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Optimization of dam’s spillway design under climate

change conditions

Ahmad Ferdowsi, Sayed-Farhad Mousavi, Saeed Farzin and Hojat Karami
ABSTRACT
The present research introduces a model to find the best shape of a dam’s spillway under climate

change impacts, considering a benchmark problem (i.e., Ute Dam’s labyrinth spillway in the Canadian

River watershed, New Mexico, USA). A spillway design is based not only on historical data but also on

the future hydrologic events. Climate variables were predicted for the years 2021–2050 based on

three representative concentration pathway (RCP2.6, RCP4.5, and RCP8.5) scenarios of the general

circulation model from the fifth phase of the coupled model intercomparison project (CMIP5) using

the statistical downscaling model. Streamflow at the USGS 07226500 streamgage was simulated by a

rainfall–runoff model with predicted data. Instantaneous peak flow was estimated using an empirical

method. Flood frequency analysis was used for the estimation of the design flood. The shuffled frog-

leaping algorithm (SFLA) is used to optimize a labyrinth spillway design and its results were

compared with two other nature-inspired algorithms: invasive weed optimization (IWO) and cuckoo

search (CS). The spillway was optimized once with the actual design flood (16,143 m3/s) and again

with the design flood under climate change (12,250 m3/s). Results revealed that optimization with

realistic design flood reduced the concrete volume of the spillway by 37% and under climate change

by 43% using the SFLA.

Key words | Canadian River watershed, climate change, construction cost, labyrinth spillway design,

optimum design, rainfall–runoff model
HIGHLIGHTS

• Proposing a new framework for the evaluation of climate change impacts on dams’ spillways

optimum design.

• Reducing the construction cost of a dam spillway using metaheuristics.

• Comparing the performance of three nature-inspired algorithms (SFLA, IWO, and CS).

• Investigation of changes in rainfall, maximum, and minimum air temperatures in the Canadian

River watershed during a 30-year period (i.e., 2021–2050).
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INTRODUCTION
It is worth starting this optimization study with a very

charming explanation by Yang (), which represented

an optimization problem as treasure hunting. In this treasure

hunt, treasure is hidden in a wide landscape, and like any

real problem there are limitations such as time. As hunters

do not know where to look for the treasure, a random
walk or search is inevitable. There are some keys to perform

well and find the ultimate treasure (global optimum), includ-

ing a search by a group of best hunters.

Optimization may be needed in many problems in our

everyday life. In today’s competitive world, humans try to

maximize efficiency from a limited number of available
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resources. For this purpose, artificial intelligence or compu-

tational intelligence is used with optimization techniques

(Erdik & Savci ; Erdik ; Erdik et al. ; Kaveh

; Bozorg-Haddad ; Ehteram et al. ). Normally,

an optimization problem requires sophisticated optimiz-

ation tools. Over the last decade, a diverse spectrum of

algorithms, from traditional gradient-based algorithms and

simplex methods to evolutionary algorithms and nature-

inspired metaheuristics (Yang ), have extensively been

used for dealing with highly nonlinear and tough optimiz-

ation problems, in particular, problems in water

engineering (Hassanvand et al. ; Monsef et al. ).

Dams, as crucial infrastructures for water supply and

flood mitigation, require ancillary structures and facilities

(such as spillways) to enable them to pass design floods

(Novak et al. ). In terms of engineering, spillways must

be able to meet the basic requirements such as hydraulic

performance, structural stability, environmental impacts,

and safety aspects (Ghare et al. ). A labyrinth spillway

is one of the nonlinear spillways that due to its geometric

shape can increase discharge capacity. The use of this spill-

way increases the crest length without increasing the width

of the overflow span (Khatsuria ). The popularity of

labyrinth spillways has considerably increased over the last

decade, notably in the USA (Khode & Tembhurkar ).

While more than 100 years have passed from the introduc-

tion of labyrinth spillways (Hager et al. ), few studies have

been carried out on optimum design of these structures using

intelligent methods. Hosseini et al. () proposed an optimal

model for labyrinth spillways. An adaptive neural fuzzy infer-

ence system (ANFIS) model was used to calculate the

discharge coefficient of the spillway and differential evolution

(DE) and genetic algorithm (GA) for determining the best geo-

metry of the labyrinth. Kardan et al. () optimized the shape

of a trapezoidal labyrinth spillway by the evaluation of the

number of cycles using the GA. In the study of Tabari &

Hashempour (), GWO-DSO (grey wolf optimization-

direct search optimization) and PSO-DSO (particle swarm

optimization-direct search optimization) hybrid algorithms

were used to optimize labyrinth spillway dimensions. Ferdowsi

et al. () studied the effect of spillway’s crest shape on opti-

mizing of labyrinth geometry. The hybrid of bat algorithm

(BA) and particle swarm optimization (PSO) algorithm was

used and its results were compared with BA, PSO, and GA.
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
Meanwhile, the use of fossil fuels continued due to

world population and industrial growth, on the one hand,

and the destruction of agricultural lands and reduction of

forest areas, on the other hand, have increased greenhouse

gas emissions over the past decades. Climate change is a

term used in scientific writings for the effects of greenhouse

gases on the world climate and hydrological events. Several

studies have warned about the impacts of climate change on

hydrological variables, e.g. increasing evapotranspiration

due to rising temperatures, fluctuating rainfall patterns,

and seawater-level rise (Raju & Kumar ; Xing et al.

).

Climate change affects design and operation of water

infrastructures such as flood control systems, hydropower

plants, irrigation and drainage systems, water distribution

networks, as well as water management practices (Bates

et al. ). The impacts of climate change have been

studied in some of the water-related items such as urban

runoff (Zahmatkesh et al. ), irrigation (Ashofteh et al.

), drainage systems (Karamouz et al. ), hydropower

plants (Sarzaeim et al. ), streamflow (Nazif & Karamouz

), water diversion systems (Karamouz et al. ), floods

(Dong et al. ), evapotranspiration (Safavi et al. ), and

reservoir operation (Ehteram et al. a).

A US Army Corps of Engineers’ survey on more than

80,000 dams has shown that almost 36% of the existing

dams are unsafe due to various reasons, of which nearly

80% of insecurity is due to insufficient spillway capacity

(Mirnaseri & Emadi ). Also, the international

commission on large dams (ICOLD) has declared that

approximately 30% of the dam failures are due to the lack

of sufficient spillway capacity (Hosseini et al. ). Another

major issue of the spillways is their high cost of construction.

About 20% of the construction cost of small dams and 80%

of large dams are allocated to the construction of spillways

(Bozorg-Haddad et al. ). Therefore, on the one hand,

the spillway design with sufficient capacity and also with

the least cost is necessary and inevitable. On the other

hand, climate change, as a prominent hydrologic uncer-

tainty, should be considered in the design of present water

resource systems.

In the current research, a novel optimization-based

model is proposed in order to investigate the impact of cli-

matic change on a dam’s spillway design. This study aims
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to propose a framework to reduce the construction cost of a

labyrinth spillway and its design considering future climatic

changes or uncertainty. A real benchmark design problem

(i.e., labyrinth spillway of Ute Dam, which is built in the

Canadian River watershed, New Mexico, USA, which is

an impressive labyrinth spillway with 1,024.5 m length and

9.14 m height) is used as a case study. The current frame-

work can also be used in the future designs of other water

infrastructures.
CASE STUDY AND DATA COLLECTION

The case study is the labyrinth spillway of Ute Dam

(Figure 1). This 36.88 m high embankment dam was built

on the Canadian River, Ute Creek watershed, near Logan,

New Mexico, USA, in 1962 (Houston ). The Ute Creek

watershed is 5,335 km2 wide. Ute Creek, a tributary to the

Canadian River and the Ute Reservoir, provides most of

the inflow to the Ute Reservoir. The Ute Reservoir was

built for water storage for municipal, industrial, and agricul-

tural uses. Much of the runoff from the Canadian River

watershed is captured by the Conchas Reservoir, 65 km

west of the Ute Dam Reservoir. Mean daily streamflow

data were obtained from the USGS streamgage (USGS

07226500, Ute Creek near Logan), located immediately

upstream of the Ute Reservoir and at the outlet of Ute

Creek watershed (Figure 1). Daily rainfall and air tempera-

tures of two COOP stations (Conchas Dam and

Pasamonte) are used to represent weather conditions of

the Ute Dam watershed (Table 1 and Figure 1).
METHODOLOGY

In the proposed approach, climatic parameters (minimum

and maximum air temperatures and rainfall) are predicted

in the catchment area for a period of 30 years (2021–

2050). Afterwards, streamflow is simulated using the pre-

dicted data (rainfall and air temperatures). Design

discharge, as a key parameter in water infrastructure

designs, is calculated under climate change conditions.

The shuffled frog-leaping algorithm (SFLA) is employed to

determine the optimal shape of labyrinth spillway based
om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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on design discharge under climate change. The performance

of SFLA is also compared with invasive weed optimization

(IWO) and cuckoo search (CS) algorithms. The results are

obtained by the use of the MATLAB (R2013a) software. In

Figure 2, the main steps of the proposed methodology are

presented.
Labyrinth spillway design

The primary hypothesis behind developing labyrinth spill-

ways was to increase the discharge capacity through the

increase of crest length in a constant width. Labyrinth spill-

way’s cycles could have a linear configuration (e.g.,

trapezoidal, triangular, and rectangular) or an arced con-

figuration (Sangsefidi et al. ; Azimi & Seyed Hakim

; Safarrazavi Zadeh et al. ; Ghaderi et al. ). A

general form of the labyrinth spillway discharge equation

is shown in the following equation:

Q ¼ 2
3
CdL

ffiffiffiffiffi
2g

p
H3=2

t (1)

where Q is the discharge over the spillway, Cd is the dimen-

sionless discharge coefficient, L is the spillway length, g is

the acceleration due to gravity, Ht is the total head on the

crest (Ht¼ hþV2/2g), V is the mean cross-sectional water

velocity, and h is the piezometric head upstream of the spill-

way relative to the spillway crest elevation. The calculation

of spillway discharge depends on the exact determination

of Cd value. The effects of labyrinth spillway geometry and

flow conditions on discharge are represented as Cd

(Crookston & Tullis ). To calculate the Cd, Equation

(2) is used (Crookston & Tullis ), which was extracted

from physical models of non-vented trapezoidal labyrinths

with wall angles between 6� and 35� and without concern-

ing the influence of abutments on flow. In summary, Cd is

determined according to different wall angles, half-round

crest shape, and headwater ratio.

Cd ¼ A ×
Ht

P

� �B Ht
P

� �C

þD (2)

where P is the crest height, and coefficients A, B, C, and D

are derived fromTable 2. It is worthmentioning that Equation



Figure 1 | Location of Ute Dam and its watershed, selected stations, dam’s labyrinth spillway, and its parameters.
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(2) and the coefficients in this table are derived from a figure

which is provided in Crookston & Tullis ().

A labyrinth spillway crest profile has a noteworthy

impact on discharge coefficient and thus on discharge

capacity. Various forms have been proposed for the
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
labyrinth spillway crest including flat, sharp, half-round

(HR), quarter-round (QR), ogee, and WES (truncated

ogee). Previous studies have proved that half-round and

ogee crest profiles are more efficient crest shapes (Willmore

; Crookston ; Ferdowsi et al. ).



Table 1 | Description of the selected stations

Station Data Latitude Longitude Datum Source

USGS 07226500, Ute Creek near Logan Streamflow 35.44 � 103.53 1,164.3 USGS

Conchas Dam Rain, Tmax, Tmin 35.41 � 104.19 1,294.4 NM Univ.

Pasamonte Rain, Tmax, Tmin 36.30 � 103.74 1,723.3 NM Univ.

Note: Tmax and Tmin, maximum and minimum air temperatures; USGS, US Geological Survey; NM Univ., Website of Climate Center, New Mexico University.

Figure 2 | Flowchart of the proposed methodology.

Table 2 | Curve-fit coefficients for half-round labyrinth spillway, validated for 0.05� Ht/

P< 0.9 (Crookston & Tullis 2013)

α A B C D

6� 0.009447 �4.039 0.3955 0.1870

8� 0.017090 �3.497 0.4048 0.2286

10� 0.029900 �2.978 0.4107 0.2520

12� 0.030390 �3.102 0.4393 0.2912

15� 0.031600 �3.270 0.4849 0.3349

20� 0.033610 �3.500 0.5536 0.3923

35� 0.018550 �4.904 0.6697 0.5062

Figure 3 | Illustration of different parts of a labyrinth spillway.
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The geometry of each structure determines the volume of

materials needed for its construction and also its construction

costs and time. Therefore, by optimizing the geometry of a

spillway, the lowest volume of concrete and cost may be

achieved. The total concrete volume of a trapezoidal

labyrinth spillway (VT) consists of three parts (Figure 3):
om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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VW (volume of spillway wall), Ve (volume of the end walls),

and VS (volume of floor slab) (Falvey ) as follows:

VW ¼ N × Lc × P × Tw (3)

Ve ¼ 2 × (PþHt þ Fb) × (BþHt) × Tw (4)

VS ¼ (Bþ 2Ht) ×Ww × Ts (5)
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whereN is the number of cycles,P is the crest height, Tw is the

wall thickness, Fb is the freeboard,H is the total head, andB is

the labyrinth length (parallel to flow).
Labyrinth spillway optimum design

To solve an optimization problem, it is needed to determine

some terms and functions, including objective function, con-

stant parameters, design variables, and constraints (penalty

functions). The objective function in the optimization of

labyrinth spillway geometry includes three parts: volumes

of labyrinth wall, end walls, and floor slab (Equations

(3)–(5) and Figure 3). Hence, the objective function can be

formulated as follows:

Minimize fCost ¼ VT ¼ VW þ Ve þ Vs (6)

In optimization, some parameters are considered con-

stant based on engineering judgment and previous studies.

These parameters, in addition to reduce the dimensions of

the problem, will also have a significant effect on saving a

computational time. These parameters in the present study

are free board (Fb¼ 0.6 m), slab thickness (Ts¼ 0.3 m),

number of cycles (N¼ 14), and crest shape (HR).

On the other hand, design variables are considered

unknown and their values are calculated in the optimization

process. Design variables in this study are crest height (P),

total head (Ht), labyrinth length parallel to flow (B), wall thick-

ness (Tw), angle of side legs (α), and apex center-line width (A).

The values of the design variables must be within a certain

range. In other words, optimizing the value of the objective

function is not possible at any cost. These limitations (or con-

straints), which are the results of previously constructed

spillways, laboratory tests, numerical modeling, and codes

(Chen ), improve labyrinth performance and its safety.

The penalty method is a common method to handle con-

straints into objective functions, which is used in the present

study. The following section discusses the penalty functions.

According to the first penalty (i.e., Equation (7)), the dis-

charge of optimal labyrinth spillways will be equal to the

flood design (Qd) of Ute labyrinth:

fp1 ¼ (Qd � 2/3
ffiffiffiffiffi
2g

p
CdLH

3=2
t ) � 0 (7)
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
The labyrinth spillway loses its efficiency by increasing

its head. A headwater ratio is defined as the total head

(Ht) divided by the height of spillway crest (P). Generally,

labyrinth spillways are designed for a headwater ratio of

less than 0.9 (Crookston ). Crookston & Tullis ()

used the headwater ratio of 0.05–0.9. The following penalty

function is expressed to design an optimum labyrinth with a

headwater ratio between 0.05 and 0.9:

fp2 ¼ 1� Ht

0:05P
,

Ht

0:9P
� 1

� �
� 0 (8)

A relative thickness ratio is calculated by dividing the

height of spillway crest (P) by spillway wall thickness (Tw).

Wall thickness depends on the hydraulic forces, ice loading,

and site conditions and is calculated from structural analy-

sis. Tullis et al. () mentioned that a major decrease in

wall thickness causes separation and reduces the discharge

coefficient. Their models are based on Tw¼ P/6. Some

studies have used models which are based on Tw¼ P/8

(Willmore ; Crookston & Tullis ). Equation (9) is

written as a penalty function to control wall thickness and

the spillway crest height of optimum models:

fp3 ¼ 1� P
6Tw

,
P

8Tw
� 1

� �
� 0 (9)

A magnification ratio is the length of a spillway

cycle (Lc) to the cycle width (W ). Previous optimization

studies have recommended that this ratio must be limited

to a range of 3–9.5 for optimal performance (Kardan et al.

). The penalty function of this ratio is considered

as follows:

fp4 ¼ 1� LC

3W
,

LC

9:5W
� 1

� �
� 0 (10)

One cycle width (W ) divided by crest height (P) is

described as the cycle width ratio (or vertical aspect).

Crookston & Tullis () suggested that this ratio should

be limited to 2–4. The following equation is used as the pen-

alty function of cycle width ratio:

fp5 ¼ 1� W
2P

,
W
4P

� 1
� �

� 0 (11)
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The apex width (A) divided by the cycle width (W ) is

described as the apex ratio. This ratio should be as low as

possible, usually, equal to 0.0765 or less (Hepler ). The

penalty function is written as follows:

fp6 ¼ A
0:0765W

� 1
� �

� 0 (12)

A wall thickness ratio is obtained by dividing the apex

width (A) by the spillway wall thickness (Tw). Tullis et al.

() limited this ratio to 1–2 for optimum performance.

Here, its penalty function is considered as follows:

fp7 ¼ 1� A
Tw

,
A
2Tw

� 1
� �

� 0 (13)

The ratio of interference length (LD) to one side-leg

length (LS) is important for limiting the effects of nappe

interference, which reduces spillway discharge efficiency.

Indelkofer & Rouve () explored the idea of nappe inter-

ference and introduced a nappe effective disturbance length.

Falvey (), by using data from previous studies and labyr-

inth spillway models, proposed this ratio as Equation (14)

and notified that this ratio should be equal to 0.30 or less.

However, data presented by Falvey () indicated a limit

of 0.35 (Crookston & Tullis ). Therefore, its penalty func-

tion can be considered as Equation (15):

LD

LS
¼ 0:244 ln

Ht

P

� �
þ (0:94� 0:03α) (14)

fp8 ¼ LD

0:35LS
� 1

� �
� 0 (15)
Optimization tool: shuffled frog-leaping algorithm

The SFLA has been introduced by Eusuff & Lansey (). It

was originally used to optimize the design of water distri-

bution networks and is based on random and

deterministic procedures. This algorithm employs a memetic

metaheuristic approach based on the natural behavior of

frogs. High performance, simple concept, few parameters,

and easy programming are some key advantages of SFLA

(Li et al. ). Initially, the SFLA generates an initial

random population of P frogs (i.e., solutions). The location
om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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of the ith solution (frog) is represented as Xi¼ (Xi1, Xi2,

…, XiD), where D is the variable number. Afterwards, sort-

ing of the frogs is performed in a descending order based

on their fitness. In the next step, all members of the popu-

lation are divided into m subsets referred to as

memeplexes, each containing frogs (i.e., P¼m × n). The

frog with the best performance (according to the objective

function) is placed in the first memeplex, the second best

frog is placed in the second memeplex, and the mth frog is

placed in the mth memeplex. In the next division process,

the (mþ 1)th frog is placed in the first memeplex. The pos-

itions of the best and worst frogs, in each memeplex, are

identified as Xb andXw, respectively. In addition, Xg is ident-

ified as the position of a frog with the global optimum. A

similar process which exists in the PSO algorithm is applied

to enhance the frog with the worst fitness in each cycle,

within each memeplex. As a result, the position of the

frog, which has the worst fitness, goes toward the position

of the frog, which has the best fitness, as follows:

Di ¼ rand × (Xb �Xw) (16)

Xnew
w ¼ Xold

w þDi(Di min<Di<Di max) (17)

where Di is the change of the frog position, rand is the

random number between 0 and 1, Xnew
w and Xold

w are new

and old (i.e., current) positions, and Di_min and Di_max are

minimum and maximum step sizes for the position of a

frog, respectively.

The SFLA has shown superior performance over

improved ant colony optimization, ant colony optimization,

simulated annealing, Lagrange multiplier method, PSO, and

GA in the previous studies (Orouji et al. , ).
Climate change

Scientific research has shown that climate change has

considerable impacts on rainfall, temperature, evapotran-

spiration, streamflow, and water resources. To simulate the

effects of future climate conditions, the output from global

coupled atmospheric-ocean general circulation models

(coupled GCMs) is used as the input to hydrologic. In the

present study, a low greenhouse gas emission scenario

(RCP2.6), a medium emission scenario (RCP4.5), and a
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very high emission scenario (RCP8.5) are used. These scen-

arios are introduced in the fifth phase of the coupled model

intercomparison project (CMIP5) of the GCM. In recent

years, there has been considerable focus on the use of

these new RCP scenarios.

Statistical downscaling model

Statistical downscaling model (SDSM), developed by Wilby

et al. (), is a combination of regression and conditional

weather generator technique. SDSM relies on empirical

relationships between local scale predictand(s) and regional

scale predictor(s). The model performance has been accep-

table in different studies (Sarzaeim et al. ; Xing et al.

). Key functions are quality control and data transform-

ation, selection of downscaling predictor variables, model

calibration, weather generator, data analysis, graphical

analysis, and scenario generation.

Rainfall–runoff model

In the present study, a hydrologic model based on unit

hydrograph theory (i.e., IHACRES) is used for streamflow

simulation based on observed data (1971–2000) and pre-

dicted for the near-future period (2021–2050). Hydrologic

models are essential tools for assessing runoff changes in

the catchment area of interest in the evaluation of the

impacts of climate change (Najafi et al. ). The IHACRES

is a lumped and hybrid conceptual-metric model that can

simulate streamflow with minimum input data, i.e., rainfall

and temperature (or potential evapotranspiration) at two

steps: (1) a nonlinear loss module and (2) a linear unit

hydrograph module. At the first step, rainfall is converted

to effective rainfall and then runoff is produced in the

second step (Jakeman et al. ; Croke et al. ). Despite

the simplicity of IHACRES structure, the model has per-

formed well in many catchments worldwide (Sarzaeim

et al. ; Ehteram et al. b).

Design flood

Engineers, hydrologists, and agriculturalists often need the

design flood for the design of hydraulic structures, such as

dams, spillways, bridges, channels, or culverts. Design
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
flood estimation is a prerequisite for planning, design, and

management of hydraulic structures and has a crucial

impact on the investment and benefits of the projects, and

also on their safety (Duricic et al. ; Erdik et al. ;

Pektas & Erdik ; Bhagat ; Guo et al. ).
Flood frequency analysis

Generally, design flood is estimated from flood frequency

analysis when sufficiently long observed streamflow records

are available. The main modeling problem in flood

frequency analysis is the selection of a probability distri-

bution for flood magnitudes (Guo et al. ). Gumbel,

generalized extreme value, log-normal, and log-Pearson

type III distributions are widely used in analyzing annual

maximum series (Wilks ). The general equation of fre-

quency analysis is given as follows:

QTr ¼ Qþ K × s (18)

where QTr is design flood with a return period of Tr, K is a

frequency factor, and �Q and s are average and standard devi-

ation of maximum instantaneous flows, respectively.
Instantaneous peak flow

Generally, the design of hydraulic structures for flood con-

trol is conducted with instantaneous peak flow, i.e. IPF

(Fill & Steiner ). However, the data relating to mean

daily flow (MDF) are the most common recorded hydrologi-

cal variable. The design of control structures using MDF

data may cause underestimation, with a consequent risk of

possible failure (Taguas et al. ). The following methods

are used to estimate IPF from MDF.

Fuller () studied flood data of some watersheds in

the USA and suggested the following equation:

IPF ¼ MDF × (1þ 2:66 ×A�0:3) (19)
Sangal (), based on a triangular hydrograph, pro-

posed Equation (20), which is tested by some streamgauge
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data in Ontario, Canada:

IPF ¼ 4 ×MDF�Q1 �Q2

2
(20)
Fill & Steiner () used data from watersheds in Brazil

and proposed the following equation:

IPF ¼ 0:80 ×MDFþ 0:25 × (Q1 þQ2)
0:9123 × (Q1 þQ2)=2 ×Q2 þ 0:36

(21)

where IPF is in m3/s, MDF is in m3/s, A is the drainage

area (km2), Q1 is the mean daily flow in the preceding day

(m3/s), and Q2 is the mean daily flow in the following day

(m3/s).
Table 4 | Performance assessment of monthly observed and simulated results (SDSM
Performance assessment criteria

Various indices may be used to show the performance of

simulation models. In the current study, the performance

of SDSM and IHACRES models was assessed with three

statistics, namely correlation coefficient (R), Nash–Sutcliffe

efficiency (NSE), and relative bias (Bias) listed in Table 3

(Xing et al. ). The accepted values for streamflow predic-

tions suggested by Moriasi et al. () are 0.5<NSE� 1

and �25%�Bias�þ25%.
output) during the validation period (1992–2000)

Station Variables

Statistical criteria

R NSE Bias (%)

Conchas Dam Rain 0.930 0.807 �4.991
Tmax 0.996 0.975 4.134
Tmin 0.998 0.990 5.735

Pasamonte Rain 0.926 0.838 8.598
Tmax 0.998 0.992 1.398
Tmin 0.999 0.991 6.982
RESULTS AND DISCUSSION

SDSM calibration and validation

In the SDSM, calibration is done by the model itself, which

only needs the length of the period to be determined. The

length of the calibration and validation periods can vary
Table 3 | Equations of performance assessment criteria

Index

Correlation coefficient

Nash–Sutcliffe efficiency

Relative bias

Note: Oi is the observed value, �O is the average of observed values, Si is the simulated value,

om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf

4

considering the total length of the base period. In the pre-

sent study, the total length of the base (observation) period

was selected from January 1971 to December 2000 (30

years). The calibration period was 1971–1991 (70% of the

data), and 30% of the data (1992–2000) was chosen for

the validation phase. Results of the validation period are pre-

sented in Table 4 using statistical indices (R, NSE, and Bias)

for both stations. These results are calculated based on the

SDSM output for rainfall variables, maximum and minimum

air temperatures over the 9 years (1992–2000) compared

with the observed values. According to the statistical indi-

cators of Table 4, the SDSM has a good performance in

the studied area.

A closer examination of the results of the correlation

indices shows that, in general, the SDSM is more capable

of modeling temperature than rainfall. In other words,

based on Table 4, R and NSE indices for air temperatures

were greater than for rainfalls. Also, Bias values for tempera-

tures are less than for rainfall, except for minimum

temperature in the Conchas Dam station. A graphical rep-

resentation of the results of simulation of average monthly

rainfall, and maximum and minimum temperatures in the

validation period for the two stations are shown in Figure 4.
Equation

R ¼ Pn
i¼1 (Oi � �O) × (Si � �S)=

Pn
i¼1 (Oi � �O)

2
× (Si � �S)

2
h i0:5

NSE ¼ 1�Pn
i¼1 (Oi � Si)

2=
Pn

i¼1 (Oi � �O)
2

Bias ¼ Pn
i¼1 (Oi � Si)=

Pn
i¼1 (Oi) × 100

�S is the average of simulated values, and n is the number of time-steps.



Figure 4 | Comparison of average monthly rainfall, maximum air temperature (Tmax), and minimum air temperature (Tmin) in the validation period (January 1992–December 2000) simulated

by the SDSM.
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Rainfall under climate change

At first, the performance of the SDSM was assured. After-

wards, using the SDSM and the downloaded datasets, the

daily rainfall, maximum temperature, andminimum tempera-

ture for the near-future period (2021–2050)were downscaled.

Rainfall, maximum temperature, and minimum temperature

increased at both stations under all three RCPs (Figure 5).

For instance, the observed mean annual rainfall at the Pasa-

monte station increased from 415.4 mm in the base period

to 477.3 mm in the near-future period based on RCP4.5.
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
The forecast for rainfall at the Conchas Dam was similar.

In a study by Brauer et al. (), flow and rainfall trends

were compared during the baseline (1971–2000) and the

2001–2010 period in the Canadian River watershed in the

Upper Lake Meredith in New Mexico and Texas. Among

the stations in this study, rainfall at six stations had an increas-

ing trend in the 10-year observation period compared with

the base period. Among these six stations, there are three

stations (Eagle Nest, Ocata, and Villanueva) in New Mexico

and near the studied stations in the present study. The Villa-

nueva station had the highest rainfall. The mean annual



Figure 5 | Comparison of mean monthly rainfall, maximum air temperature (Tmax), and minimum air temperature (Tmin) under RCP2.6, RCP4.5 and RCP8.5 scenarios, in 1971–2000 and

2021–2050.

926 A. Ferdowsi et al. | Optimization of dam’s spillway design under climate change Journal of Hydroinformatics | 22.4 | 2020

Downloaded fr
by guest
on 24 April 202
rainfall of theVillanueva station during the observation period

was 231 mm, which, with 216 mm increment in the 2001–

2010 period, rose to 447 mm. It can be seen that in the water-

shed, the increase in rainfall has alsooccurred according to the

past research based on observed data.

Air temperature under climate change

The maximum temperature will increase at both stations

based on RCP scenarios. The maximum temperature of the

Conchas Dam station was 22.92 �C in the observation

period, reaching 24.22, 24.31, and 24.57 �C, respectively,
om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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in the RCP2.6, RCP4.5, and RCP8.5 scenarios. At the Pasa-

monte station, there is also a similar trend. The maximum

observed temperature at this station was 19.14 �C, which

will increase in the future period and, according to the

three scenarios, will reach 20.40, 20.50, and 20.75 �C. The

minimum temperature, like the maximum temperature,

shows an increasing trend at both stations. The minimum

temperature at the Conchas Dam was 6.75 �C during the

observation period, and by the influence of climate

change, it will reach 8.25, 8.36, and 8.62 �C in the RCP2.6,

RCP4.5, and RCP8.5 scenarios. At the Pasamonte station,

the minimum observed temperature was 1.95 �C, which in



Table 5 | Performance assessment of the IHACRES model in the calibration and validation

periods in both stations

Station Period Length (day)

Index

R NSE Bias (%)

Conchas Dam Calibration 3,580–4,825 0.8 0.7 � 21.0
Validation 7,903–8,225 0.8 0.6 � 7.5

Pasamonte Calibration 3,580–4,825 0.9 0.7 � 18.7
Validation 7,565–7,609 0.9 0.9 4.4
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the near future will be 3.44, 3.57, and 3.78 �C, according to

the three RCP scenarios.

IHACRES calibration and validation

Table 5 shows the results of calibration and validation of the

observed daily flow data of the two stations of USGS

07226500. Based on the three performance criteria, both

stations have an acceptable status in both calibration and vali-

dation periods. In otherwords, the value ofR is close to 1, NSE

is more than 0.7, and the Bias index is in the ±25% range.

Streamflow simulation

After assuring the performance of the IHACRES model in

simulation of observed streamflow, it can be used to simulate

streamflow using downscaled data from the SDSM for the

2021–2050 period. For this purpose, rainfall and temperature

data of the two stations were imported into IHACRES with

daily time-steps. In Figure 6, the mean annual streamflow
Figure 6 | Comparison of observed mean annual streamflow (based on mean daily flows in 1

Pasamonte stations using the RCP2.6 scenario.

://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
for the base period for the USGS 07226500 station with the

simulated streamflow of the upcoming period, using the

RCP2.6 for each of the two stations, is shown. According to

Figure 6, the mean observed streamflow is less than the

flow in the future period in both stations. In the present

study, the peak flow is used to calculate design flood. Figure 7

shows the peak streamflowof 30 years in both past and future

periods. In this figure, in contrast to Figure 6, the observed

streamflow values are higher than the simulated ones. With

rainfall and temperature increasing in the studied watershed,

the amount of streamflow increased, and peak streamflow

values decreased. This is due to the proximity of predicted

rainfall values to normal values and the reduction of their

standard deviations relative to the observation period. The

predicted rainfall, instead of concentrating in a few days,

will occur in a larger time period, which, in turn, produces

peak daily discharge. This can be an outcome of using the

SDSM downscaling model.
DESIGN FLOOD

Instantaneous peak flow

The performance of three empirical equations (Fuller,

Sangal, and Fill-Steiner) in IPF estimation was investigated.

According to the performance criteria, the Fuller’s equation

was recognized as the best method (R¼ 0.9, NSE¼ 0.9, and

Bias¼ 16.9) for converting MDF to IPF.
971–2000) and simulated mean annual streamflow (in 2021–2050) in Conchas Dam and



Figure 7 | Comparison of observed mean annual peak streamflow (based on mean daily in 1971–2000) and simulated mean annual peak streamflow (2021–2050) in Conchas Dam and

Pasamonte stations using the RCP2.6 scenario.
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Flood frequency analysis

To determine the design flood of the labyrinth spillway

using the flood frequency analysis method, an appropriate

distribution was selected first based on the maximum

annual peak streamflow in the base period. Subsequently,

using this distribution and the amount of actual design

flood of Ute spillway (16,143 m3/s), the return period of

the Ute spillway was determined (as described by Equation

(8)). The calculated return period was used to determine the

simulated design flood for the future period with the

IHACRES model. Since in this study, only the annual

peak streamflow (with constant return period) was required

to determine the design flood of the future period, using

three-parameter distributions such as Pearson type III and

log Pearson type III, was practically impossible to deter-

mine the coefficient K in Equation (18). Therefore, among

the two-parameter distributions, the Gumbel distribution

was selected after a Kolmogorov–Smirnov (K–S) fitting
Table 6 | Results of the Kolmogorov–Smirnov test for each probability distribution

Distribution

Base period (USGS 07226500)
Significance level (α)

P
S

0.1 0.05 0.02 0.01 0.

Generalized extreme value ✓ ✓ ✓ ✓ ✓

Log-Pearson type III ✓ ✓ ✓ ✓ ✓

Gumbel ✓ ✓ ✓ ✓ ✓

Normal × ✓ ✓ ✓ ×

Log-normal ✓ ✓ ✓ ✓ ✓

om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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test. According to Table 6, the observed and predicted

data fitted to the four statistical distributions such as

extreme value distribution, log Pearson type III, Gumbel,

and log-normal. The normal distribution is the only distri-

bution that does not fit the three IPF series.

There were other reasons for choosing Gumbel distri-

bution. Commonly, Gumbel distribution is used for predicting

extreme events (i.e., floods) in hydrology (Haan ; Cunnane

). Onen & Bagatur () chose Gumbel distribution for

several reasons such as: (1) the relatively long streamflow

data (>10 years) and (2) the river is less regulated; hence is

not significantly affected by reservoir operations, diversions

or urbanization, which is true in the present study. The return

period of the design flood of the Ute spillway (16,143 m3/s)

would be 100,000 years by the Gumbel distribution. Calcu-

lation of design flood for future period was also based on the

same calculated return period so that by equating all the con-

ditions, the effect of climate change phenomenon (i.e.,

reduction of peak discharge) on the design flood is taken into
redicted period (Conchas Dam)
ignificance level (α)

Predicted period (Pasamonte)
Significance level (α)

1 0.05 0.02 0.01 0.1 0.05 0.02 0.01

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

× ✓ ✓ × × ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓
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account. According to Table 7, the observed IPF was 170 m3/s,

which has been changed by simulation in both Conchas

Dam and Pasamonte stations. According to this table, at

both stations, and under climate change conditions, the

maximum and minimum predicted streamflow are less

than the observed values, reducing the design flood from

16,000 to 12,250 m3/s (average of the two stations).
Canadian River watershed: past (1941–2016) and future

(2021–2050)

Figure 8 is based on the peak observed streamflow of the

USGS 07226500 station during the 1941–2016 period.

This information was extracted from the USGS website. A

linear trendline of these data is also plotted in Figure 8.

The observed data from 1941 to 2016 in this figure confirms

the reduction of peak streamflow (present research findings)

at this station. Several studies (e.g., Wilson & O’Brien ;

King et al. ; Spencer & Salazar ) have been con-

ducted on the causes of reduced water storage in dams on

the Canadian River. Different assumptions have been

made according to these studies, such as: (1) changes in

baseflow due to reductions in seepage from the neighboring

Ogallala aquifer, (2) brush invasion, and (3) changes in rain-

fall patterns. According to Spencer & Salazar (), there is

no significant change in annual rainfall in the watershed

between Ute and Meredith reservoir. These results are differ-

ent from those of Brauer et al. (). According to the results

of this study, the main cause of the flood-pattern disruption in

the Canadian River watershed is the change in the rainfall

pattern (in other words, the lesser frequency of huge rainfall

events). According to Brauer et al. (), the peak rainfall

(i.e., occurrence of 50.9–139.7 mm rainfalls) in the 1960–

1979 and 1990–2009 periods was 0.9% and in 2000–2009

was 0.3% of total rainfall, which means a decrease in peak.

This is almost the same as the results of the present study.
Table 7 | Description of design flood based on observed and predicted data using the Gumbe

Design flood (m3/s) Minimum (m3/s) Maximum (m3/s)

16,143 0.54 170.28

12,493 8.17 156.16

12,007 5.09 137.53

://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
Optimization

Labyrinth spillway optimization was performed considering

the following six models: SFLA-Base, IWO-Base, and CS-

Base models used SFLA, IWO, and CS algorithms, respect-

ively, which are based on the actual design flood of Ute

spillway (16,143 m3/s) and SFLA-RCP2.6, IWO-RCP2.6,

and CS-RCP2.6 models are based on design flood under cli-

mate change (12,250 m3/s).
Sensitivity analysis of the algorithms

A sensitivity analysis on the SFLA parameters was per-

formed to obtain the best performance. The number of

frogs, memeplexes, and the maximum number of iterations

were determined as 50, 5, and 1,000, respectively. In order

to implement the IWO sensitivity analysis, the initial popu-

lation of 10, 20, and 30; the maximum number of

population of 50, 75, 100, 150, and 200; the minimum

number of seeds of 0, 1, and 2; the maximum number of

seeds of 2, 5, and 10; and the nonlinear modulation index

of 2, 3, and 5 were considered. In CS sensitivity analysis,

Pa parameter of 0.15, 0.20, and 0.25; best number of host

birds’ nests (or population size) of 15, 20, and 25; and differ-

ent numbers of iterations were assumed. The best values for

these parameters are shown in Table 8. According to this

table, the best value for parameter Pa is 0.15. For the

number of host nests, the minimum value of the objective

function is 20 nests. Also, the CS algorithm converged

after 1,000 runs, and the objective function did not change

by increasing the number of iterations. The values of mini-

mum, average, maximum, and coefficient of variation for

the 10 runs are listed in Table 9. According to this table,

the best values of objective function were 9,351.170 and

8,440.865 m3 for the SFLA-Base and SFLA-RCP2.6, respect-

ively. The models based on the SFLA, IWO, and CS
l distribution

Year Feature Station

1971–2000 Observation USGS 07226500

2021–2050 RCP2.6 Conchas Dam

2021–2050 RCP2.6 Pasamonte



Figure 8 | Annual observed peak streamflow at USGS 07226500 Ute Creek near Logan, New Mexico, for the observed period (1941–2016) and the simulated period (2021–2050).

Table 8 | Values of parameters for labyrinth spillway optimization by SFLA, IWO, and CS

Parameter Symbol Value

SFLA Number of frogs N 50
Number of memeplexes M 5
Maximum number of iterations itmax 1,000

IWO Number of initial population N0 20
Maximum number of population pmax 150
Minimum number of seeds Smin 2
Maximum number of seeds Smax 5
Nonlinear modulation index n 3
Initial value of standard deviation σ initial 1
Final value of standard deviation σfinal 0.001
Maximum number of iterations itmax 1,000

CS Detection probability of the eggs pa 0.15
Host nests (population size) n 20
Maximum number of iterations itmax 1,000
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convergence graphs are shown in Figure 9 for 1,000

iterations.
Optimal labyrinth spillways

The properties of Ute labyrinth spillway and proposed opti-

mized labyrinth spillways, based on actual design flood

(base model) and under climate change conditions

(RCP2.6 model) using SFLA, IWO, and CS algorithms,
om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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are shown in Table 10. The spillway discharge, calculated

according to Equation (1), depends on discharge coefficient

(Cd), total length of the spillway (L), and total upstream

head (Ht). All six models have the same discharge capacity

of their design flood (16,143 and 12,250 m3/s) or more.

The total length of SFLA-Base, IWO-Base, and CS-Base

models decreased by 30%, i.e., from 1,024.529 m (Ute

labyrinth) to 720.469, 719.321, and 722.089, respectively.

The SFLA-RCP2.6, IWO-RCP2.6, and CS-RCP2.6 models’

total length also decreased by 35% to 671.334, 671.383,

and 684.991 m, respectively. According to Table 10, all

six models have a smaller concrete volume than the Ute

spillway volume (14,789.391 m3). The total concrete

volume of SFLA-Base, IWO-Base, and CS-Base spillway

models was calculated as 9,342.012, 9,368.336, and

1,0038.766 m3, respectively (36.83, 36.66, and 32.12%

lower than the Ute labyrinth spillway). The SFLA-

RCP2.6, IWO-RCP2.6, and CS-RCP2.6 have minor dis-

charge design and hence smaller concrete volume (42.96,

42.89, and 40.53% lower than the Ute labyrinth spillway,

respectively). According to Table 10, the labyrinth

spillway using SFLA has less concrete volume than the

optimal spillways using IWO and CS algorithms. The

volume of spillway walls has the greatest effect on

the total concrete volume of labyrinth spillway. This

volume has been reduced from 9,972.916 to 5321.531 m3



Table 9 | Results of 10 runs of SFLA, IWO, and CS

Run no.

Objective function (m3)

SFLA IWO CS

Base RCP2.6 Base RCP2.6 Base RCP2.6

1 9,351.638 8,438.257 9,369.668 8,446.162 10,040.286 8,795.063

2 9,343.536 8,440.865 9,374.560 8,446.911 10,038.857 8,794.675

3 9,349.027 8,436.49 9,376.578 8,445.586 10,042.973 8,794.974

4 9,347.029 8,440.031 9,370.338 8,446.927 10,039.304 8,795.805

5 9,348.046 8,439.222 9,371.694 8,447.760 10,039.180 8,794.649

6 9,342.012 8,436.664 9,376.718 8,447.280 10,038.766 8,794.888

7 9,346.753 8,437.791 9,373.106 8,448.333 10,038.918 8,794.881

8 9,345.483 8,439.898 9,368.606 8,448.155 10,042.396 8,795.249

9 9,351.170 8,436.333 9,372.481 8,446.112 10,039.045 8,795.100

10 9,344.193 8,436.724 9,368.336 8,456.228 10,039.830 8,794.989

Minimum 9,342.012 8,436.333 9,368.336 8,445.586 10,038.766 8,794.649

Average 9,346.889 8,438.227 9,372.209 8,447.945 10,039.956 8,795.027

Maximum 9,351.170 8,440.865 9,376.718 8,456.228 10,042.973 8,795.805

Coefficient of variation 0.00034 0.00020 0.00033 0.00036 0.00015 0.00004

Figure 9 | Convergence of SFLA, IWO, and CS.
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in the SFLA-RCP2.6 model, which means almost 50% lower

than the built Ute spillway walls. The volume of end walls

has been reduced by more than 37% and the volume of

spillway floor slab has decreased by about 35%. Spillway

crest height (P) has decreased in all six models. P and L

play important roles in reducing the concrete volume of

spillway walls. Crest height is involved directly in the calcu-

lation of the three constraints (headwater ratio, relative

thickness ratio, and cycle width ratio), and since the value

of this constraint is within the acceptable range (according
://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
to Table 11), this height reduction does not result in loss

of performance and safety of the spillway. The B parameter

in the SFLA-RCP2.6 and IWO-RCP2.6 models is about 12 m

less than the Ute spillway. The B parameter does not

directly interfere in any constraint, but it is involved in cal-

culating the wall length. In Figure 10, one cycle of all

models is shown to compare B and W. The Ws in the Ute

spillway was about 256 m, which was decreased to 223 m

in the SFLA-RCP2.6 and IWO-RCP2.6 models. The Ws of

each spillway is shown in Figure 11 for a better comparison.



Table 10 | Parameters of Ute and optimal models

Parameter Ute spillway

SFLA IWO CS

Base RCP2.6 Base RCP2.6 Base RCP2.6

Q (m3/s) 16,143 16,145 12,250 16,144 12,251 16,144 12,250

N (–) 14.000 14.000 14.000 14.000 14.000 14.000 14.000

P (m) 9.140 8.022 7.963 8.050 7.967 8.395 8.063

Tw (m) 1.065 1.003 0.995 1.006 0.996 1.049 1.008

Ht (m) 5.790 6.511 6.202 6.513 6.201 6.751 6.279

B (m) 33.990 23.540 21.839 23.496 21.830 23.560 22.366

α (�) 12.162 17.836 17.500 17.812 17.500 17.761 17.500

A (m) 1.820 1.003 1.078 1.012 1.088 1.049 1.013

W (m) 18.290 17.154 15.927 17.121 15.943 17.192 16.130

Ws (m) 256.060 240.157 222.974 239.695 223.197 240.692 225.815

Cd (–) 0.383 0.457 0.400 0.457 0.400 0.432 0.385

Ls (m) 34.770 24.728 22.899 24.678 22.890 24.740 23.451

Lc (m) 73.181 51.462 47.953 51.380 47.956 51.578 48.928

L (m) 1,024.529 720.469 671.334 719.321 671.383 722.089 684.991

Vw (m3) 9,972.916 5,795.709 5,321.531 5,826.764 5,328.667 6,360.948 5,566.052

Ve (m
3) 1,315.879 912.080 824.251 915.694 824.780 1,001.650 862.704

Vs (m
3) 3,500.596 2,634.222 2,290.550 2,626.148 2,292.138 2,676.167 2,365.893

VT (m3) 14,789.391 9,342.012 8,436.333 9,368.336 8,445.586 10,038.766 8,794.650
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This parameter is important in locating spillways, especially

in earth dams that their spillways are situated outside the

main body of the dam. In fact, the limitation of this width

is expressed as one of the main reasons for the choice of

labyrinth spillways. The Tw is another parameter that con-

tributes to the calculation of volume of spillway walls,

which has decreased in the optimal models.
Table 11 | Results of models’ constraints

Constraint Ute spillway

SFLA

Base RCP

0:05 � Ht=P � 0:90 0.634 0.812 0.77

1:00 � A=Tw � 2:00 1.709 1.000 1.08

6:00 � P=Tw � 8:00 8.582 8.000 8.00

2:00 � W=P � 4:00 2.001 2.138 2.00

3:00 � Lc=W < 9:50 4.001 3.000 3.01

A=W � 0:0765 0.099 0.059 0.06

LD=LS � 0:35 0.460 0.35 0.35

om http://iwa.silverchair.com/jh/article-pdf/22/4/916/715609/jh0220916.pdf
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Increasing the angle of side legs (α) can increase the dis-

charge coefficient. In optimal models, this parameter was

increased by more than 30%. Totally, in the optimal

models, the discharge coefficient, angle of side legs, and

total head of the spillway were increased, and the height,

thickness, length and width (spillway and apex) of the labyr-

inth spillway were decreased.
IWO CS

2.6 Base RCP2.6 Base RCP2.6

9 0.809 0.778 0.804 0.779

3 1.005 1.093 1.000 1.005

0 7.999 7.998 7.999 7.999

0 2.127 2.001 2.048 2.001

1 3.001 3.008 3.000 3.033

8 0.059 0.068 0.061 0.063

0.35 0.35 0.35 0.35



Figure 10 | One cycle of Ute and optimal labyrinth spillways.

Figure 11 | Plan view of the Ute and optimal labyrinth spillways.
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As is obvious in Table 10, discharge constraint is more

than the desired value. According to Table 11, other con-

straints in the design of Ute labyrinth spillway are in the

desired range. In the Ute spillway, the value of the interfer-

ence length ratio was 0.46, which was reduced to 0.35 in the

optimal models. To increase the spillway capacity, the apex

ratio (A/W ) should be limited to �0.0765, which, according

to Table 11, is not considered in the Ute design, but it is

within the desired range in the proposed models.
CONCLUSION

In this paper, a novel approach was presented to investigate

the effect of climate change uncertainty on the optimization

of Ute Dam labyrinth spillway design. The concrete volume

of the labyrinth spillway was selected as the objective

function. The concrete volume may represent cost and

environmental impacts of spillway construction. According

to the present study results and historical streamflow data

from 1941, the peak flow at the USGS 07226500 streamgage

is decreasing. Hence, the design flood should be decreased.

Results revealed that all three algorithms (SFLA, IWO, and

CS) are able to optimize the problem. But, the SFLA was a

little better in finding optimal solutions.
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It is worth mentioning that because of different uncer-

tainties that exist in methodology of this study such as the

downscaling method and climate change scenarios, the pre-

sent result is one of the possible solutions. For example, in

the IHACRES model, the snow and vegetation cover were

not considered, which might affect the streamflow and

design flood. As was stated, IHACRES is a lumped model.

In the future studies, other rainfall–runoff models (i.e., dis-

tributed or semi-distributed) can be used. In addition, in

future studies, discharge volumes can be used in design

flood estimation.

In brief, climate change, as a hydrologic uncertainty, has

great impact on rainfall, temperature, streamflow, and design

flood. Spillway geometry is strongly affected by design flood,

and optimization algorithms can be very effective in reducing

the spillway construction costs. By optimizing hydraulic struc-

tures geometry (e.g., reducing the concrete volume), such as

spillways, construction time and other costs associated with

extraction, production, transport, storage, destruction and

recycling ofmaterials may be reduced. Thesewill also be effec-

tive in ameliorating environmental impacts.
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