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Daily runoff forecasting based on data-augmented neural

network model

Xiao-ying Bi , Bo Li, Wen-long Lu and Xin-zhi Zhou
ABSTRACT
Accurate daily runoff prediction plays an important role in the management and utilization of water

resources. In order to improve the accuracy of prediction, this paper proposes a deep neural network

(CAGANet) composed of a convolutional layer, an attention mechanism, a gated recurrent unit (GRU)

neural network, and an autoregressive (AR) model. Given that the daily runoff sequence is abrupt and

unstable, it is difficult for a single model and combined model to obtain high-precision daily runoff

predictions directly. Therefore, this paper uses a linear interpolation method to enhance the stability

of hydrological data and apply the augmented data to the CAGANet model, the support vector

machine (SVM) model, the long short-term memory (LSTM) neural network and the attention-

mechanism-based LSTM model (AM-LSTM). The comparison results show that among the four

models based on data augmentation, the CAGANet model proposed in this paper has the best

prediction accuracy. Its Nash–Sutcliffe efficiency can reach 0.993. Therefore, the CAGANet model

based on data augmentation is a feasible daily runoff forecasting scheme.

Key words | attention mechanism, combined neural network, daily flow prediction, data

augmentation, GRU
HIGHLIGHTS

• Our research proposes a combined neural network model, which shows good prediction

performance and high robustness in the prediction of data with strong variability such as daily

runoff.

• Our research proposes a simple but useful data processing method, which can effectively

improve the prediction performance.

• Compared with other models that predict daily runoff, the model and method proposed in our

study have better prediction performance and can provide model basis for daily runoff prediction

in other watersheds.
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INTRODUCTION
Accurate and timely river flow prediction plays an important

role in water resources planning and management, risk

assessment, and flood prevention (Wang et al. ). A

large number of predictive models have been studied over

the decades and can be divided into two categories:

models based on physical processes and data-driven

models. Process-based models have the advantage of
describing complex hydrological processes through func-

tions that can provide observations of physical processes,

but these models are subject to many empirical assumptions

and require a large amount of data (Mehr et al. ).

The data-driven model is a model based on historical

observations. It is an end-to-end model that directly explores

the relationship between various historical hydrological
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features and targets without detailed physical process

explanations.

Since the 1970s, statistical data-driven methods such as

multiple linear regression and autoregressivemoving average

(ARMA) have been applied to hydrometeorological forecast-

ing. Studies have shown that when the time series are linear

or nearly linear, the statisticalmodel can produce satisfactory

predictions, but it cannot capture the nonlinear and non-

stationary modes hidden in the time series (Toth et al.

). However, the hydrometeorological time series are

complex and non-stationary (Nourani et al. ). In recent

years, machine learning technology has attracted extensive

attention because of its strong learning ability and adapta-

bility to modeling the complex nonlinear process.

Therefore, variousmachine learningmodels, such as artificial

neural networks (ANN), adaptive neuro-fuzzy inference

systems (ANFIS), genetic programming (GP), and support

vector machines (SVM), have been developed and found to

be able to produce satisfactory predictions of hydrological

processes (Sivapragasam et al. ; Moghaddamnia et al.

; Citakoglu et al. ; Taormina & Chau ).

Despite the success of the ANN model, these prediction

methods do not take into account the trend, periodicity, and

stochastic characteristics of actual hydrological data (Bai

et al. ). Recurrent neural networks (RNN) are a kind of

neural network with memory, specifically designed to under-

stand the dynamics of time. By adding feedback connections

to the structure to memorize previous information, RNN

architecture can handle tasks involving time series (Shen

). Therefore, RNN are suitable for modeling complex

hydrological time series predictions (Kumar et al. ;

Coulibaly & Baldwin ). However, it is difficult for tra-

ditional RNN to learn the long-term dependence of time

series. When back-propagating errors flow through multiple

time steps, gradient disappearance and gradient explosion

problems will occur (Bengio et al. ). In order to solve

this problem, two variants of RNN, long short-term memory

networks (LSTM) and gated recurrent networks (GRU),

have been developed. GRU simplifies the structure of LSTM

neural network and improves the learning speed. Some

researchers (Kratzert et al. ) have studied the potential of

LSTM in simulating runoff from multiple river basins through

meteorological observations, and found that LSTM has

better prediction and generalization capabilities. Multi-layer
://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
perceptron (MLP), wavelet neural network (WNN), LSTM

network, and GRU network were used to predict the ground-

water level in agricultural areas (Zhang et al. ), and the

results show that LSTM and GRU prediction are better.

Proper data preprocessing can improve the performance

of data-driven models (Wu et al. ). A large number of

studies have shown that, compared with the corresponding

single model, the combination of data preprocessing tech-

nology and machine learning has higher accuracy in

hydrological prediction (Nourani et al. ; Ravansalar

et al. ). In the data preprocessing technology, a wavelet

transform (WT)-based processing method can decompose

sequence features, which makes WT very popular in hydro-

logical prediction models (Quilty et al. ). Similar to WT,

convolution neural networks (CNN) use discrete convolu-

tion operations based on filter banks to detect and extract

invariant structures and hidden features in the data, so it is

widely used in various fields. In hydrological prediction,

CNN also gradually became popular, and researchers have

combined CNN and RNN neural networks for hydrological

forecasting (Miao et al. ).

Since not all factors in flood forecasting are informative,

and irrelevant factors often produce a lot of noise, we need

to pay more attention to these useful information factors.

However, the original GRU did not have a strong attention

ability. To solve this problem, the attention mechanism

(AM) was introduced. With the widespread application of

AM, researchers began to apply AM to time series prediction

(Zhao et al. ). The attention mechanism is combined with

the LSTM network for flood forecasting (Wu et al. ), and

the results show that compared with the traditional LSTM

and SVM models, its prediction accuracy is higher.

The daily rainfall and daily runoff time series are data

series collected in units of days. During the rainy season, rain-

fall surges and sudden heavy rains are frequent and sharp. This

will lead to the decrease of the smoothness of the data col-

lected, and loss of intermediate information in the rainfall–

runoff process. This will add difficulty to daily runoff time

series prediction, and is a common problem in hydrological

time series. In order to solve this problem, this paper adopts

the method of linear interpolation (LI) to improve the relative

stability of daily collected data. The linear interpolation

method is to insert the linear mean value of two adjacent

data into the data, aiming to increase the stability of data
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without changing characteristics such as trend and period. In

the study, the liner interpolation is performed twice to aug-

ment the data, denoted as First-LI and Second-LI in this paper.

The aim of this study is to combine linear interpolation

with combined neural networks to establish a daily runoff

prediction framework. Taking a small basin with large

daily runoff changes in southwest China as an example,

the influence of the combined neural network model on

the accuracy of daily runoff prediction after data augmenta-

tion was studied. To evaluate the predictive performance of

the model based on data augmentation, the model was com-

pared with SVM, LSTM, and AM-LSTM.
METHODS

Studied basin and data

The basin studied in this paper is Qingxi river basin located

in Xuanhan County, Sichuan Province, Southwest China.

Qingxi river is a mountain stream with a length of 46 km

and a drainage area of 297 km². The relative height differ-

ence is more than 300–500 m, and the river width is about

15–30 m. The Qingxi river basin is frequently flooded by

heavy rain, with the annual maximum flow occurring from

May to September, and the maximum in July.

As shown in Figure 1, in Qingxi river basin, there is a

basic hydrological station and three rain gauge stations

with historical hydrological data, which span from 1 January

1986 to 31 December 2005, including daily rainfall, daily

evaporation, and daily runoff data. In Table 1, the data are
Figure 1 | Map of Qingxi river basin.
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divided into a training set and test set. The first 18 years

are used for model training and validation (the first 16

years of data are used for training and the next two years

of data are used for verification), and the last two years

are used for model testing. The data came from the Hydrol-

ogy and Water Resources Bureau of Sichuan Province.

The trend of runoff data can be intuitively seen in

Figure 2. The maximum flow of runoff is 453 m3/s, the mini-

mum flow is 0.057 m3/s, and the average flow is 5.627 m3/s.
CAGANet model

Figure 3 shows the structural diagram of CAGANet. The com-

bined neural network structure proposed in this study is

composed of a convolutional layer, an AM, and a GRU. In

order to improve the robustness of themodel, the results of pre-

dicting the linear part of the AR model are added. We divide

the data into long-term historical data {Xi} ¼ X1, . . . , Xn and

short-term data S, where the short-term data S is used for

linear prediction. In this article, n¼ 6 was selected through

testing. The short-term data reflect a linear response, and the

choice is 1 day. The workflow of this model is:

(1) divide the data into long-term data Xi and short-term

data S;

(2) input long-term data into the convolutional layer to

extract the temporal distribution characteristics of

hydrological data variables and the local dependencies

between the variables;

(3) input the extracted characteristics into the attention mech-

anism layer, and assign the attention weights to the input;



Figure 2 | Daily runoff data of Qingxi station.

Table 1 | Data set

Station Data type

Training data Testing data

Min. Max. Mean, Min. Max. Mean.

Nanping Rainfall (mm/d) 0 136.4 3.69 0 203.8 5.14

Fengcheng Rainfall (mm/d) 0 170.6 3.70 0 183.0 4.81

Laojun Rainfall (mm/d) 0 152.6 3.54 0 229.4 4.62

Qingxi Rainfall (mm/d) 0 167.9 3.16 0 200.5 4.07

Qingxi Evaporation (mm/d) 0 9.0 1.71 0 7.7 1.69

Qingxi Runoff (m3/s) 0.057 307.0 5.28 0.027 453.0 7.60

Figure 3 | Model structure overview of CAGANet.
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(4) input the data assigned with the attention weights into

the GRU network layer for nonlinear part prediction;

(5) input short-term data S into the AR model to obtain the

prediction results of the linear part;

(6) integrate the prediction results of nonlinear and linear

parts into the final prediction.

The detailed work of the CAGANet model is described

below.

First, the input data are divided into long-term data and

short-term data, and then they are input into the convolutional

layer without pooling to extract the local dependencies

between the input variables and the characteristics of time
://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
distribution. Both long-term and short-term data need to

enter the nonlinear network. Taking the long-term data as

an example, the input variable matrix is X, X ∈ RD×T , the con-

volution kernel size of the convolutional layer is ω ×D, in

which ω is the time dimension, and D is the variable dimen-

sion. The expression of the k-th filter sweeps through the

input matrix X, which can be formulated as:

hk ¼ RELU(Wk �X þ bk) (1)

where * denotes the convolution operation, the output hk

would be a vector, and the RELU function is RELU (x)¼
max (0, x). We use the zero-padding mode, and the output
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matrix vector of the convolutional layer is dc × Tc, in which

dc represents the number of filters, and Tc ¼ T � ω � 1.

We apply an attention layer (Zhao et al. ) to the con-

volutional layer’s output matrix over the time dimension.

That is, we can view the matrix as a sequence of

dc dimensional vectors and the sequence length is Tc. We

apply attention over the time dimension so that our model

can select relative time across all time steps adaptively.

The attention layer is applied to the recurrent network

layer, acting on the hidden state of the recurrent network

layer. The recurrent component is a recurrent layer with

the GRU and uses the RELU function as a hidden activation

function. The hidden state of the recurrent unit at time t can

be formulated as:

rt ¼ σ(xtWxr þ ht�1Whr þ br) (2)

ut ¼ σ(xtWxu þ ht�1Whu þ bu) (3)

ct ¼ RELU(xtWxc þ rt ⊙ (ht�1Whc) þ bc) (4)

ht ¼ (1� ut)⊙ ht�1 þ ut ⊙ ct (5)

where ⊙ is the element-wise product, σ is the sigmoid func-

tion, xt is the input of this layer at time t and the output is

the hidden state of each time stamp of this layer. It is then

output to a fully connected layer (FCL). The FCL combines

long-term data output and short-term data output to obtain

the results of the nonlinear part of the data prediction.

The output of the dense layer is computed as:

yDt ¼ WD [oL; oS]þ b (6)

in which oL ¼ {o1 ; o2 ; . . . ; oT } is the output of long-term

historical data prediction, while oS is the output of short-

term historical data prediction, and yDt is the nonlinear

output of the neural network.

Due to the nonlinearity of the convolutional layer and

the recurrent layer, the linear components of daily runoff

prediction are not fully predicted. To solve this problem,

the traditional AR model is used for linear prediction, and

the output of the AR model is yLt , y
L
t ∈ RD. The coefficients

of the AR model are War ∈ Rpar and bar ∈ R , where par is

the window size of the input matrix, and S is the input vari-

able matrix. In this model, all dimensions share the same
om http://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
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linear parameters. The AR model is expressed as follows:

yLt,i ¼
Xpar� 1

k¼0

war
k st�k,i þ bar (7)
The final prediction of the CAGANet model is ŷ, which

is obtained by integrating the outputs of the nonlinear part

of neural network yDt and the linear output of AR model yLt :

ŷ ¼ yDt þ yLt (8)

In the training process, the mean absolute error (L1-

loss) is adopted as the loss function of the prediction task,

and the optimization objective is:

O(yT , ŷT ) ¼ 1
N

XN
j¼1

XD
i¼i

j(ŷjT ,i � yjT ,i)j (9)

where N is the number of training samples and D is the

dimension of target data. All neural models were trained

using the Adam optimizer.

Long short-term memory neural network (LSTM)

Long short-term memory networks are a special class of

RNN that contain a feedback connection that allows past

information to affect the current output, making them very

effective for tasks involving sequential input (Lecun et al.

). There are many studies on flood forecasting based

on LSTM neural networks (Qi et al. ), and the results

show that the LSTM model has a stronger time-lag predic-

tion capability compared with the traditional BP, RBNN

and LSSVM models.

LSTM neural network based on attention mechanism

(AM-LSTM)

Human vision can quickly find important target areas while

other areas are only roughly analyzed or even ignored. This

active, selective mental activity is called the visual attention

mechanism (AM). AM originates from the simulation of the

human brain’s attention characteristics. Its core idea is to

give more attention to important information and less atten-

tion to other information, thereby greatly improving the
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information receiving sensitivity and processing speed of the

concerned area. Strictly speaking, AM is an idea, not a

model. Assuming that each element of the input data set

consists of a key and a value, the given target is T and the

final result is the attention weight, then the core idea of

AM can be represented by Figure 4.

Following the development of AM, it began to be

applied in various fields, first in image processing and

machine translation, and later in time prediction (Zhao

et al. ). Some researchers have combined AM and

LSTM models to predict floods (Wu et al. ).

Evaluation indicators

In this paper, three statistical methods, including mean

absolute error (MAE), root mean square error (RMSE) and

Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe ),

are used to measure the performance of the model. These

three metrics are defined as follows.

Mean absolute error:

MAE ¼ 1
N

XN
i¼1

jyi � ŷij (10)

Root mean square error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(yi � ŷi)
2

vuut (11)

Nash–Sutcliffe efficiency:

NSE ¼ 1�
PN

i¼1 (yi � ŷi)
2

PN
i¼1 (yi � �yi)

2 (12)
Figure 4 | Core idea of AM.
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where N is the total number of observations, yi and ŷi are

the observed and predicted flow, respectively, and �yi is the

average value of the observed flow. The RMSE value is a

good indicator of the goodness of fit at high flow rates,

and NSE provides a measure of the model’s predictive

power. Generally, higher NSE values and lower MAE and

RMSE values indicate a good model. These three statistical

methods can well evaluate the performance of hydrological

models (Legates & McCabe ).
RESULTS AND DISCUSSION

Selection of input variables

In order to have a better and more effective flood prediction,

the thermalmap of the linear Pearson correlation coefficients

of historical flow, rainfall, evaporation, and flow during the

forecast period (F) at each station is drawn in Figure 5.

From the thermal map, we can see the linear corre-

lation. Combined with the actual situation, the input

variables are the rainfall of the four stations in the past 2

days R(t� 2), R(t� 1), evaporation in the past day E(t� 1),

as well as the flow in the past 2 days F(t� 2) and F(t� 1),

a total of 16 characteristics. These 16 features are enhance-

ments to the data, and we used all possible inputs (i.e., Xt ,

Xt�1 , Xt�2 ,… Xt�6 ) for these 16 features, that is, a set of

six time-lagged inputs is used to forecast the current value,

as shown in Table 2, where X represents 16 input features.

Selection of parameters

A grid search was performed on all the adjustable hyper-

parameters of the LSTM, AM-LSTM, and CAGANet

models, and appropriate values were selected from

{22, 23, . . . , 28}, and then the optimal parameter setting

determined by decreasing or increasing the value. In

addition, both the AM-LSTM model and the CAGANet

model need to set a suitable time step.

The results in Table 3 show that the number of convolu-

tional layer and GRU neurons suitable for CAGANet model

is 16. In addition, both the AM-LSTMmodel and the CAGA-

Net model need to set a suitable time step. Time step refers

to how many input variables the attention mechanism will



Figure 5 | Thermal diagram of Pearson correlation coefficient between input variables and runoff.
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Table 2 | Selection of input variables

Station Feature Inputs

Nanping, Fengcheng,
Laojun, Qingxi

(Rainfall) Rt, Rt�1, Rt�2 Xt, Xt�1,
Xt�2,… Xt�6

Qingxi (Evaporation) Et, Et�1

Qingxi (Runoff) Ft, Ft�1

Table 3 | Selection of convolutional layer and GRU structure

Convolutional structure GRU structure NSE RMSE MAE

8 8� 8 0.669 19.75 4.40

16 8� 8 0.718 17.99 4.36

8 16� 16 0.805 14.97 4.04

16 16� 16 0.854 12.23 3.11

32 16� 16 0.787 15.66 3.79

32 32� 32 0.768 16.02 3.89
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notice. These input data will be assigned appropriate

weights according to the time step. This process is part of

model training. The time step chosen after testing is 6.
Figure 7 | Final prediction result and scatter diagram of the LSTM original data set.

Figure 6 | Final prediction result and scatter diagram of the SVM original data set.
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Prediction results

The four models were applied to Qingxi river basin of

Sichuan province. We have a total of 20 years of data, of

which the first 16 years are used to train the model, then

two years are used to verify the model, and the last two

years are used to test the model. The forecast results of the

four models on the last two years of the 20 years data are

as follows.

In Figures 6–9, the prediction results of the four models

are consistent in the predicted and observed values. The

SVM prediction value fluctuates more seriously and the pre-

diction effect is the worst. The peak prediction of CAGANet

is closer to the observed values than that of SVM, LSTM,

and AM-LSTM, and the overall prediction performance of

CAGANet is higher than that of the other three models. In

Table 4, CAGANet’s prediction indicator without data

enhancement is NSE¼ 0.854, RMSE¼ 12.23, MAE¼ 3.11.

Each of the four models has a number of points where

the predicted value is higher than the observed value on

the data set without interpolation. This does not affect the



Figure 8 | Final prediction result and scatter diagram of the AM-LSTM original data set.

Figure 9 | Final prediction result and scatter diagram of the CAGANet original data set.

Table 4 | Evaluation indicators of the original data set

Indicators NSE RMSE MAE

CAGANet 0.854 12.23 3.11

AM-LSTM 0.816 16.22 3.93

LSTM 0.753 17.28 4.36

SVM 0.505 22.76 5.41

Figure 10 | Final prediction result and scatter diagram of the SVM on First-LI original data set
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forecast for larger floods, but it is unfriendly for smaller

ones. The phenomenon is caused by the instability of the

data, so we adopt the method of linear interpolation to

make the data relatively stable.

Figures 10–13 present the prediction results on the First-

LI data set (data set gained after performing linear interp-

olation the first time). After the data augmentation, the
.
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prediction performance of CAGANet was significantly

improved, and its peak value and overall prediction accu-

racy are far higher than that of the SVM, LSTM, and AM-

LSTM. In particular, the predicted value of CAGANet was

close to the observed value in terms of peak flow prediction,

which was the most concerned by flood forecasting. The pre-

dictive performance of the other three models has been
Figure 11 | Final prediction result and scatter diagram of the LSTM on First-LI original data se

Figure 12 | Final prediction result and scatter diagram of the LAM-LSTM on First-LI original da

Figure 13 | Final prediction result and scatter diagram of the CAGANet on First-LI original dat
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improved compared with that before data augmentation,

but they still need to improve their peak prediction.

In Table 5, CAGANet’s indicator NSE reached 0.979,

which is 12% higher than the original value, and 24%,

12%, and 6% higher than that of SVM, LSTM, and AM-

LSTM, respectively. The results show that the data augmen-

tation can effectively improve the accuracy of daily runoff
t.

ta set.

a set.



Table 5 | Evaluation indicators on First-LI data set

Indicators NSE RMSE MAE

CAGANet 0.979 6.22 1.62

AM-LSTM 0.911 10.54 2.05

LSTM 0.859 12.58 2.42

SVM 0.738 15.58 4.80
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prediction, and also indicate that the generalization ability

and robustness of the CAGANet model are better than the

other three models.

In order to verify the prediction performance of daily

runoff under different data augmentation plans, the predic-

tion of the Second-LI data set was also performed, and the

results are shown in Figures 14–17.

Figures 14–17 show the prediction results on the

Second-LI data set (data set gained after performing linear

interpolation the second time). The CAGANet prediction

results are almost coincident with the observed values. In
Figure 14 | Final prediction result and scatter diagram of the SVM on Second-LI original data

Figure 15 | Final prediction result and scatter diagram of the LSTM on Second-LI original data
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contrast, the peak prediction performance of the LSTM

was not significantly improved, and although SVM and

AM-LSTM had a better prediction performance compared

with their prediction on the First-LI data set, such improve-

ment is relatively slow. In Table 6, the evaluation indicators

of the CAGANet model on Second-LI data set NSE¼ 0.993,

RMSE¼ 2.58, and MAE¼ 0.6 were obtained, which are

12%, 10%, and 3% higher than that of the SVM, LSTM,

and AM-LSTM. In addition, it can be seen that many pre-

dicted values of SVM on the Second-LI data set are higher

than the observed values, indicating that enhancing data

stability cannot improve the prediction accuracy of the

SVM model on small values. The results show that CAGA-

Net has good generalization ability and prediction ability.

Comparing the total of 12 prediction results of the four

models on the original data set, the First-LI data set, and the

Second-LI data set, it can be concluded that the CAGANet

prediction results on the data-augmented Second-LI data set

are better than the other 11 forecast methods. With the
set.

set.



Figure 16 | Final prediction result and scatter diagram of the LAM-LSTM on Second-LI original data set.

Figure 17 | Final prediction result and scatter diagram of the CAGANet on Second-LI original data set.

Table 6 | Evaluation indicator on Second-LI data set

Indicators NSE RMSE MAE

CAGANet 0.993 2.58 0.60

AM-LSTM 0.958 6.14 1.04

LSTM 0.893 10.37 1.34

SVM 0.872 10.70 3.39
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increase of the stability of the data, the predictive accuracy

of results on all four models has improved, among which

the most obvious one is the CAGANet model proposed in

this paper, which shows that the CAGANet model has

good prediction performance.

Ablation experiment

The CAGANet model proposed in this paper is a compound

neural network model composed of four modules. In order
://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
to verify the contribution of each component of the model

to the prediction of daily runoff, several sets of ablation

experiments were performed in this paper. In the CAGANet

model, the convolutional layer module, the AMmodule, and

the GRU module belong to a tandem structure, while the

linear AR module and the first three belong to a parallel

structure. Based on this structure, the proposed ablation

experiment eliminates the three modules of convolutional

layer, AM, and AR, respectively. Then the prediction results

after the ablation are analyzed and compared with the pre-

diction results without ablation.

First, we ablated the convolutional layer module. The

role of convolutional layer in the entire CAGANet model

is to extract the invariant structure and hidden features in

the data, and it contains multiple convolution kernels. The

convolution kernel is smaller than the input data dimension,

and when filtering the data, it locally perceives the infor-

mation and then synthesizes the global information. The
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convolutional layer uses parameters in the same convolu-

tion kernel, called weight sharing, which can greatly

reduce the amount of calculations. We calculated the pre-

dicted time after removing the convolutional layer. It takes

33 seconds for one epoch (training all samples once), and

it takes only 10 seconds without removing the convolutional

layer. In other words, the time it takes after removing the

convolutional layer is more than three times that without

removing the convolutional layer.

Figure 18 is a prediction result of convolutional layer

ablation on a data set without interpolation. It can be seen

from the results that after removing the convolutional

layer module, the accuracy of the prediction is reduced,

and there are some predicted values that are larger than

the observed values. After removing the convolutional

layer, there is no feature extraction, and the model needs

to process all the details of the data, which leads to an

increase in the prediction time. At the same time, the exces-

sive attention to some details leads to the phenomenon that

the predicted value is greater than the observed value. The

evaluation indicators were MAE¼ 4.02, RMSE¼ 15.24,

and NSE¼ 0.786.

Then, we ablated the AM module. AM has been briefly

introduced in the section introducing the AM-LSTM

model. The role AM plays in the CAGANet model is to

assign weights to input variables at a given time step. In a

separate GRU structure, a lot of data information is inte-

grated into the hidden vector hTx corresponding to the last

time step T. But hTx is a single vector of a certain length.

The representation ability of this single vector and the

amount of information it contains are limited, so a lot of

information will be lost. AM allows the GRU to consider
Figure 18 | Prediction result and scatter diagram of the CAGANet without convolutional layer

om http://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
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the hidden state sequence (h1, h2,⋯, hTx ) output by the

entire encoder at each time step t, thereby storing more

information in all hidden state vectors. The GRU can

decide which vectors should be given a higher weight

when using these vectors.

Specifically, each output yt in the target sequence (y1,

y2, ⋯, yTx ) produced by GRU is based on the following con-

ditional distribution:

P[ytj{y1, � � � , yt�1}, ct] ¼ softmax(Ws
~ht) (13)

of which, ~ht is the attentional hidden state vector, and it is

formulated as:

~ht ¼ tanh (Wc[ct; ht]) (14)

ht is the hidden state of the top level of the GRU, ct is the

context vector, which is calculated from the hidden vector at

the current time step hTx . Wc and Ws are weight par-

ameters. Assume that the sequence length of sample x is

Tx , then ct is calculated as follows:

ct ¼
XTx

i¼1

αt,ihi (15)

where αt,i shows the degree of importance of all vectors in

the hidden state sequence, that is, weight allocation, and is
.
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calculated by the softmax method:

αt,i ¼ exp(score(ht, hi))PTx
j¼1 exp(score(ht, hj))

(16)

And the score function is:

score(ht , hi) ¼ hT
t Wαhi (17)

of which, Wα is a parameter matrix.

Figure 19 is a prediction result of AM ablation on a data

set without interpolation. It can be seen from the results that

the prediction accuracy is not as good as the result with AM,

and the accuracy is reduced. In terms of details, many small-

value predictions are not accurate with big fluctuation,

which indicates bad attention. Comparing the prediction

results of LSTM, we find that the results of LSTM also
Figure 19 | Prediction result and scatter diagram of the CAGANet without AM.

Figure 20 | Prediction result and scatter diagram of the CAGANet without AR.

://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
have this problem, but the experimental results using AM

have no such phenomenon. The most outstanding feature

of AM is the concentration of attention weights. The evalu-

ation indicators are MAE¼ 4.90, RMSE¼ 17.45, and

NSE¼ 0.712.

Finally, we ablate the AR module. The role of AR in the

CAGANet model is to extract short-term linear prediction

results. This module is very simple and was introduced ear-

lier. Figure 20 is a prediction result of AR ablation on a data

set without interpolation. It can be seen from the results that

the prediction accuracy is not as good as the CAGANet

model. The AR module will output linear prediction results,

while other modules output nonlinear predictions. The pre-

dictions without AR module will lose linear results, so the

prediction accuracy is reduced. The evaluation indicators

are MAE¼ 4.90, RMSE¼ 17.45, and NSE¼ 0.805.

In summary, nomatter whichmodule is ablated, the final

prediction accuracy will be reduced. It is experimentally
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verified that each module of the CAGANet model proposed

in this paper has contributed to daily runoff prediction.
CONCLUSION

In this paper, a combined neural network model CAGANet

based on data augmentation is proposed to predict the daily

runoff of Qingxi basin in Sichuan province. Compared with

single SVM model, neural network models LSTM and AM-

LSTM, the proposed CAGANet model has higher prediction

accuracy when forecasting on a data set without using data

augmentation methods, and its NSE can reach 0.854. In

view of the instability of daily hydrological time series,

linear interpolation is used to enhance the relative stability

of the data in order to further improve the prediction accu-

racy. The results show that among the four models, the

proposed CAGANet model improves its prediction accuracy

faster and higher than the other three models with the

increase of data stability. These four models all use NSE,

RMSE, and MAE evaluation indicators. In the three sets

of experimental comparisons, the daily runoff prediction

evaluation indicators of the CAGANet model can reach

NSE¼ 0.993, RMSE¼ 2.58, and MAE¼ 0.60, and the

NSE indicator was 12%, 10%, and 3% higher than that of

the SVM, LSTM, and AM-LSTM, respectively. Therefore,

the CAGANet model based on data augmentation can effec-

tively improve the accuracy of daily runoff prediction.
REFERENCES
Bai, Y., Wang, P., Xie, J., Li, J. & Li, C.  Additive model for
monthly reservoir inflow forecast. Journal of Hydrologic
Engineering 20 (7), 04014079. https://doi.org/10.1061/
(ASCE)HE.1943-5584.0001101.

Bengio, Y., Simard, P. & Frasconi, P.  Learning long-term
dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks 5 (2), 157–166. https://doi.
org/10.1109/72.279181.

Citakoglu, H., Cobaner, M., Haktanir, T. & Kisi, O. 
Estimation of monthly mean reference evapotranspiration in
Turkey. Water Resources Management 28 (1), 99–113.
https://doi.org/10.1007/s11269-013-0474-1.

Coulibaly, P. & Baldwin, C. K.  Nonstationary hydrological
time series forecasting using nonlinear dynamic methods.
om http://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf

4

Journal of Hydrology 307 (1–4), 164–174. https://doi.org/10.
1016/j.jhydrol.2004.10.008.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K. & Herrnegger, M. 
Rainfall-runoff modelling using Long-Short-Term-Memory
(LSTM) networks.Hydrology andEarth SystemSciences 22 (11),
6006–6022. https://doi.org/10.5194/hess-22-6005-2018.

Kumar, D. N., Raju, K. S. & Sathish, T.  River flow forecasting
using recurrent neural networks.WaterResourcesManagement
18 (2), 143–161. https://doi.org/10.1007/BF02704433.

Lecun, Y., Bengio, Y. & Hinton, G.  Deep learning. Nature
521, 436–444. https://xs.scihub.ltd/https://doi.org/10.1038/
nature14539.

Legates, D. R. & McCabe, G. J.  Evaluating the use of
‘goodness-of-fit’ measures in hydrologic and hydroclimatic
model validation. Water Resources Research 35 (1), 233–241.
https://doi.org/10.1029/1998WR900018.

Mehr, A. D., Kahya, E. & Olyaie, E.  Streamflow prediction
using linear genetic programming in comparison with a
neuro-wavelet technique. Journal of Hydrology 505, 240–249.
https://doi.org/10.1016/j.jhydrol.2013.10.003.

Miao, Q., Pan, B., Wang, H., Hsu, K. & Sorooshian, S. 
Improving monsoon precipitation prediction using combined
convolutional and long short term memory neural network.
Water 11 (5), 977. https://doi.org/10.3390/w11050977.

Moghaddamnia, A., Ghafari, M., Piri, J., Amin, S. & Han, D. 
Evaporation estimation using artificial nctworlcs and
adaptive ncuro-fuzzy inference system techniques. Advances
in Water Resources 32, 88–97. https://doi.org/10.1016/
j.advwatres.2008.10.005.

Nash, J. E. & Sutcliffe, J. V.  River flow forecasting through
conceptural models. Part 1: a discussion of principles.
Journal of Hydrology 10 (3), 282–290. https://doi.org/10.
1016/0022-1694(70)90255-6.

Nourani, V., Baghanam, A. H., Adamowski, J. & Kisi, O. 
Applications of hybrid wavelet–artificial intelligence models
in hydrology: a review. Journal of Hydrology 514, 358–377.
https://doi.org/10.1016/j.jhydrol.2014.03.057.

Qi, Y., Zhou, Z., Yang, L., Quan, Y. & Miao, Q.  A
decomposition-ensemble learning model based on LSTM
neural network for daily reservoir inflow forecasting. Water
Resources Management 33, 4123–4139. https://xs.scihub.ltd/
https://doi.org/10.1007/s11269-019-02345-1.

Quilty, J., Adamowski, J. & Boucher, M. A.  A stochastic data-
driven ensemble forecasting framework for water resources: a
case study using ensemble members derived from a database of
deterministic wavelet-basedmodels.Water Resources Research
55 (1), 175–202. https://doi.org/10.1029/2018WR023205.

Ravansalar, M., Rajaee, T. & Kisi, O.  Wavelet-linear genetic
programming: a new approach for modeling monthly
streamflow. Journal of Hydrology 549, 461–475. https://doi.
org/10.1016/j.jhydrol.2017.04.018.

Shen, C.  A transdisciplinary review of deep learning research
and its relevance for water resources scientists. Water
Resources Research 54 (11), 8558–8593. https://doi.org/10.
1029/2018WR022643.

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001101
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001101
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1007/s11269-013-0474-1
http://dx.doi.org/10.1007/s11269-013-0474-1
http://dx.doi.org/10.1016/j.jhydrol.2004.10.008
http://dx.doi.org/10.1016/j.jhydrol.2004.10.008
http://dx.doi.org/10.5194/hess-22-6005-2018
http://dx.doi.org/10.5194/hess-22-6005-2018
http://dx.doi.org/10.1023/B:WARM.0000024727.94701.12
http://dx.doi.org/10.1023/B:WARM.0000024727.94701.12
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1029/1998WR900018
http://dx.doi.org/10.1029/1998WR900018
http://dx.doi.org/10.1029/1998WR900018
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.1016/j.jhydrol.2013.10.003
http://dx.doi.org/10.3390/w11050977
http://dx.doi.org/10.3390/w11050977
http://dx.doi.org/10.1016/j.advwatres.2008.10.005
http://dx.doi.org/10.1016/j.advwatres.2008.10.005
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2014.03.057
http://dx.doi.org/10.1016/j.jhydrol.2014.03.057
http://dx.doi.org/10.1007/s11269-019-02345-1
http://dx.doi.org/10.1007/s11269-019-02345-1
http://dx.doi.org/10.1007/s11269-019-02345-1
http://dx.doi.org/10.1029/2018WR023205
http://dx.doi.org/10.1029/2018WR023205
http://dx.doi.org/10.1029/2018WR023205
http://dx.doi.org/10.1029/2018WR023205
http://dx.doi.org/10.1016/j.jhydrol.2017.04.018
http://dx.doi.org/10.1016/j.jhydrol.2017.04.018
http://dx.doi.org/10.1016/j.jhydrol.2017.04.018
http://dx.doi.org/10.1029/2018WR022643
http://dx.doi.org/10.1029/2018WR022643


915 X.-y. Bi et al. | Daily runoff forecasting based on data-augmented neural network model Journal of Hydroinformatics | 22.4 | 2020

Downloaded from http
by guest
on 24 April 2024
Sivapragasam, C., Shie, Y. L. & Pasha, M. F. K.  Rainfall and
runoff forecasting with SSA–SVM approach. Journal of
Hydroinformatics 3 (3), 141–152. https://doi.org/10.2166/
hydro.2001.0014.

Taormina, R. & Chau, K. W.  Neural network river forecasting
with multiobjective fully informed particle swarm
optimization. Journal of Hydroinformatics 17 (1), 99–113.
https://doi.org/10.2166/hydro.2014.116.

Toth, E., Brath, A. & Montanari, A.  Comparison of short-
term rainfall prediction models for real-time flood
forecasting. Journal of Hydrology 239 (1), 132–147. https://
doi.org/10.1016/S0022-1694(00)00344-9.

Wang, W., Chau, K., Cheng, C. & Qiu, L.  A comparison of
performance of several artificial intelligence methods for
forecasting monthly discharge time series. Journal of
Hydrology 374 (3), 294–306. https://doi.org/10.1016/
j.jhydrol.2009.06.019.
://iwa.silverchair.com/jh/article-pdf/22/4/900/715681/jh0220900.pdf
Wu, C. L., Chau, K. W. & Li, Y. S.  Predicting monthly
streamflow using data-driven models coupled with data-
preprocessing techniques. Water Resources Research 45 (8).
https://doi.org/10.1029/2007WR006737.

Wu, Y. R., Liu, Z. Y., Xu, W. G., Feng, J., Shivakumara, P. & Lu, T.
 Context-Aware Attention LSTM Network for Flood
Prediction. In: 2018 24th International Conference on Pattern
Recognition (ICPR), Beijing, China, pp. 1301–1306. https://
doi.org/10.1109/ICPR.2018.8545385

Zhang, J., Zhu, Y., Zhang, X., Ye, M. & Yang, J.  Developing a
long short-term memory (LSTM) based model for predicting
water table depth in agricultural areas. Journal of Hydrology
561, 918–929. https://doi.org/10.1016/j.jhydrol.2018.04.065.

Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y. & Su, J.  A novel
bidirectional mechanism based on time series model for wind
power forecasting. Applied Energy 177, 793–803. https://doi.
org/10.1016/j.apenergy.2016.03.096.
First received 20 January 2020; accepted in revised form 8 April 2020. Available online 16 May 2020

http://dx.doi.org/10.2166/hydro.2001.0014
http://dx.doi.org/10.2166/hydro.2001.0014
http://dx.doi.org/10.2166/hydro.2014.116
http://dx.doi.org/10.2166/hydro.2014.116
http://dx.doi.org/10.2166/hydro.2014.116
http://dx.doi.org/10.1016/S0022-1694(00)00344-9
http://dx.doi.org/10.1016/S0022-1694(00)00344-9
http://dx.doi.org/10.1016/S0022-1694(00)00344-9
http://dx.doi.org/10.1016/j.jhydrol.2009.06.019
http://dx.doi.org/10.1016/j.jhydrol.2009.06.019
http://dx.doi.org/10.1016/j.jhydrol.2009.06.019
http://dx.doi.org/10.1029/2007WR006737
http://dx.doi.org/10.1029/2007WR006737
http://dx.doi.org/10.1029/2007WR006737
http://dx.doi.org/10.1016/j.jhydrol.2018.04.065
http://dx.doi.org/10.1016/j.jhydrol.2018.04.065
http://dx.doi.org/10.1016/j.jhydrol.2018.04.065
http://dx.doi.org/10.1016/j.apenergy.2016.03.096
http://dx.doi.org/10.1016/j.apenergy.2016.03.096
http://dx.doi.org/10.1016/j.apenergy.2016.03.096

	Daily runoff forecasting based on data-augmented neural network model
	INTRODUCTION
	METHODS
	Studied basin and data
	CAGANet model
	Long short-term memory neural network (LSTM)
	LSTM neural network based on attention mechanism (AM-LSTM)
	Evaluation indicators

	RESULTS AND DISCUSSION
	Selection of input variables
	Selection of parameters
	Prediction results
	Ablation experiment

	CONCLUSION
	REFERENCES


