
CONCLUSION

To facilitate the current urban road inundation automatic

monitoring, a novel idea based on the YOLOv2 deep learn-

ing frame was applied to inundation region automatic

detection and area computation. The complete process

included image acquisition, preprocessing, inundation rec-

ognition, and the inundation area computation. Through

analyzing the results, some conclusions are as follows:

• The proposed method based on the YOLOv2 deep learn-

ing framework could be effective for experimental flood

inundation detection. The trained model exhibits better

universality for different types of images dataset with

varying angles and road conditions.

• Moreover, the results of inundation recognition accuracy

rates showed that the model training and validation accu-

racy rates were high with 96.1 and 90.1%, respectively.

Moreover, further validation confirmed that it harbors a

higher accuracy rate for the actual road inundation detec-

tion. Therefore, the results indicated the impact of high

accuracy and reliability for road inundation automatic

detection.

• Furthermore, by comparing the measured inundation

area and computation inundation area for two scenarios,

the area relative errors of the test cases were less than

20%, with the average relative error percentage of 7.7%.

The findings indicated an effective performance in the

assessment of the inundation area.
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Summarily, our findings revealed a higher accuracy and

an efficient feasibility of the proposed method in detecting

experimental urban road inundation and computing the

area. These results guide the urban flood-warning and road

inundation monitoring. However, limitations existed

during the process of images dataset collecting, for instance,

the experimental inundation images were not collected at

night, under continuous rainstorms, or other harsh weather

conditions due to the potential effects of additional uncer-

tain factors. Besides, the method was only applied in

inundation area computation images captured in the vertical

orientation without considering different angles. These com-

plex conditions might change the recognition accuracy rate,

hence warrants further investigation. The proposed method

could provide a foundation and expanded guidance for

experimental urban road inundation evaluation under differ-

ent geographical environments. Furthermore, different

geographical factors could be considered to improve the per-

formance of the proposed methods. A follow-up study using

a higher precision and great stability of camera on the urban

road inundation detection considering the more comprehen-

sive environment is essential. Moreover, water area and

depths of the inundated region play a key role in the

urban flood management and flood-warning; however, this

work only considered inundation water area evaluation.

Notably, deep learning and computer vision techniques

are not entirely automated in the process of water depths

perdition, thus requiring manual intervention (Bhola et al.

). As such, the proposed strategy cannot fully replace

the numerical hydrologic and hydraulic models. Nonethe-

less, the proposed method can be applied to investigate

the applicability of the numerical model. In addition to the

above-mentioned assumption, further enhanced investi-

gations on the real-time performance of urban flood

inundation area and depths for predicting and monitoring

are necessary.
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