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A hybrid drought index for drought assessment in

Wadi Shueib catchment area in Jordan

Odai Al Balasmeh, Richa Babbar and Tapas Karmaker
ABSTRACT
Wadi Shueib catchment in Jordan is a water stress area and climate change is creating a further

deficiency in precipitation, streamflow, and soil moisture; which are a deterrent to agriculture

production in the area. In order to analyze the drought-like situation in the area, a hybrid drought

index (HDI) has been developed considering the combined effect of these three variables. Fuzzy

analytical hierarchy process (F-AHP) and entropy weight methods were carried out to develop a

hybrid drought index (HDI) which combines meteorological, hydrological, and agricultural drought

indices based on precipitation, streamflow, and soil moisture data in the area. The wavelet transform

(WT) with cross wavelet (XCT) and wavelet coherence (WTC) were applied to investigate the

interaction and the relations between the HDI index, drought indices, and large-scale sunspot activity

Niño3.4 index. The results show that HDI can easily capture the trend of the drought-like conditions

in the area based on the available data. The trend analysis of HDI revealed an increasing trend in the

drought incidences in the near future. The study can be used as an early alarm for drought in the

area, which can be helpful in the decision-making process towards water resources planning and

management in the future.

Keywords | drought indices, entropy weight method, fuzzy-AHP, hybrid drought index (HDI), wavelet

cross transform
HIGHLIGHTS

• The drought indices representing meteorological, hydrological, and agriculture have been

computed and the trend analysis performed.

• The hybrid drought index is developed based on fuzzy set theory.

• HDI confirms an increasing trend in the drought, in the area based on the trend analysis.

• Based on wavelet analysis, the drought variation is found to be mainly dominated by the

periodicity of 1 year.
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GRAPHICAL ABSTRACT
INTRODUCTION
Drought is one of the most critical global issues faced by

countries, especially in arid and semi-arid regions. Based

on the IPCC report (2014), global climate change in terms

of increasing surface temperature is causing an increase in

evaporation, resulting in an increase in the incidences of

drought and its trend (Griggs & Noguer ). Similar to

floods, the analysis of drought events (e.g. characteristics

and causes) is very important for early warning (Hayes

et al. ). Drought can be classified into four major cat-

egories: meteorological drought, agricultural drought,

hydrological drought, and socioeconomic drought (Heim

). Meteorological drought is related to the deficiency

in precipitation over the region and is based on average rain-

fall with respect to time, while agricultural and hydrological

droughts are related to insufficient water, which is required

for crop growth and other uses such as water supply,

respectively (Wilhite & Glantz ). Socioeconomic

drought indicates a situation where the water supply

becomes insufficient to achieve water demand, thus affect-

ing the society, economy, and environment (Zseleczky &

Yosef ). Incidence of a drought can be characterized

in terms of its duration, severity and spatial distribution

(Mishra & Singh ; Huang et al. ; Oertel et al. ;

Yang et al. ).

Thus, in an attempt to characterize drought, researchers

often resort to several approaches and techniques to obtain

an insight of drought phenomenon. These approaches can

be as simple as using one variable to integrating more
om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
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than one variable that may have caused drought. Either

way, the drought indicator so obtained is a better way of

communicating the characteristics of drought in an area

(Mishra & Singh ; Oertel et al. ). McKee et al.

() established a standardized precipitation index (SPI)

to determine the severity of drought conditions, based on

precipitation time series data. Nury & Hasan () dis-

cussed drought conditions based on only SPI and tried to

analyze the trend and pattern of rainfall to determine the

transient variations in northwestern Bangladesh.

However, a drought is a multivariate phenomenon and

its effects exhibit multi-dimensional characteristics.

Droughts are found to be influenced by local geography,

soil parameters and vegetation, and these factors affect its

development and localized severity. Simple indices that

depend on one variable to define the drought in an area

are usually faced with the difficulty of completely capturing

the drought onset and its terminus (Hao & AghaKouchak

; Zhu et al. ). Therefore, it has been found that

one-dimensional analysis is inadequate or unreliable to

characterize the probabilistic nature of drought occurrence.

Recently, several studies have proposed various techniques

to combine different drought variables (e.g. precipitation,

streamflow, soil moisture, etc.). These studies, however,

differ in terms of the methodology chosen to integrate the

variables of interest, such that a drought is decomposed to

the variable predominantly causing the phenomenon.

Each methodology selected also comes with its limitations
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in terms of its application and gives a further scope of

improvement in the methodology. Kao & Govindaraju

() used the copula function to capture the joint behavior

of precipitation and streamflow to assess droughts. Hao &

AghaKouchak () developed a multivariate standardized

drought index (MSDI) combining SPI and the standardized

soil moisture index (SSMI) to monitor drought based on

copula function. Huang et al. () proposed an integrated

method using a nonparametric multivariate drought index

to combine meteorological and hydrological drought infor-

mation. Rajsekhar et al. () combined meteorological,

hydrological and soil moisture to develop a multivariate

drought index. Kwon et al. () studied the drought

characteristics in South Korea by combining the meteorolo-

gical and agriculture drought using a copula family and

grouped the HDI by using the hierarchical agglomerative

clustering approach for classifying regional patterns. These

studies used a copula probability family to build an inte-

grated drought index. Application of the copula approach

has not only been used in assessing drought but also in

handling flood extremes. Drought and floods as two weather

extremes have often been studied with similar approaches.

Numerous studies have used a multivariate concept includ-

ing the couple approach for flood analysis in the area (e.g.

Favre et al. ; Zhang & Singh ; Jongman et al.

). Atmospheric blocking was found to be one of the

most important parameters associated with extreme weather

events such as drought and flood, as studied by researchers

(Scherrer et al. ; Sillmann & Croci-Maspoli ).

Ionita et al. () studied flood patterns in Europe based

on a combination of different variables such as precipitation,

soil moisture, and water lever using multiple linear

regression models to predict the streamflow of Elbe River.

The copula probability family has been observed to have

certain limitations such as the data is required to follow a

probability density function for the usage of this technique

and there is a lack of flexibility in the model structure in

cases where more than three variables are integrated

together (Rajsekhar et al. (). It has also been observed

that there is a possibility of obtaining negative values of

the integrated index (Erhardt & Czado ). According to

Real-Rangel et al. (), the use of a copula family to

build an integrated drought index shows severe deficits,

especially when the influencing variables are more than
://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
one, then it can only marginally detect a drought-like

condition.

Zhu et al. () proposed an integrated hybrid drought

index based on the entropy weight method with a fuzzy set

theory to combine meteorological, hydrological, and agricul-

tural information. Under normal conditions, the entropy

method is used to determine the subjective and objective

weight while exploiting the entire original data. Now,

since it cannot reflect the knowledge of experts and

decision-makers, hence it has the disadvantage of causing

large fake weights (Roodposhti et al. ). Zhao et al.

() proposed the F-AHP method to determine the objec-

tive weight, as it has the ability to reflect the knowledge of

experts and decision-makers. A fuzzy approach to integrat-

ing the variables in an index has several other advantages,

namely, the boundaries which separate the index categories

are fuzzy (Wilhite & Glantz ). Therefore, the variable

fuzzy set theory can be applied to characterize vague

phenomena and capture their dynamic processes so as to

better arrive at a hybrid drought index. Huang et al. ()

and Zhu et al. () successfully applied fuzzy set theory

to combine meteorological, hydrological, and agricultural

factors and proposed an integrated drought index (IDI).

However, in these studies the results of IDI were compared

only with SPI and the standardized streamflow index (SSFI),

regardless of any information about soil moisture or its

related drought indicator.

The application of fuzzy set theory to arrive at an index

has proved its efficacy in understanding drought phenom-

enon. In this proposed study, the weights for the

aggregating of the three variables will be computed based

on the fuzzy-AHP method, which is expected to overcome

the limitation of the entropy weight assignment method

yet allowing the fuzzy theory to be used for its advantages.

Second, we also envisage incorporating three variables in

one index, and the index will be validated using trend and

wavelet analysis, in contrast to other similar indexes in the

literature.

This study attempts to develop a hybrid drought index

for Wadi Shueib catchment in Jordan. Jordan is in an arid

and semi-arid region of the Middle East and the country is

suffering from acute shortages of water with the annual por-

tion per person not exceeding 500 m3 (Al-Ansari ). The

future trend of water is declining; thus, this issue is expected
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to be deep-seated and serious in the future (Bazzaz ). Of

all the Middle East countries, Jordan is considered the

second poorest country in terms of water in the

world. The economy of Jordan mainly depends on agricul-

ture, with limited arable lands in the arid and semi-arid

zones.

Different studies have studied the water supply and

drought conditions in Jordan. Tarawneh () discussed

the water supply in Jordan under drought conditions, and

showed that Jordan is under water stress even during rainy

seasons (October–May). Törnros & Menzel () addressed

the drought based on precipitation, evapotranspiration, and

a normalized difference vegetation index (NDVI), and found

that drought will increase the irrigation water demand for

the agriculture sector in Jordan valley. Recently, Rajsekhar

& Gorelick () investigated drought conditions in the

Jordan valley under current and future climate change con-

ditions. In their study, precipitation, streamflow, and soil

moisture were used. Based on historical data, they con-

cluded that drought conditions will be more severe in the

future. Also, Mohammad et al. () discussed the impact

of natural conditions on drought events in the Yarmuk

basin in northern Jordan. The study compared the SPI and

standardized water level index (SWI). Gilbert () found

that the drought frequency in Jordan is increasing, with

almost twice as many winter droughts from 1961 to 2010

as had occurred between 1901 and 1960. Future predictions

are that there will be an increase in temperature and

decrease in precipitation trends during the winter season

(Shakhatreh ; Al Balasmeh et al. ).

The aim of this study is to develop and validate a hybrid

drought index for the study area. This aim has been fulfilled

through the following objectives:

1. To develop drought indices based on each of the three

variables, i.e., precipitation, streamflow, and soil

moisture.

2. To compare entropy weight method and fuzzy-AHP

method in assigning the weights to the three variables.

3. To perform wavelet analysis to validate the association in

time series of each drought index and the hybrid index.

4. To establish the hybrid index by evaluating and compar-

ing the trend analysis of each drought index with the

hybrid index.
om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf

4

MATERIAL AND METHODS

Study area

The study site is located in the eastern part of Jordan Valley

and west of the salt city (Figure 1). Wadi Shueib is approxi-

mately 180 km2 in size and lies between 31�500–32�020 N

and 35�350–35�500 E. The area has a steep slope with

elevation ranging from 200 m below mean sea level

(b.m.s.l) at Jordan valley to 1,200 m above mean sea level

(a.m.s.l.) near the salt city. Wadi Shueib dam is the outlet

of Wadi Shueib catchment, which is used to cater for irrigat-

ing the agriculture fields and groundwater recharge

purposes in Jordan valley.
Drought analysis

Data collection

In this study, SPI, SSFI, and SSMI were calculated and then

further used to compute a hybrid index. Precipitation,

streamflow and soil moisture are the main inputs required

for the determination of these indices. The precipitation

data of 44 years were collected from the Ministry of Water

and Irrigation, Jordan, and soil moisture was obtained

from the European Space Agency (ESA) Climate Change

Initiative soil moisture version 3.3. The available data cov-

ered 0.25 × 0.25� resolution daily data from 1978 to

present. The soil moisture was found based on average

values of square cells in and around the watershed. The

data was further divided into two major seasons, rainy

(October–May) and summer months (June–September).

However, streamflow data for the same time period was

not available, and hence the Soil and Water Assessment

Tool (SWAT) watershed model was calibrated and verified

for predicting the monthly streamflow data for the same

time period as the other two variables. SWAT is a physically

distributed model used to estimate streamflow, sediment

yield, and water quality in agricultural areas based on the

interaction of land management practices with climate vari-

ables and soil cover (Arnold et al. ).The following water

balance equation is used to measure the hydrologic



Figure 1 | Study location.
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components:

SWt ¼ SW0 þ
Xt

i¼1

(Rday �Qsurf � Ea �Wseep �Qgw) (1)

where SWt is the soil water content at time t; SW0 is initial

soil water content; t is time (in days); Rday is the amount of

precipitation per day; Qsurf is the amount of surface runoff

on day; Ea is the amount of evapotranspiration per day;

Wseep is the water percolation to the bottom of the soil pro-

file per day; Qgw is the amount of water returning to the

groundwater per day.

Some of the inputs required for the SWAT run include

land use data, soil data and slope information, precipitation

and temperature data of the watershed. The model was cali-

brated from 2003 to 2010. At this stage, the model was fine

tuned for various parameters governing the stream flow at

the selected outlet of the watershed. The sensitivity analysis

using SWAT Calibration Uncertainties Program (SWAT-
://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
CUP) with Sequential Uncertainty Fitting ver.2 (SUFI-2)

was carried out to calibrate the SWAT model. Statistical

indices including the Nash–Sutcliffe coefficient of efficiency

(NSE), correlation coefficient (R2), percent bias (PBIAS),

and relative error (RE) were used for validating the model

performance. The parameters so tuned for modeling stream-

flow (on a monthly scale) are given in Table 1. To check the

robustness of the model, validation was performed for the

same values of parameters as in model calibration but

from the years 2011–2013. The evaluation metrics of the

model in the calibration period were R2¼ 0.71, PBIAS¼
0.20, RE¼ 0.15, and NSE¼ 0.65, and R2¼ 0.67, PBIAS¼
0.23, RE¼ 0.18, and NSE¼ 0.58 during the validation

period. Curve number (CN) was observed to be the most

sensitive parameter affecting streamflow generation in the

watershed.

One of the main advantages of the SWAT run in the pre-

sent study is obtaining a time series of monthly streamflow

data at any desired location. However, this does come

with limitations, which any physically distributed model



Table 1 | Sensitive analysis and calibration results using SUIF-2, SWATCUP

Parameter Min value Max value Fitted value

Global sensitivity

t-stat P-value

r__CN2.mgt –0.25 0.15 –0.24 4.47 0.00

v__ALPHA_BF.gw 0 1 0.2 –4.14 0.00

v__GW_DELAY.gw 0 500 21.14 –2.92 0.00

v__GWQMN.gw 0 500 315.83 –2.40 0.02

v__SURLAG.bsn 0.05 30 10.76 –1.88 0.06

v__ESCO.hru 0 1 0.53 –1.82 0.07

v__EPCO.hru 0 1 0.97 1.74 0.08

v__OV_N.hru 0.1 0.3 0.18 –1.62 0.11

v__SLSUBBSN.hru –0.5 0.5 0.1 –1.37 0.17

v__DEP_IMP.hru 0 6,000 5,074.6 –1.31 0.19

v__GW_REVAP.gw 0.2 0.2 0.05 –1.22 0.22

v__REVAPMN.gw 1 100 30.35 –1.14 0.26

v__CH_COV1.rte 0 0.6 0.04 1.13 0.26

v__CH_K2.rte 1 50 13.7 1.00 0.32

v__CH_N2.rte 0.01 0.3 0.08 0.99 0.32

r__SOL_AWC().sol 0.3 1 0.5 0.77 0.44

v__SOL_K().sol 0.25 25 2.22 –0.63 0.53

v__CH_K1.sub 0.05 5 2.24 0.61 0.54

v__CH_N1.sub 1 65 12.99 –0.50 0.61

v__CH_S1.sub –0.5 1 –0.18 –0.49 0.62

r__SOL_Z().sol 0 0.05 0.03 0.46 0.64

r__GDRAIN.mgt –0.25 0.25 –0.18 –0.44 0.66

v__SFTMP.bsn –5 5 –4.46 –0.44 0.66

r__HRU_SLP.hru 0 0.6 0.14 0.43 0.66

r__RCHRG_DP.gw 0 1 0.11 0.37 0.71

r__SOL_CBN().sol 0.5 1 0.57 0.37 0.71

r__SOL_ALB().sol 0 0.25 0.1 –0.36 0.72

v__SMTMP.bsn –5 5 3.55 0.32 0.75

v__SMFMX.bsn 1.7 6.5 3.79 –0.32 0.75

v__SMFMN.bsn 1.7 6.5 3.2 –0.32 0.75

r__SOL_ZMX.sol 0 0.05 0.05 –0.30 0.76

r__DDRAIN.mgt –0.1 1 0.16 0.27 0.78

r__TDRAIN.mgt –0.25 0.25 –0.07 –0.27 0.78

v__SHALLST.gw 0 1,000 902.56 0.25 0.80

v__DEEPST.gw 0 6,000 923.84 –0.15 0.88

v__CANMX.hru 0 100 83.48 –0.10 0.92

v__EVRCH.bsn 0.5 1 0.68 –0.09 0.92

v__LAT_TTIME.hru 0 180 154.85 –0.06 0.95

v__USLE_K().sol 0 0.65 0.38 0.03 0.98

v_ represents existing parameter value and will be replaced by the given value, and r_ represents the existing parameter and is multiplied by (1þ given value).
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will have, such as uncertainty in the results because of the

uncertain parameters and mathematical simplification of

an otherwise complicated process of streamflow generation.

Considering the fact that streamflow is an important vari-

able representing hydrological drought, therefore, a

relationship between observed precipitation vs. observed

streamflow, and observed rainfall vs. modeled streamflow

was found, as shown in Figure 2. With an acceptable value

of R2 as obtained, it was assumed that the modeled stream-

flow is acceptable within the given uncertainties in the

calibrated parameters.
Figure 2 | Relationship between observed and simulated streamflow vs. precipitation.

://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
Drought estimation

Taking monthly data of precipitation depth, streamflow, and

soil moisture time series data between 1979 and 2014 as

inputs, the drought indices SPI, SSFI, and SSMI were calcu-

lated. An SPI for each month was computed by estimating

the key coefficient of gamma distribution (Lin et al. ;

Winkler et al. ), given in Equation (2):

g(xk) ¼ 1
βαΓ(α)

xα�1
k e�xk=β for xk > 0 (2)
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Thereafter, the precipitation data was transformed to

normally distributed SPI and described as (Lin et al. ;

Winkler et al. ):

SPI ¼ P� P
σP

(3)

where P is the aggregated precipitation, as the respective

mean, representing the standard deviation of available

data (Keyantash ). Similarly, SSFI and SSMI were also

computed based on the same procedure, but using stream-

flow and soil moisture as respective data inputs in

estimation.

The magnitude of SPI, SSFI and SSMI is found to vary

between –4 and þ5. Figure 3 shows a time series plot of

the three indices from January 1979 to December 2013. As

seen in the figure, drought is found to have occurred

almost every year during non-rainy months, and in the wet

months (October–May). SPI and SSFI are observed to

follow the same pattern. When SPI and SSFI are found to

reduce, there is a considerable reduction in SSMI. This

severity is found to coincide with the decreasing trend in

SPI and SSFI during 1993–2001 (this is not visible in the

figure) and 2003–2013.
Figure 3 | Time series of SPI, SSFI, and SSMI for period January 1979–December 2013.

om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
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Integrating the drought indices

Assignment of weights to the three variables is necessary for

aggregating the effects of these variables in the proposed

hybrid index. For these, two methods of weight assignment

were used and compared. These methods are described

below.
Entropy weight method

The entropy approach has been widely applied to measure

the disorder degree of information in the field of information

theory (Chang et al. ; Zhu et al. ). The method is

adopted to reflect the difference of the index in different

schemes. A high weight represents high differences with

small entropies in the time series (Chang et al. ; Zhu

et al. ). It takes an objective information measurement

for weight estimation (Chang et al. ; Zhu et al. ).

The entropy weight method (EW) is expressed as:

Pi ¼ �k
Xn
j¼1

fij ln fij, i ¼ 1, 2, . . . ::, m (4)

Wi ¼ 1� Pi

m� Pm
i¼1

Pi

(5)
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where fij is the frequency of the jth evaluating object in the

ith index.

In order to better comprehend the data from both a sea-

sonal and annual variation point of view, the entropy

weights were found for one-, three-, six- and 12-month data

for each variable under consideration.

Fuzzy-AHP method

The F-AHP method was also carried out to determine the

weight for each drought index (SPI, SSFI, and SSMI).

These indices were evaluated based on previous studies

and expert opinion using a set of pairwise comparisons

(PWC). Laarhoven & Pedrycz () carried out the

F-AHP method for the first time based on the logarithmic

least squares method. The F-AHP has been involved in

different fields due to its reasonable logic (Laarhoven &

Pedrycz ). In this study, AHP was used to assign appro-

priate weights to an individual index (Saaty ). The

general form of PWC matrix model, given by Saaty (),

is as in Equation (6). In this study, the fuzzy number levels

used to build the PWC matrix are given in Table 2:

A ¼ aij ¼

1 y12 . . . : y1n
y21 1 . . . : y2n
..
. ..

. ..
. ..

.

ym1 ym2 . . . : 1

2
6664

3
7775 ¼

1 y12 . . . : y1n
1=y12 1 . . . : y2n

..

. ..
. ..

. ..
.

1=y1n 1=y21 . . . : 1

2
6664

3
7775

(6)
The element aij is a measure of the preference of the

element of the row ‘i’ relative to the element of column ‘j’.

AHP assigns 1 to all elements of the diagonal of the pairwise

comparison matrix. The weights matrix,W¼ (w1, w2,…wn),

were calculated based on the eigenvector method in
Table 2 | Fuzzy number levels as in the present study

Fuzzy number Linguistic variable

1 Equally important

3 Moderately important

5 Strongly important

7 Very strongly important

9 Extremely important

2, 4, 6, 8 Intermediate values between adjacent scale values

://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
Equation (7) (Saaty ) as:

αij ¼
aijPn

i¼1
aij

(7)

wi ¼

Pn
i¼1

αij

n
(8)

The degree of coherence was applied to determine the

consistency of importance of weight between the judgments

in pairs provided by the decision-maker (where CR< 0.1

indicates consistent judgments):

1 y12 . . . : y1n
y21 1 . . . : y2n
..
. ..

. ..
. ..

.

ym1 ym2 . . . : 1

2
6664

3
7775 ×

w1

w2

..

.

wn

2
6664

3
7775 ¼

w0
1

w0
2

..

.

w0
n

2
6664

3
7775 (9)

λmax ¼ 1
m

×
w0

1

w1
þw0

2

w2
þ � � � þw0

n

wn

� �
(10)

Following which the consistency index (CI) and the con-

sistency ratio (CR) given by Equations (11) and (12) were

calculated. In general, CI< 0.1 is taken as the tolerable

error range (Saaty ):

CI ¼ λmax � n
n� 1

(11)

CR ¼ CI
RI

(12)

Table 3 provides all possible values of the random index,

corresponding to the given number of variables.

The weights so obtained by the two methods given

above are shown in Table 4. Based on the values obtained,

it can be concluded that the entropy weight method and

F-AHP method will assign almost similar weights to three

variables used in the estimation of drought index. In order

of preference, precipitation has more weightage in terms

of its importance in describing the drought-like condition

while soil moisture has comparatively lesser weightage.

Based on the comparison between these methods, it can

be clearly seen that the monthly SPI series has the largest



Table 3 | Random index (RI)

N 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

N refers to number of variables.

Table 4 | Weight assignment based on F-AHP and entropy method

Method Precipitation Streamflow
Soil
moisture

F-AHP 0.3750 0.3333 0.2917

Entropy weight (monthly) 0.3619 0.3381 0.3000

Entropy weight (three-month) 0.3687 0.3248 0.3065

Entropy weight (six-month) 0.3559 0.3327 0.3114

Entropy weight (12-month) 0.3560 0.3295 0.3145
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weight, whereas the monthly SSMI series has the smallest

weight which also corroborates with the studies made by

Chang et al. () and Zhu et al. ().
Estimation of hybrid drought index (HDI)

Based on the analysis in the previous section, the three

selected indices were divided into ten classes that ranged

between extreme wet to extreme drought (Table 5). The

EW, SW, MW, LW, AW, AD, LD, MD, SD, and ED

denote extreme wet, severe wet, moderate wet, light wet,

abnormal wet, abnormal drought, light drought, moderate

drought, severe drought, and extreme drought, respectively.

The assumption of a hybrid drought index is to build an

indicator matrix with c classes and m indices and is
Table 5 | HDI system of drought

Drought types Drought indices

Drought classes

EW SW MW LW

Metrological drought SPI >1.6 [1.3,1.6] [0.8,1.3] [0.5,

Hydrological drought SSFI >1.6 [1.3,1.6] [0.8,1.3] [0.5,

Agriculture drought SSMI >1.6 [1.3,1.6] [0.8,1.3] [0.5,

The EW, SW, MW, LW, AW, AD, LD, MD, SD, and ED denote extreme wet, severe wet, moderate

drought, and extreme drought, respectively.

om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
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expressed as follows (Zhu et al. ):

Y ¼

<a12 [a12, b12] . . . :: [a1(c�1), b1(c�1)] >b1(c�1)

>a22 [a22, b22] . . . :: [a2(c�1), b2(c�1)] <b2(c�1)

..

. ..
. ..

. ..
. ..

.

<am2 [am2, bm2] . . . :: [am(c�1), bm(c�1)] <bm(c�1)

2
6664

3
7775

(13)

To calculate this, Equation (14) was used to first trans-

form the matrix Y:

¼
yi1 ¼ ai2

yih ¼ aih þ bih
2

, h ¼ 2, 3, . . . ::, (c� 1)
yic ¼bi(c�1)

8><
>: (14)

where aih and bih are the left and right boundary values of

the hth index in the ith class, respectively:

Y ¼

y11 y12 . . . : y1c
y21 y21 . . . : y2c
..
. ..

. ..
. ..

.

ym1 ym2 . . . : ymc

2
6664

3
7775 ¼ (yih) (15)
AW AD LD MD SD ED

0.8] [0,0.5] [–0.5,0] [–0.8,–0.5] [–1.3,–0.8] [–1.3,–1.6] <–1.6

0.8] [0,0.5] [–0.5,0] [–0.8,–0.5] [–1.3,–0.8] [–1.3,–1.6] <–1.6

0.8] [0,0.5] [–0.5,0] [–0.8,–0.5] [–1.3,–0.8] [–1.3,–1.6] <–1.6

wet, light wet, abnormal wet, abnormal drought, light drought, moderate drought, severe
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Suppose that xi of the ith index lies in [yih, yihþ1], the

relative membership of xi to the hth class is calculated as:

μih(u) ¼
y�i(hþ1)
ihþ1 xi

y�i(hþ1)
ihþ1 yih

, h ¼ 1, 2, . . . ::, c� 1 (16)

In addition, the relative membership degree to the rest

of the classes is zero. Then, the indices matrix of the relative

membership degree can be obtained. The relative member-

ship degree of evaluating object to h class is computed as:

υh(u) ¼
Xm
i¼1

ωi � μih(u) (17)

HDI ¼
Xm
i¼1

ωi Bi (18)

where xi denotes the weight of the ith index, Bi is the weight

of drought class, and
Pm
i¼1

ωi ¼ 1. The characteristic value of

the evaluating object is calculated as follows:

H(u) ¼
Xc
i¼1

υh(u) × hi (19)

where H represents the Hurst index.

Table 5 shows the HDI system of drought, defining the

values of different drought indices falling in different

drought classes.
Wavelet analysis for index validation

Wavelet analysis can be useful in studying the periodicity of

the component, e.g. rainfall, streamflow, soil moisture, and

drought indices. In drought analysis, it can be useful in

analyzing drought patterns, drought trend and drought

periodicity from a given index, along with the relationships

between drought conditions and teleconnections (Thomas

& Prasannakumar ; Wang et al. ; Guo et al. ).

Li et al. () have used continuous wavelet transform,

cross wavelet transform, wavelet coherence and wavelet

cross-correlation to determine the relationship and links

between meteorological drought and hydrological drought.

For analyzing the association among two-time series, it

was required that a bivariate structure called wavelet
://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
coherence was first described. In support of the appropriate

description of wavelet coherence, it first requires the

description of the cross wavelet transform and cross-wavelet

power (Afshan et al. ; Zhu et al. ). The details of

these techniques can be found in Afshan et al. ().

According to Torrence & Compo (), cross wavelet trans-

form can be explained by two-time sequences, x(t) and y(t), as:

Wxy(m, n) ¼ Wx(m, n)W�
y (m, n) (20)

where Wx(m, n) and Wy(m, n) are two continuous wavelet

transform of x(t) and y(t), separately, m is location index,

and n represents the measure, whereas the sign * signifies

a composite conjugate. The cross wavelet power could

simply be calculated by the cross wavelet transform as

jWx(m, n)j. Furthermore, the cross wavelet power spectra

disclose regions in the time sequence frequency space,

where the time sequence displays a massive mutual power

that it symbolizes in the confined covariance among the

time sequence at every measure (Afshan et al. ). The

wavelet coherence can identify areas in the time-frequency

gap where the observed time series change simultaneously,

but do not essentially have massive mutual power. Accord-

ing to Torrence & Webster (), the equation of adjusted

wavelet coherence coefficient is as follows:

R2(m, n) ¼ jN(N�1Wxy(m, n)j2
N(N�1jWx(m, n)j2N(N�1jWy(m, n)j2

(21)

Figure 4 displays the continuous wavelet transform

between meteorological, hydrological, agricultural-based

drought indices and the hybrid drought index. In the

figure, the thick curved line represents the cone of influence

(CoI); the dashed line is the significance level (5%) for the

global wavelet spectrum. Based on Figure 4, it is found

that the periodicity of drought predominately occurs

within a one year band, meaning the drought had a

frequency of occurrence once every year.

The wavelet coherence locates the sections in time-fre-

quency in which the time series co-vary. Figures 5 and 6

provide interesting findings and the results clearly show

the areas with a strong relationship between the datasets.



Figure 4 | Continuous wavelet power spectra for the time series of the transform relationships of: (a) rainfall, streamflow, and soil moisture, (b) HDI using F-AHP with SPI, SSFI, and SSMI,

(c) HDI using ET weight with SPI, SSFI, and SSMI, (d) HDI using F-AHP with sunspot number Nino3.4 index.
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In comparison between XWT and WTC results, high power

coherence is observed in all regions of time series.
RESULTS AND DISCUSSION

After having worked out the drought indices, Pearson corre-

lation coefficient (PCC) with 0-, 1-, 3-, and 6-lag was used to
om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
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analyze the drought delay in the response parameter. The

results obtained are given in Table 6. A high correlation

coefficient between SPI and SSFI/SSMI indicates that pre-

cipitation is a significant parameter. In a one-month

accumulation period, it can be observed from the table

that the drought condition quickly changed between

months as the PCC coefficient between SPI and SSMI are

high (r¼ 0.53) and SPI and SSFI (r¼ 0.38), while the



Figure 5 | The cross wavelet transform between: (a) rainfall, streamflow, and soil moisture, (b) HDI using F-AHP with SPI, SSFI, and SSMI, (c) HDI using ET weight with SPI, SSFI, and SSMI, (d)

HDI using F-AHP with sunspot number Nino3.4 index.

949 O. Al Balasmeh et al. | Hybrid drought index for drought assessment in Wadi Shueib catchment area in Jordan Journal of Hydroinformatics | 22.4 | 2020

Downloaded from http
by guest
on 24 April 2024
response of soil moisture to streamflow is found to be weak

(r¼ 0.49) at a different lag time. Also, the three-month

accumulation period shows better performance in compari-

son to a shorter timescale for detecting the drought. The

six- and 12-month periods showed similar results to other

periods in the case of response of the soil moisture to pre-

cipitation, while on the other hand the response of soil

moisture to streamflow was clearly shown by PCC values

as it increased from r¼ 0.55 to r¼ 0.63. The long-term time-

scale analysis, i.e. 12-month accumulation period, shows
://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
that the drought is controlled by streamflow. Based on

PCC analysis, it is found that monthly and three-month

cumulative periods were useful in analyzing and detecting

short-term behavior, while six- and 12-month periods were

able to capture a long-term behavior and hence these

periods are more suitable for studying the drought con-

ditions in the area.

To further detect the sudden changes in the time series

data of precipitation, streamflow, and soil moisture data,

along with the drought indices computed above, a trend



Figure 6 | Wavelet coherence (WCO) between: (a) rainfall, streamflow, and soil moisture, (b) HDI using F-AHP with SPI, SSFI, and SSMI, (c) HDI using ET weight with SPI, SSFI, and SSMI, (d)

HDI using F-AHP with sunspot number Nino3.4 index.

950 O. Al Balasmeh et al. | Hybrid drought index for drought assessment in Wadi Shueib catchment area in Jordan Journal of Hydroinformatics | 22.4 | 2020

Downloaded fr
by guest
on 24 April 202
analysis was performed using the innovative trend analysis

method proposed by Şen (). Although various other

methods are available to detect the trend in time series

data, this method was chosen over other methods for two

reasons; first, this method generates seven possible trend

conditions compared to trendless, increasing trend and

decreasing trend, and second, this method gave better vali-

dation when used to predict trends in precipitation data for

the same area in a previous study (Al Balasmeh et al. ).
om http://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
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The analysis of this method on the dataset revealed a

trend in both monthly and seasonal precipitation, stream-

flow, soil moisture, and their related indices. Table 7

shows that the ITA detected a trend in precipitation,

streamflow, and soil moisture data based on monthly

data. Low, medium, high trend, and trendless were

detected for all datasets. In summer months, the trend

shows similarity with rainy months for precipitation,

streamflow, and soil moisture, owing to the fact that



Table 6 | PCC analysis for drought indices

Monthly data

Lag 0 SPI SSFI SSMI Lag 3 SPI SSFI SSMI

SPI 1.00 SPI 1.00

SSFI 0.38 1.00 SSFI 0.36 1.00

SSMI 0.53 0.49 1.00 SSMI 0.51 0.49 1.00

Lag 1 SPI SSFI SSMI Lag 6 SPI SSFI SSMI

SPI 1.00 SPI 1.00

SSFI 0.38 1.00 SSFI 0.37 1.00

SSMI 0.53 0.49 1.00 SSMI 0.51 0.49 1.00

3-month period

Lag 0 SPI-3 SSFI-3 SSMI-3 Lag 3 SPI-3 SSFI-3 SSMI-3

SPI-3 1.00 SPI-3 1.00

SSFI-3 0.42 1.00 SSFI-3 0.40 1.00

SSMI-3 0.57 0.54 1.00 SSMI-3 0.56 0.54 1.00

Lag 1 SPI-3 SSFI-3 SSMI-3 Lag 6 SPI-3 SSFI-3 SSMI-3

SPI-3 1.00 SPI-3 1.00

SSFI-3 0.41 1.00 SSFI-3 0.40 1.00

SSMI-3 0.56 0.54 1.00 SSMI-3 0.56 0.54 1.00

6-month period

Lag 0 SPI-6 SSFI-6 SSMI-6 Lag 3 SPI-6 SSFI-6 SSMI-6

SPI-6 1.00 SPI-6 1.00

SSFI-6 0.40 1.00 SSFI-6 0.39 1.00

SSMI-6 0.55 0.55 1.00 SSMI-6 0.54 0.55 1.00

Lag 1 SPI-6 SSFI-6 SSMI-6 Lag 6 SPI-6 SSFI-6 SSMI-6

SPI-6 1.00 SPI-6 1.00

SSFI-6 0.39 1.00 SSFI-6 0.39 1.00

SSMI-6 0.54 0.55 1.00 SSMI-6 0.54 0.55 1.00

12-month period

Lag 0 SPI-12 SSFI-12 SSMI-12 Lag 3 SPI-12 SSFI-12 SSMI-12

SPI-12 1.00 SPI-12 1.00

SSFI-12 0.40 1.00 SSFI-12 0.40 1.00

SSMI-12 0.48 0.63 1.00 SSMI-12 0.48 0.63 1.00

Lag 1 SPI-12 SSFI-12 SSMI-12 Lag 6 SPI-12 SSFI-12 SSMI-12

SPI-12 1.00 SPI-12 1.00

SSFI-12 0.40 1.00 SSFI-12 0.40 1.00

SSMI-12 0.48 0.63 1.00 SSMI-12 0.48 0.63 1.00
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Table 7 | Trend identification for various parameters

Monthly

ITA

L M H

Streamflow Y- Y- Y-

Streamflow_3-month Y- Y- Y-

Streamflow_6-month Y- Y- Y-

Streamflow_12-month Y- Y- N

Soil moisture Y- Y- Y-

Soil moisture_3-month Y- Y- Y-

Soil moisture_6-month Y- N Y-

Soil moisture_12-month Y- N Y-

Precipitation Y- Y- Y-

Precipitation_3-month Y- Y- Y-

Precipitation_6-month Y- Y- Y-

Precipitation_12-month Y- Y- Y-

SSFI Y- Y- Y-

SSFI-3 Y- Y- Y-

SSFI-6 Y- Y- Y-

SSFI-12 Y- Y- N

SSMI Y- N Y-

SSMI-3 Y- N Y-

SSMI-6 Y- Y- Y-

SSMI-12 Y- N Y-

SPI Y- Y- Y-

SPI-3 Y- Y- Y-

SPI-6 Y- Y- Y-

SPI-12 Y- Y- Y-

HDI Y- Y- Y-

ITA

Seasons L M H

Rainy_Streamflow Y- Y- Y-

Rainy_Soil moisture Y- Y- Y-

Rainy_Precipitation Y- Y- Y-

Rainy_SSFI Y- Y- Y-

Rainy_SSMI Y- N Y-

Rainy_SPI Y- Y- Y-

Rainy_HDI Y- Y- Y-

Summer_Streamflow Y- Y- Y-

Summer_Soil moisture Y- Y- Y-

Summer_Precipitation N N Y-

Summer_SSFI Y- Y- Y-

Summer_SSMI Y- Y- Y-

Summer_SPI N N Y-

Summer_HDI Y- Y- Y-

Y- refers to decrease trend and N refers to trendless.
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precipitation is the principal form of water delivery. In

essence, Wadi Shueib catchment experienced a dry trend

on monthly and seasonal scales during the years 1979–

2014.

The Hurst index was found to be more than 0.5. Differ-

ent values of Hurst indices refer to types of time series. The

three possible values for the Hurst index are: (i) H< 0.5,

which refers to the trend of time series which, in the

future, will be opposite to the current and past trend

observed; (ii) H¼ 0.5 shows that the time series is indepen-

dent; and (iii) H> 0.5 shows that the trend in the future will

be similar to the current and past trends observed (Gammel

). Thus, the Hurst index can be applied to analyze the

persistence of drought in the Wadi Shueib catchment. It

can be easily observed from Figure 7 that the drought indi-

ces are following a trend, which is consistent with the

finding of Törnros & Menzel () and Rajsekhar & Gore-

lick (). For verifying the performance of HDI as a multi

variables index against single drought indices, the times

series plot of SPI, SSFI, and SSMI were compared with

HDI, as shown in Figure 7(a). From the figure it can be

observed that HDI follows a similar trend to other indices.

For the sake of more clarity, the period between 2006 and

2008 has been highlighted in Figure 7(b). From Figure 7(b)

the trend can be clearly seen between HDI and other

drought indices, and the trend is seen to almost relate with

respect to other drought indices, the increase and decrease

of SPI, SSFI, and SSMI also reflect a similar HDI trend.

This indicates that HDI can reflect even a small change in

the single variable indices, thus allowing for comprehensive

characterizations of meteorological, hydrological and agri-

cultural droughts. Based on the PCC test, as given in

Table 8, a strong correlation is evident between HDI and

SPI, SSFI, and SSMI.

Thus on the basis of the preliminary analysis,

reliability of the proposed HDI model is established,

which was further established by performing trend analy-

sis using the wavelet analysis approach given in the

wavelet analysis for validation section above. Figures

5(b) and 5(c) and 6(b) and 6(c) display the wavelet analy-

sis between hybrid drought indices (HDI) using F-AHP

and entropy weight (EW) and standardized drought indi-

ces (SPI, SSFI, and SSMI). No significant variation was

observed in the analysis. A significant positive correlation



Figure 7 | Drought propagation for the basin during: (a) the period 1979–2014, (b) the period 2006–2007.

Table 8 | PCC analysis between HDI and other drought indices

Method With SPI With SSFI With SSMI

F-AHP-HDI 0.91 0.84 0.73

Monthly Entropy-HDI 0.91 0.84 0.74

3-month Entropy-HDI 0.95 0.88 0.89

6-month Entropy-HDI 0.94 0.89 0.85

12-month Entropy-HDI 0.67 0.85 0.75
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was found between HDI and other indices in the one-year

signal, for all dataset series. The wavelet coherence sup-

ports this relationship since strong positive correlation
://iwa.silverchair.com/jh/article-pdf/22/4/937/715787/jh0220937.pdf
clearly appears in the time series. Studying the relations

between drought variations and climatic patterns such

as Niño3.4 is helpful to understand the drought mechan-

ism and evaluate the effect of atmospheric circulation

on regional drought characteristics (Guo et al. ).

Hence, large-scale sunspot activity (Niño3.4 index) was

used to further conclude the validation of the proposed

index (Zhu et al. ). Figures 5(d) and 6(d) represent

the relations between the proposed index with the Niño

index. It is found that HDI shows a statistically significant

positive relationship with 1–3 years signal in 2008–2012,
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4–5 years signal in 1985–1990, and 10–12 years signal in

1993–2005.

After ensuring that the HDI has good relationships with

SPI, SSFI, and SSMI, the HDI was studied to analyze the

drought condition in the area. To better identify the drought

characteristics, the drought trend was determined on the

basis of monthly and seasonal datasets. Table 7 shows the

trend of the drought based on HDI, where in the monthly

and rainy season the drought trend is showing a decreasing

trend compared to the previous years. Also, during the

summer season, there was a decreasing trend at all drought

trend levels. Based on the overall situation in Wadi Shueib

catchment, the drought detected using HDI implies that

the drought situation has an aggravating trend in the area.

Moreover, the drought duration is increasing from year

to year. Wadi Shueib catchment is likely to experience a gra-

dual decline in the wet months. Rajsekhar & Gorelick ()

confirmed similar findings. Based on climate change model-

ing, they confirmed that meteorological drought condition

events will increase with drought severity ranging from 26

to 37%.

It can be observed from Figure 7 that the SPI is more

sensitive to capture the drought onset. Or in other words,

the meteorological drought or deficiency in precipitation is

responsible for the onset of various drought types, while

the streamflow drought is more capable of determining the

realistic drought persistence. Thus, HDI, as an integrated

index, can be useful for drawing insights on the drought

types and their contribution to characterizing a drought-

like situation.
CONCLUSIONS

The context of drought varies from region to region, based

on user requirements and/or indicators of variables used,

but in general defines a situation which is having a lack of

water availability. The integration of multi-variables/indices

is important to provide reliable and relevant drought

indicators, which shows the overall characterization of

drought in the region. In this study, a hybrid drought index

(HDI) was modeled using the fuzzy set theory that com-

bined meteorological, hydrological, and agricultural

drought information for Wadi Shueib catchment in Jordan.
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The weights for aggregating the variables were objectively

determined by using the F-AHP and entropy weight

methods. The dataset that was used included precipitation,

soil moisture, and streamflow data. While precipitation

and soil moisture were readily available, streamflow was

obtained after due calibration and validation of the SWAT

model. Once the HDI was computed, several attempts

were made to validate the index for the study area, which

included trend analysis and cross wavelet analysis. Two

methods, the entropy weight method and F-AHP were

used for the assignment of weights which were then com-

pared. On comparison, it was found that both the methods

gave similar results, since the weights assigned by the two

methods were found to be similar. Overall, the HDI

showed its ability to address the drought condition in the

area instead of using three different drought indices.

The study reveals a similarity in results produced by

individual indices and HDI as both reveal a deficiency in

the soil moisture, which is found to be increasing when com-

pared to precipitation and streamflow from season to

season. The HDI had captured the overall drought in the

area and based on seasonal data (rainy and non-rainy

months) the drought trend is found to increase. This con-

clusion corroborates with similar findings from the

drought studies conducted in the Jordan Valley. Hence, it

can be concluded that the proposed HDI in this study is a

reliable indicator for drought characterization assessment,

and it can be used to examine the drought characteristics

in the area. Since the methodology used is generalized, it

is envisaged that this study will be a potential tool for water-

shed managers and policymakers dealing with drought

conditions in any geographical location.
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