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Waste load allocation under uncertainty using game

theory approach and simulation-optimization process

Behnam Andik and Mohammad Hossein Niksokhan
ABSTRACT
This article aims to present a new methodology for waste load allocation (WLA) in a riverine system

considering the uncertainty and achieve the lowest amount of inequity index, cost, and fuzzy risk of

standard violation. To find a surface of undominated solutions, a new modified PAWN method,

initially designed for sensitivity analysis, was developed and coupled with a simulation-optimization

process using multi-objective particle swarm optimization (MOPSO) algorithm, to consider the

uncertainty of all affecting variables and parameters by using their probability distribution.

The proposed methodology applied to Sefidrood River in the northern part of Iran. Graph model for

conflict resolution (GMCR) as a subset of game theory was implemented to attain a compromise on

WLA among the stakeholders of a river system’s quality in Iran: Department of Environment,

Municipal Waste Water, and Private Sector. Some undominated solutions were used in GMCR model

and modeling the conflict among decision makers reveals that their preferences and the status quo

do not lead to a solely stable equilibrium; thus the intervention of a ruler as arbitrator leads them to

reach a compromise on a scenario that has a median FRVS and cost. Sensitivity analysis was done

using the PAWN method to assess the sensitivity of three intended objectives to all variables and

parameters.

Key words | graph model for conflict resolution, PAWN, sensitivity analysis, uncertainty analysis,

waste load allocation
HIGHLIGHTS

• WLA in a river with three decision makers done by considering minimizing inequity, cost, and

fuzzy risk of standard violation.

• The optimum solution found by using a stochastic simulation-optimization model.

• The sensitivity of functions’ outputs to inputs has been determined by using PAWN method.

• Game theory and GMCRþ model used to discover the option agreed upon by the parties.

• Cost and standard violation have the most sensitivity to the upstream flow and inequity has the

most to the dischargers’ BOD.
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GRAPHICAL ABSTRACT
INTRODUCTION
Increasing human demand for water has made this vital

element noteworthy, and its ownership rights to use have

become more challenging. Using water bodies, especially

rivers, for industrial purposes such as cooling the industries

and assimilating the wastewater, is one of the consequences

of the industrialization era. Dwindling the ecological

capacity of the rivers to treat wastewater, population

growth – which leads to producing more wastewater – and

industries bloom located along the rivers have reduced the

quality of the river’s water. This reduction is due to the drai-

nage of the wastewater from the riverside dischargers into

it. The requirements to maintain water quality in compliance

with the approved standards and preserve its capability to

receive the maximum flow of wastewater from industries

has led to allocating the shares of wastewater discharge to

the dischargers as a controversial and problematic issue. In

other words, waste load allocation (WLA) in rivers refers to

the determination of required pollutant treatment levels to a

group of pollution dischargers to ensure that water quality

standards are maintained along the river (Ghosh & Mujum-

dar ). Determining the shares for each of the

dischargers, whether industries or municipal wastewater

treatment facilities or non-point sources at the river border

to discharge the wastewater, can be accomplished using var-

ious methods. Optimization (Yandamuri et al. ; Cho &

Lee ), water quality trading (Breetz et al. ; Sarang

et al. ), and game theory (Niksokhan et al. ; Nikoo

et al. ) are among the most common ways to do this.

Application of game theory in water quality management

issues is preferred to conventional decision analysis methods

because of two reasons. Firstly, unlike multi-criteria decision
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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making (MCDM), this approach addresses decision-maker

behavior and finds solutions that will not be refused by

them. Finally, this method, unlike MCDM, is capable of

expressing and reflecting the various characteristics of

water resource problems, such as engineering, socio-econ-

omical, and political issues (Mirchi et al. ).

Optimal waste load allocation implies that the treatment

levels not only maintain the water quality at standard level

but also result in the best value for the objective function

defined for the water quality management problem in the

riverine system (Burn & Lence ). Chadderton et al.

() introduced and argued various basic theoretical

approaches to apportion waste load and brought forward

‘percentage of equal treatments’ as the best option among

those 20 methods. Different scholars with the different

point of views tried to allocate waste load among dischar-

gers by using various methods and tools: Hathhorn &

Tung (), Burn & Lence (), Kerachian & Karamouz

(), Saadatpour & Afshar (), Qin et al. (), Li

et al. (), Allam et al. (), Mohan & Kumar (),

Xu et al. (), Rafiee et al. (), and Afshar et al. ()

are among the extensive range of them.

Burn & Yulianti () presented a methodology that

contains three models, two of which are pairwise models

(cost versus standard violation, the cost versus equity) to

allocate waste in a riverine system. Feizi Ashtiani et al.

() studied an approach to meet environmental, econ-

omic, and equity objectives simultaneously. The waste

loads were allocated according to the discharge permit

market. They used two discrete graphs of cost versus viola-

tion and cost versus inequity to select four scenarios based
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on these two models’ Pareto Fronts. Saberi & Niksokhan

() proposed a methodology using the decision support

system (DSS) for the graph model for conflict resolution II

(GMCR II), multi-criteria decision making (MCDM) analy-

sis and the multi-objective particle swarm optimization

(MOPSO) algorithm while considering cost and standard

violation to allocate waste load among dischargers.

The lack of considering the equity as a third objective

in the optimization model leads to the setup of a three

objectives simulation-optimization model. The difference

between the current work and those mentioned above is

that ongoing work leads to a surface of the undominated sol-

ution, where all points on that surface are optimum in terms

of intended objectives. In contrast, the others are two-axis

diagrams where the feasible space of the answers is a

curve. This study, instead of using a deterministic model

that they used, applied a stochastic model, which uses the

distribution function of all variables and parameters that

take part in the simulation-optimization process.

In this article, a novel methodology proposed to allocate

waste load among dischargers located adjacent to a riverine

system equitably and cost-effectively, aswell as encompassing

the lowest level of fuzzy risk of violating the standard (FRVS)

for biochemical oxygen demand (BOD). Achieving a precise

allocation for removal percent so that three minimizing

objectives attained with a porous ratio, taking into account

the uncertainty of variables and parameters affecting the

simulation model, is required. Three different criteria (objec-

tives) to allocate the waste load to three dischargers, which

have controversial preferences, lead to the use of the game

theory instead of conventional optimization approaches.

A stochastic simulation-optimization process was run

applying MOPSO optimization algorithms, and quality

simulation derived from fate and transport equations to

find undominated solutions. In the last section, the

GMCRþ model was utilized to find a stable equilibrium

for the conflict about selecting a specific scenario by three

decision makers: Department of Environment (DOE),

Municipal Waste Water (MWW), and Private Sector (PS).

The impossibility to attain one specific equilibrium through

conflict resolution caused the entrance of the judiciary; this

intervention leads to achieving one particular equilibrium

from six selected scenarios from the simulation-optimization

process. A sensitivity analysis (SA) by the PAWN method
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
(Pianosi & Wagener ) has been carried out to assess

the outputs’ sensitivity to the inputs parameters and vari-

ables uncertainty in the simulation process.

Using an integrated simulation-optimization which con-

siders all goals simultaneously to find the Pareto Front was

not done before since the previous studies usually use two

separated simulation-optimization process considering two

goals (Burn & Yulianti ; Feizi Ashtiani et al. ). In

this article, an integrated model was set up that considers

the uncertainty of all parameters.

How to sum up with the obtained output series from

stochastic simulation-optimization reliably and flexibly,

whether the median, average, or any other statistics should

be used, was one of the difficulties which led authors to

use a risk-based index: FRVS. The way sensitivity analysis

is used for three intended functions output was another

challenge, which forced us to run a separate simulation

optimization process that uses standard violation function

as a substitute function for FRVS to assess the output sensi-

tivity to the inputs. According to existing decision makers

and status, the conflict did not lead to a single stable equili-

brium; thus, an arbitrator interferes with the conflict

resolution process and is forced to omit some of the avail-

able scenarios to achieve a unique stable equilibrium.

The current article includes four main sections: intro-

duction, methodology, results, and conclusion. The

introduction section comprises a summary of works done

in the field of WLA. The methodology section has eight sub-

sections. The proposed model is the first subsection of this

part; four different objective functions are presented and

discussed. The optimization algorithm, simulation-optimiz-

ation model, sensitivity analysis are the next subsections.

At the end of this section, the PAWN method – which is

used for sensitivity analysis – conflict resolution and the

case study are described in detail. The third section, which

is named results, covers the simulation-optimization, con-

flict resolution, and sensitivity analysis results. At the end

of this article, a conclusion will be presented.
METHODOLOGY

In this section, four objective functions, optimization

algorithm, uncertainty analysis, simulation-optimization,
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sensitivity analysis, PAWN method, and conflict resolution,

are discussed, and finally, the case study used to apply the

methodology on is described. As depicted in Figure 1, the pro-

posed model to WLA is made up of three parts: simulation,

optimization, and conflict resolution. In the first section, par-

ameters and variables used to solve the problem are defined.

These are collected from official reports and previous studies.

It is vital to determine the acceptable range for data by using a

literature review and field study for variables. Although con-

sidering the seasonal uncertainty and extreme events is

noteworthy and helps to have a cost-effective allocation, the

lackof precise data series leads to consider theworst situation

that covers all plausible conditions. The worst situation for

water quality issues is the lowest flow, defined by the 7Q10

method and the highest temperature.

The riverwater quality simulationwill be run in the deter-

ministic mode. To define sensitive parameters and variables,

a sensitivity analysis of water quality simulation was carried

out, and sensitive inputs reassessed to be at their correct,

acceptable range. In the optimization section, first of all, a

stochastic simulation-optimization will be run, and optimal

removal percent defined. The undominated surface (Pareto

Front) of solutions will be depicted based on the triple objec-

tive functions which try to be achieved. The generated Pareto

Front presents the feasible space for the problem’s answer,

and each point on this surface that will be selected has

equal worth in comparison to the other points on this surface.

In the next step of this section, six scenarios will be chosen

from 100 scenarios, which generate Pareto Front, and each

of these points contains removal percent for each discharger.

Finally, a stochastic simulation model will be run against 100

selected scenarios of removal percent to define the value for

violating standards from chosen scenarios.

In the last section of the proposed methodology, a con-

flict resolution approach will be used to select the most

acceptable scenario by stakeholders who are called players

in this method. After defining players and their preferences

based on the six selected scenarios, the impossible states and

status quo will be set for the conflict resolution model.

Stable equilibriums will be defined by analyzing the game.

If there was no stable equilibrium, the third-party intervenes

in the conflict as an arbitrator and imposes its preferences

on the game to lead to a sole stable equilibrium and put

an end to the conflict.
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Objective function

Three objectives have been considered to allocate waste

load for this river in stochastic mode. In the deterministic

mode, one of those objectives will be replaced by a fourth

function based on the reasons that will be presented in

the following parts: (1) minimizing amount of violation

from the national standard of water bodies contamination

concentration (standard violation) (Equation (1)), (2)

minimizing total cost for wastewater treatment and

violating standard penalties (Equations (10)–(13)), and

(3) minimizing the inequity index (Equation (14)) are

used in a deterministic way, and in addition to the first

two, (4) minimizing the FRVS (Equation (15)) had

been used instead of minimizing the violation of the

national standard in the stochastic model. The equations

used in the simulation process can be found in the next

sections.
Standard violation

In this article, the objective of shielding water bodies’

quality is to retain the BOD level under a predefined stan-

dard – the Iranian standard of discharge to surface water.

In order to estimate the allowable level of BOD for dis-

chargers, it is essential to use fate and transport

equations for BOD to observe predefined criteria under

different scenarios. Equations had been applied to esti-

mate the decomposition of BOD and change in the

dissolved oxygen (DO) level in the river system. Based

on these equations, the standard violation will be esti-

mated by Equations (6) and (9) will be used to calculate

DO at the intended location.

Minimize vj (1)

ri ∈ rsi ∀i (2)

Subjected to:

vj ¼ f(r, w, Q, T , k, wqstd) ∀j (3)

L(x) ¼ L0 exp �kr
x
u

� �
(4)



Figure 1 | Methodology flowchart made up of three main parts of the proposed methodology: simulation, optimization, and conflict resolution.
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Lcheckpoint ¼ Lcheckpoint�1 exp �kr
xcheckpoint

u

� �
(5)

vc ¼ Lcheckpoint � Lstandard (6)

while o> ostandard (7)

D(x)¼
kdL0

(ka�kr)
exp �krx

u

� �
�exp �kax

u

� �� �
þD0 exp �kax

u

� �
ka ≠k

kdL0
x
u
exp �kax

u

� �
þD0 exp �kax

u

� �
ka ¼kr

8>><
>>:

(8)

o ¼ os �D (9)

In the abovementioned equations, vj is the standard

violation at point j that is set at the end of the river

path. It is a function of waste load removal percent (r)

for each discharger, waste load weight (w), flow (Q), temp-

erature (T ), reaeration and decomposition rates (k) as well

as national standards of water quality (wqstd). Cost is a

function of the fee paid by dischargers to treat their waste-

water and a penalty relating to violating water quality

standards.

L is the concentration of oxidizable matter, which

here is BOD in mg/L (expressed in oxygen level), L0 is

the initial concentration of oxidizable matter in mg/L

at the upstream, kr is the total removal rate in d�1,

which is made of decomposition rate (kd) and settling

rate (ks). ka is reareation rate (d�1), os is the concen-

tration of saturated DO (mg/L), o is the concentration

of DO in the river (mg/L), D is the oxygen deficit

(mg/L), D0 is the initial oxygen deficit (mg/L), x is the

distance from the previous discharger (m), u is contami-

nation velocity (m/s) and ostandard and Lstandard are DO

and BOD’s standards established by Iran National Stan-

dards Organization (INSO) in mg/L. Due to the

standard requirement to comply BOD and DO levels at

checkpoints simultaneously, the proposed model always

checks whether the DO concentration at checkpoint

satisfies this requirement or not. Based on INSO, the

DO concentration in checkpoints should be more than

5 mg/L.
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Cost function

One of the crucial parts of the WLA in a river system is

defining a cost function. Based on previous works carried

ou in Iran, in this paper, two distinct cost functions are

used for municipal wastewater treatment and industrial

wastewater treatment facilities ( Jamshidi et al. ;

Saberi & Niksokhan ). They used the following

equations to estimate the treatment cost of municipal

and industrial wastewater treatment. It has to be con-

sidered that for each discharger (PS or MWW),

treatment cost and penalty will be calculated and used

in the conflict resolution phase. In contrast, the total PS

and MWW’s costs and penalties have been used in the

optimization process.

cost ¼
XNS

i¼1

ci(ri)þ pi(ri) (10)

ci
$

m3: y

� �
¼ 0:434r2i þ 0:228ri þ 0:029 (11)

ci
$

m3: y

� �
¼ 0:5r3i þ 0:73r2i þ 0:09ri þ 0:02 (12)

In the abovementioned equations, ci is the cost pay for ri
removal percent treatment at the ith discharger, pi is the

penalty applied to this discharger for violating the standard

at the checkpoint. The second equation (Equation (11)) is

used to estimate the cost for municipal wastewater treat-

ment and the third (Equation (12)) belongs to industries

cost to treat their wastewater. In these two equations, ci is

the total payment for the treatment of one cubic meter of

wastewater in one year (y) in USD.

Estalaki () estimated a penalty function (Equation

(13)) based on the replacement cost method and assumed

five different combinations of BOD level that at each of

which, the BOD level at checkpoint exceeded the allowable

amount in the regulation, and eventually estimated the pen-

alty function by using regression. In the current paper, the

penalty divides equally among all of the dischargers, similar

to Saberi & Niksokhan (). In the following equation

(Equation (13)) v (mg/L) is a representative for the

amount of the violating BOD standard, which based on

the Iran national standard equals 5 mg/L in water bodies,
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and the penalty cost is determined in USD per year.

pi
$
y

� �
¼ 983:27v2 þ 37313v

i
(13)
Inequity index

Burn & Yulianti () used the inequity concept, which is a

problematic issue in WLA and is the result of a desire for

fairness in the distribution of the treatment level and the

associated costs among dischargers. They used the inequity

index (Equation (14)) to take fairness into account. A

decrease in the amount of this index indicates the improve-

ment of fairness among dischargers, and a rise shows the

decline of fairness. In this relation, NS is the number of dis-

chargers, ri and wi are removal percent and input waste

load of the ith discharger, respectively. wi can be defined

by the multiplying flows (q) of the ith discharger by its

BOD concentration. �r and �w are the average removal

level and the average input waste load for all of the NS dis-

chargers.

Inequity index ¼
XNS

i¼1

ri
�r
�wi

�w

��� ��� (14)
Figure 2 | Fuzzy membership function for water quality: μw (c) is fuzzy membership number a

parameter at the checkpoint.

://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
Fuzzy risk of violating standard

Risk assessment is used extensively in water resources man-

agement fields such as water shortage (Feng & Huang ;

Buurman et al. ), supply chain (Schaefer et al. ),

drought (Shahid & Behrawan ; Chou et al. ), cli-

mate change (Dessai & Hulme ; Ronco et al. ),

quality management (Mujumdar & Sasikumar ; Pullan

et al. ; Lin et al. ; Liu et al. ), and waste load

allocation (Rehana & Mujumdar ).

In the process of allocatingwaste load amongdischargers in

a river systemunder thedeterministic situation, thefirstobjective

function was the standard violation, vj. To consider the uncer-

tainty of variables and parameters in stochastic mode, instead

of vj, the FRVS concept (Ghosh & Mujumdar ) was used

for risk minimization in water quality control of the river

system at the checkpoint. In their proposed equation (Equation

(15)), μw(c) is the fuzzy membership function of water quality

related to the concentration of water quality index or c, here is

BOD, cmin and cmax are the minimum and maximum concen-

tration levels of BOD, respectively. p(c) indicates the

probability of occurrence of concentration of c mg/L at the

checkpoint and perch between zero to one. Since the standard

for BOD concentration at the checkpoint is 5 mg/L, Figure 2

depicts the proposed fuzzymembership function and (Equation
nd range zero to one, and BOD is the concentration of the biochemical oxygen demand
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(16)) indicates its equation. If the BOD concentration at check-

point exceeds than 8 mg/L, the fuzzy membership number

(μw(c)) is one. If BOD is less than 5 mg/L, then μw(c) is zero.

In the case where the BOD concentration at the checkpoint is

in the range of 5–8, the μw(c) will be between zero and one.

The FRVS value declares the risk that BOD or any contami-

nation level proceeds at the predefined level at the checkpoint

due to the waste load discharged to the system. FRVS with a

low value presents a lower risk for water quality. While zero

FRVS is representative of a situation in which the river will not

experience any violating from the predefined standard, FRVS

equals 1 indicates that the situation at which the BOD level

exceeds the allowable level, is inevitable. Therefore, to decrease

this risk, either the probability of violating the standard or the

level of this violation should be reduced.

FRVS ¼
XCmax

Cmin

μw(c) p(c) (15)

μw(c) ¼
0 BOD< 5

1
3
(BOD)� 5

3
5< BOD< 8

1 BOD � 8

8><
>: (16)

Optimization algorithm

The use of evolutionary algorithms for multi-objective

optimization problems has been increased and has led to

the development of various algorithms; NSGA-II (Deb

et al. ), PAES (Knowles & Corne ), microGA

(Coello & Pulido ), and MOPSO (Coello et al. )

are some of this evolutionary multi-objective optimization

algorithms.

Particle swarm optimization (PSO) is a single objective

optimization algorithm inspired by the choreography of a

bird flock. It was developed for multi-objective issues and

has been used in a wide range of problems such as multipur-

pose multi-reservoir operations (Fallah-Mehdipour et al.

), the study of ship’s principal parameters (Lei ),

chemical engineering (Taha et al. ), and textiles (Taheri

et al. ). It is essential to use an optimization algorithm

coupled with the simulation model to minimize the total

cost of the system as well as another two objectives. The

MOPSO model had been used since it is easy to implement

and use, and its efficiency had been proven in some of the
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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studies which were carried out in different fields (Coello

et al. ; Goudos & Sahalos ; Durillo et al. ).

The structure and principle of the MOPSO algorithm can

be found in Coello et al. ().
Uncertainty analysis

Outcomes or events which cannot be predicted with cer-

tainty are often called risky or uncertain. The term ‘risk’ is

usually reserved to describe situations where probabilities

are available to explain the likelihood of various events or

outcomes. If the probabilities of multiple events or outcomes

cannot be quantified, or if the events themselves are unpre-

dictable, some would say the problem is one of uncertainty,

and not of risk (Loucks et al. ). Uncertainty and associ-

ated terms such as error, risk, and ignorance are defined and

interpreted by different authors, see Walker et al. () for a

review.

Refsgaard et al. () adopted a subjective interpret-

ation of uncertainty based on Klauer & Brown’s ()

definition in which the degree of confidence that a decision

maker has about possible outcomes and/or probabilities of

these outcomes is the central focus. Thus, according to the

definition, a person is uncertain if s/he lacks confidence

about the specific outcomes of an event. Reasons for this

lack of confidence may include a judgment of the infor-

mation as incomplete, blurred, inaccurate, unreliable,

inconclusive, or potentially false. Similarly, a person is cer-

tain if s/he is confident about the outcomes of an event. It

is possible that a person feels certain but has misjudged

the information (i.e. his/her judgment is wrong).

Loucks et al. () described two important classifi-

cations for uncertainty, where the first one divides

uncertainty to knowledge uncertainty, decision uncertainty,

and natural variability. In the second classification, they

defined them as follows:

1. Informational uncertainties, which are made of impreci-

sion in specifying the boundary and initial conditions as

well as imprecision in measuring observed output vari-

able values.

2. Model uncertainties, which are made of the uncertain

model structure and parameter values, as well as the

variability of observed input and output values over a
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region smaller than the spatial scale of the model. The

variability of observed model input and output values

within a period shorter than the time scale of the

model and errors in linking models of different spatial

and temporal scales are also made model uncertainties.

3. Numerical errors or errors in the model solution algor-

ithm are specific sources of uncertainty.

While uncertainty analysis examines the lack of knowl-

edge about the real value of model parameters, sensitivity

analysis (SA) attempts to distinguish the ordinal or cardinal

rank of variables’ effects on changing output functions.

Uncertainty can sometimes be reduced through further

study, and by collecting additional data. Uncertainty analy-

sis tries to determine the characteristics of different

model’s inputs and output distributions as well as functions

of those random output variables that are performance indi-

cators or measures. There are many tools and methods

developed to take uncertainty into account. Refsgaard

et al. () listed 14 different methodologies and tools suit-

able for supporting uncertainty assessment and their

guidance to the applicability. Data Uncertainty Engine

(DUE) (Refsgaard et al. ), Error Propagation Equations

(e.g. Mandel ()), Expert Elicitation (e.g. Spetzler & Stael

von Holstein ()), Inverse Modelling (parameter esti-

mation, freeware like PEST (Doherty ) and UCODE

(Poeter & Hill )), Monte Carlo Analysis (free software

packages like @risk (Corporation ) and SimLab (Saltelli

et al. )), NUSAP (Funtowicz & Ravetz ; Van der

Sluijs et al. ), and Uncertainty Matrix (Janssen et al.

; Walker et al. ) are among these methodologies

and tools.

This article used SAFE Toolbox (Pianosi et al. ) and

embedded methods for sensitivity analysis to take uncer-

tainty modeling into account. Since the first phase of

sensitivity and uncertainty analysis are both generating a

large number of input from their acceptable range and

their second phase is evaluating the generated inputs against

fitness function (objective function), two initial steps of

PAWN method code were used to generate input variables

and parameters in their acceptable range and evaluate

them. At the final phase, the output generated through the

objective function calculated by the previous step will be

used to generate three objective functions distributions.
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
The average statistic of cost and inequity index distribution,

as well as the FRVS as a sole value, will be assessed in the

optimization process.
Simulation-optimization

Based on the suggestion given by Nikoo et al. () to

take uncertainty into account in the simulation model,

Q, BOD concentration, and temperature of upstream,

tributaries and dischargers, as well as Ka and kr, which

include 76 parameters and variables, will be considered.

A set of 100 series of random ri are generated, i.e. 100

different values for r1, r2, r3,…, and r12 in the range 0–1. A

set of 76 input parameters and variables will be generated

randomly from their acceptable range to calculate three

output values for cost, inequity index, and standard viola-

tion. Therefore, in the initial phase, there are 100

undominated solutions in the repository, each of which rep-

resents a series of ri (r1, r2, r3,…, and r12) and have three

values for the triple abovementioned objective function.

In the second phase, a new set of 100 series of ri is

generated randomly and evaluated against objective

functions by the MOPSO algorithm. If some of these

new series of ri dominate any of the past 100 series, it will

substitute the old and dominated ones. To take the uncer-

tainty of variables and parameters into account in the

simulation-optimization process for each set of 100 different

ri, 200 different series of variable and input parameters

were generated by the Latin-Hypercube method based on

a normal distribution from their allowable space. Thus, for

200 different sets of inputs, which were generated by

Latin-Hypercube and 100 sets of ri that were generated by

MOPSO in the previous step, the simulation method gives

three sets of 200 output for each of ri series, so for 100 differ-

ent ri there are three distributions, each of which has a set of

200 numbers.

These 200 numbers lead to a probability distribution for

each of the triple objectives. To assess each set of 100 ri with

the previous set, which is in the repository, the MOPSO

compares the average of cost and inequity index and the

FRVS of 100 new ri with the prior set of ri in the repository.

This process will repeat 500 times to achieve 100 different

sets of undominated ri.
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Eventually, at the end of 100,000 runs of the simulation-

optimization process, an undominated surface will be gener-

ated that is made of 100 sets of undominated ri. Each of these

points has a coordinate of three values: cost, inequity index,

and FRVS. The first and second values are the average of a

distribution made of 200 values. It is essential to indicate

that each of these 100 points on the undominated surface,

which is a Pareto Front, has the same worthiness, and all of

them are optimal based on three objective functions.

One may use MCDM to select some of these optimal

values, but authors use game theory to choose one distinct

point which leads to a set of ri, those twelve dischargers

are required to treat their wastewater up to this level and

then empty to the river.

Sensitivity analysis

Sensitivity analysis attempts to determine changes in out-

comes values that are caused by changes in inputs. In

other words, sensitivity analysis aims to comprehend the

extent of change in output related to the change in inputs.

It will evaluate the importance of uncertainty or inaccuracy

of the model’s inputs for the modeling or decision-making

process. Sensitivity analysis could determine the change in

system’s optimal efficiency regarding the change in different

parameters and also could determine how an optimal

decision would change due to changes in the levels of

resource constraints or desired outputs. Various techniques

are developed to determine the sensitivity level of a model’s

outputs regarding a variety of input values. Most methods

examine the effect of changing the value of a single par-

ameter or input variable by taking into account the

remaining parameters or inputs at a constant value. Sensi-

tivity analysis could also be developed to investigate the

composite effects of multiple sources of error (Loucks

et al. ).

Sensitivity analysis is made up of three fundamental

phases, which can be summarized as: (1) generation of

input samples through their acceptable range; (2) model

assessment for sets of the generated input value; and (3)

post-processing to analysis input and output samples to esti-

mate the sensitivity index (Pianosi & Wagener ).

Factor prioritization (FP), factor fixing (FF) or screen-

ing, and factor mapping (FM) are three primary purposes
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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of the sensitivity analysis. The relative ranking of the

model inputs contribution to output uncertainty is the

aim of FP, determining the inputs that have no contribution

to output uncertainty is the aim of FF, and discovering the

regions in the inputs space that create specific output

values is the aim of FM (Saltelli et al. ). FP and FF in

sensitivity analysis are carried out by using the sensitivity

index – a synthetic index quantifies the relative contri-

bution to output uncertainty from each input. In a case

where a parameter’s sensitivity index value is zero, this par-

ameter does not have any contribution to the output

uncertainty, and wherever this index obtains a more signifi-

cant value, expected parameters have a more substantial

contribution to the output sensitivity (Pianosi & Wagener

).

Four main categories can be expressed for the sensitivity

analysis as: (1) local sensitivity analysis and global sensi-

tivity analysis; (2) mathematical, statistical and graphical;

(3) screening and refined; and (4) qualitative and quantitat-

ive. Song et al. () compiled a summary table of these

basic categories for the sensitivity analysis methods, which

contain descriptions, characteristics, and application cases

of them as well as summary definitions of sensitivity analysis

in the different fields. In a regional sensitivity analysis, the

uncertainty caused by the change in input values around a

specific point such as the average will be defined. General

sensitivity analysis will determine the change in input

values within the entire feasible space; this definition is

also correct if used for outputs, which means it could inves-

tigate either entire feasible space or a specific area of an

output (Pianosi & Wagener ).

Global sensitivity analysis methods are usually rec-

ommended in hydrological modeling applications because

they have certain advantages compared with the local sensi-

tivity analysis methods. The elementary effects test (EET, or

Morris method (Morris ), regional sensitivity analysis

(RSA, Spear & Hornberger ; Wagener & Kollat ),

variance-based sensitivity analysis (VBSA, or Sobol’

method, e.g. Saltelli et al. ()), the Fourier amplitude sen-

sitivity test (FAST by Cukier et al. ()), dynamic

identifiability analysis (DYNIA by Wagener et al. ())

and a novel density-based sensitivity method, PAWN, by

Pianosi & Wagener () are embedded in the SAFE Tool-

box (Pianosi et al. ).
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Global, quantitative, model-independent, unconditional

on any assumed input value, easy to interpret, easy to com-

pute, stable, and moment independent are those features

which a sound sensitivity analysis index should satisfy (Liu

& Homma ). While variance-based sensitivity indices

satisfy all the above features, but the last one, the PAWN

method, meets all features (Pianosi & Wagener ).

PAWN method

In this article, the authors use the PAWN method (derived

from the names of Pianosi andWagener) to perform sensitivity

analysis. PAWN is a method for global sensitivity analysis and

its central idea is to characterize output distributions by their

cumulative distribution functions (CDF), which are easier to

derive than probability distribution functions (PDFs). This

method uses the sensitivity index to define outputs’ sensitivity

to inputs variability. SAFE toolbox and PAWN can use differ-

ent methods such as Latin-Hypercube (McKay et al. ) and

one-factor-at-a-time at the first phase to generate random input

series. PAWN makes an N*M matrix of input values within

their acceptable space, which contains N different values for

M model inputs. In the second phase, a series of N values

for M different input parameters and variables will enter the

simulation model to calculate a series of N values for Y out-

puts. In the final phase of the process, the model’s output

series will be assessed by a sensitivity analysis method such

as Morris, Sobol’, PAWN, and so on to analyze the sensitivity

(Pianosi et al. ).

PAWN measures the distances between conditional and

unconditional CDF of outputs for a specific parameter in

which this method is trying to estimate its sensitivity

index. In the first phase of estimating this distance, selecting

all parameter and variables to calculate CDF of the output y

(Fy(y)) will be done in a stochastic manner, and every value

in the region of the allowable space of inputs has the chance

to be selected and used; this kind of CDF is called uncondi-

tional CDF. To create a conditional CDF, parameter x, the

parameter which the model tries to measure output sensi-

tivity relative to it must be set to a specific value and

selection of the other parameters and variables will be sto-

chastic (Fyjxi (y)). As one of the fundamental properties that

a ‘good’ global sensitivity index should satisfy is to be uncon-

ditional about any assumed input value (Liu & Homma
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
), PAWN uses n different values for x to estimate n con-

ditional CDFs and address this issue (Pianosi & Wagener

).

As is evident in the third box of Figure 3, there is an infi-

nite amount of distance between an unconditional and a

conditional CDF; therefore, the PAWN uses the Kolmo-

gorov–Smirnov (Kolmogorov ; Smirnov ) statistic

(KS) to calculate this length (Equation (17)). Since there

are n different conditional CDFs and each one has a specific

distance to the conditional CDF, this method uses the maxi-

mum of the KS statistic (Ti) set to declare the final result,

which is the x sensitivity index (Equation (18)). Steps in

the numerical implementation of the PAWN sensitivity

index can be found in Figure 3:

KS(xi) ¼ max
y

jFy(y)� Fyjxi (y)j (17)

Ti ¼ stat
xi

[KS(xi)] (18)

Conflict resolution

The existence of disagreement among stakeholders led to

the development of methods to address conflicts in different

fields such as social, systems engineering, psychology, and

operation research. A mathematical approach to model

the behavior of decision makers (DMs) – here called players

– on occasions where the preferences and decisions of one

player may affect the other’s preference and decision, is

known by the term ‘game theory’. Although each decision

maker has some power over the outcome, no single decision

maker has full control (Hipel & Fang ). Rationality is

the fundamental assumption of this method and means

players who are making the decisions are intelligent,

hence when they are trying to achieve distinct objectives,

they understand and take into account other decision

makers’ rationality and, accordingly, tune their preferences

based on this point (Parrachino ).

According to the scope of problems, a variety of game

theory methods have been developed and extended.

Madani & Hipel () depicted two general categories of

games and their subcategories: (1) quantitative procedures,

which include normal form, extensive form, and cooperative

game theory; (2) nonquantitative approaches which include



Figure 3 | Phases in the numerical implementation of the PAWN sensitivity index (Pianosi & Wagener 2015).
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metagame analysis and this, in turn, includes conflict analy-

sis and drama theory.

Conflict resolution, which is a subset of non-quantitative

approaches, has a supportive history of methods such as non-

cooperative game theory (Von Neumann & Morgenstern

), metagame analysis (Howard ), conflict analysis

(Fraser & Hipel ), drama theory (Howard a, b),

theory of moves (Brams ), theory of fuzzy moves (Kandel

et al. ; Li et al. ), hypergame analysis and graph

model for conflict resolution (Kilgour et al. ).

Conflict resolution has been used in different fields such

as tribal issues (Pereira & Athparia ), air traffic manage-

ment (Hwang et al. ; Hou et al. ), automated guided

vehicle (Reveliotis ), public–private partnerships (Osei-
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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Kyei et al. ) and so on. In the case of water resources

management, this method was used in both interstate

(Eleftheriadou & Mylopoulos ; Mianabadi et al. ;

He et al. ; Tayia ) and intrastate disputes (Amakali

; Schlager & Heikkila ), specifically for waste allo-

cation (Karamouz et al. ).

Kinsara et al. () introduced the fundamental steps of

GMCR as modeling and analysis (Figure 4). Determining the

DMs, all possible options, feasible state, allowable state tran-

sition, and relative preferences are the first step’s aims. On

the other hand, ascertaining the possible equilibria or out-

comes of the conflict under a common stability definition

is the purpose of the analysis step. The difference in con-

cepts of stability definition refers to the difference in



Figure 4 | The basic procedure of applying the GMCR methodology to a real-world

conflict (Kinsara et al. 2015).
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human behavior in dealing with strategic risk and their

insight into the future. Four common stability definitions

are Nash stability (R) (Nash , ), general meta-

rationality (GMR), symmetric meta-rationality (SMR)

(Howard ), and sequential stability (SEQ) (Fraser &

Hipel ). Three models have been developed for

GMCR: GMCR I, GMCR II, and GMCRþ. While the

GMCR I (Hipel et al. ) model lacks the interface, it

allows for the implementation of the conflict modeling

and analysis. GMCR II had an interface and allowed inter-

preting and analyzing the results. Due to the introduction

of the inverse graph model for conflict resolution concept,

the GMCRþ model was introduced by Kinsara et al. ().

To analyze conflict in the GMCRþ model, infeasible

states must be omitted, preferences prioritized, the direct

ranking should be done, and the reachability matrix created.
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
Preferences prioritization is a process that can make a list of

players’ (DMs’) preferences based on their payoffs from cor-

responding states. Weighing is used by the GMCRþ for

preferred states of every single DM and also presents

manual prioritizing in which users could sort DMs preferred

states manually (Kinsara et al. ).

Sakamoto et al. () showed that in the cases where a

stable equilibrium is not achieved, third-party intervention

could alter the game status. It can play different roles: chan-

ging preferences and priorities of other decision makers

(coordinator), leads other players to exclude some of their

preferences (the arbitrator), and arrange for relevant parties

to come to the negotiation table. Zanjanian et al. () indi-

cated that the entrance of the judiciary as an arbitrator in

Iran could lead to a stable equilibrium.

Case study

The proposed methodology was applied to the Sefidrood

river in Gilan province, in northern Iran, to assess its appli-

cability and efficiency. This river is 114.95 km length from

the Sefidrood Dam outlet to the river meadows at the Cas-

pian Sea. The river is divided into nine reaches according

to its hydraulic characteristics. Twelve industries and

municipal wastewater are discharging to the river. In this

study it is supposed that each discharger uses its facilities

to treat wastewater. Figure 5 depicts the location of Sefi-

drood and three tributaries that join the mainstream of

this river: Tootakbon, Tarikrood, and Zilakirood.
RESULTS

This section provides the results of different processes and

models that are used in the proposed methodology in three

subsections. In the first subsection, simulation-optimization

results are presented, then the results of sensitivity analysis

are described, and ultimately, the final solution for the

WLA is presented through a conflict resolution subsection.

Simulation-optimization

One hundred undominated solutions, demonstrated in

Figure 6(a), were obtained through the stochastic



Figure 5 | Case study: Sefidrood river and three tributaries discharging to it are located at Guilan Province in northern Iran.
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simulation-optimization model, which used MOPSO as

an evolutionary optimization algorithm. Figure 6(b)–6(d)

display the undominated solution in a 2D view from differ-

ent perspectives. Six scenarios (Table 1) were selected

based on the most distributed state according to the three

axes, which are objective functions.

To obtain a comprehensive view of the alteration of

the outputs of objectives functions, Figure 7 depicts the

normalized values of the outputs in the range of zero to

one. In this chart, the decline in the amount of one
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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objective does not necessarily lead to a decrease in the

amount of the other. For the S1 scenario, the inequity

index is at the highest level, while FRVS and cost values

are around the median in their allowable ranges. Cost func-

tion has the highest level in the S3 scenario, while this

scenario has the lowest value in its acceptable range for

FRVS and a low value for the inequity index. The S4 scen-

ario, which is representative of a highly risky situation, has a

low inequity index and a median cost. Nevertheless, the

decline of FRVS will lead to an increase in the system’s cost.



Figure 6 | Pareto Front derived from the stochastic simulation-optimization process. (a) 3D view of the position of 100 undominated solutions (red dots) and six selected scenarios (black

star named from S1–S6) for conflict resolution. (b) Solutions mentioned above in a 2D view, where its axes are inequity index versus FRVS. At the same time, (c) and (d) are a 2D

view of FRVS versus cost and cost versus inequity index functions, respectively. Please refer to the online version of this paper to see this figure in color: http://dx.doi.10.2166/

hydro.2020.181. (Continued).
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Sensitivity analysis

In the current study, all 76 parameters and variables used in

the stochastic simulation optimization process were used to

be assessed in the sensitivity analysis. A critical point that

should be considered is that instead of analyzing the
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
FRVS, authors used standard violation as an objective func-

tion to assess its sensitivity; the reason is related to the

nature of these two different functions, despite their simi-

larity. The second phase of sensitivity analysis leads to the

generation of a series of N values that could be used to

make a CDF or PDF, hence comparing the different CDFs

http://dx.doi.10.2166/hydro.2020.181
http://dx.doi.10.2166/hydro.2020.181


Figure 6 | Continued.
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or PDFs of outputs estimated from different input leads to

carrying out the sensitivity analysis.

In uncertainty analysis, a considerable number of inputs

will be entered into the model to have a large number of

output values. These values in turn will be used for
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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generating CDFs or PDFs of model outputs. The definition

of FRVS (Equation (15)) indicates that the final answer of

this function is a result of assessing the occurrence prob-

ability of different concentrations that could be measured

at the checkpoint and is a scholar value instead of a series



Table 1 | Removal percent of twelve dischargers (D1–D12) in six scenarios (S1–S6) and

their related outputs for the intended objective function

Discharger

Removal percent in selected scenarios

S1 S2 S3 S4 S5 S6

D1 0.84 0.16 0.94 0.28 0.38 0.53

D2 0.06 0.81 0.91 0.66 0.28 0.69

D3 0.68 0.48 0.61 0.57 0.49 0.60

D4 0.35 0.75 0.92 0.67 0.19 0.80

D5 0.09 0.43 0.42 0.45 0.24 0.43

D6 0.57 0.39 0.41 0.36 0.39 0.40

D7 0.34 0.37 0.63 0.49 0.47 0.59

D8 0.52 0.29 0.51 0.38 0.57 0.40

D9 0.38 0.81 0.84 0.71 0.18 0.79

D10 0.09 0.35 0.16 0.37 0.51 0.25

D11 0.43 0.18 0.62 0.40 0.59 0.45

D12 0.25 0.51 0.81 0.61 0.62 0.77

Inequity index 17.68 9.63 11.78 11.19 14.65 13.11

Cost *106 ($/y) 1.59 2.36 2.47 1.95 1.30 1.91

FRVS 10.80 14.01 0.04 15.9 11.29 6.72
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of numbers. One has to use the model output’s PDF to cal-

culate the fuzzy risk. In contrast, in the second phase of

sensitivity analysis one has to reach a PDF or CDF, and

this is not possible, hence instead of using FRVS, which is
Figure 7 | Normalized values of the outputs for objective functions: Blue pillars represent the in

online version of this paper to see this figure in color: http://dx.doi.10.2166/hydro.2

://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
the final outcome of uncertainty analysis and is a scalar

value, one has to use a function whose outcome of uncer-

tainty analysis will be a series of scalar values instead of a

single scalar value. Due to this point, a standard violation

function, which has a type the same as p(c) in the FRVS

(Equation (7)), had been used. The results of the uncertainty

analysis are depicted in Figures 8–10. In these figures, Q, T,

and BOD represent the flow, temperature, and biochemical

oxygen demand of different dischargers flow to the riverine

system, which includes industries, municipal wastewater

treatment facilities, and the rivers tributaries: the upstream

of Sefidrood, Tootakbon, Tarikrood, and Zilakirood. The

subscripts of the above-mentioned parameters and variables

refer to the number of each discharger; for instance, among

them, Q1 and Q12 are the discharge of the first and twelfth

dischargers, respectively, which can be industry or munici-

pal wastewater dischargers. In these figures, u, ka, and kd

are stream velocity, reareation rate, and deoxygenation

rate in river’s nine reaches, respectively.

The sensitivity analysis result (Figure 8) shows that stan-

dard violation has the most sensitivity to upstream flow

(Qupstream), BOD concentration of the ninth discharger,

BOD concentration of Tarikrood, BOD concentration of

Zilakirood, and Tarikrood flow, respectively. Due to the

direct effect of flow (Q) on the concentration of BOD in

the riverine system, this objective function has the highest
equity index, striped pillars represents cost, and gray pillars show FRVS. Please refer to the

020.181.

http://dx.doi.10.2166/hydro.2020.181


Figure 8 | Sensitivity index of 76 inputs for the standard violation function.

Figure 9 | Sensitivity index of 76 inputs for the cost function.

832 B. Andik & M. H. Niksokhan | WLA under uncertainty using game theory and simulation-optimization Journal of Hydroinformatics | 22.4 | 2020

Downloaded fr
by guest
on 24 April 202
sensitivity to the river’s flow, which contains upstream,

Tarikrood, Zilakirood, and Tootakbon tributaries flow. The

relatively high sensitivity of the standard violation to the con-

centration of the ninth discharger is due to the vicinity of this

discharger to the checkpoint and its higher Q in contrast to
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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other dischargers. At a constant concentration of the BOD,

the higher the Q of a discharger leads to the entrance of

the higher amount of waste load to the river.

In the case of the cost function, the results of sensitivity

analysis (Figure 9) show that this function has the highest



Figure 10 | Sensitivity index of 76 inputs for the inequity index function.
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sensitivity to upstream flow (QUpstream), BOD concentration

of Tarikrood tributary, BOD concentration of ninth dischar-

ger (BOD9), and its flow (Q9), respectively. The reason for

this ordering is the same as the reasons mentioned above

for standard violation.

Based on the sensitivity index driven from the PAWN

method, which is depicted in Figure 10, the inequity index

function has the highest sensitivity to the BOD concen-

tration and flow of the ninth discharger’s (BOD9 and Q9),

the seventh discharger’s flow (Q7), and the ninth dischar-

ger’s flow (Q9), respectively. The order of the parameters

sensitivity index indicates that after the previous parameters,

the function has the most sensitivity to the different dischar-

gers’ Q and BOD concentrations in the next place. It should

be noticed that the upstream discharge (QUpstream) has the

least sensitivity index, among other parameters and vari-

ables. Since the definition of inequity (Equation (14)) is

just dependent on the amount of waste load (w), and

removal percent (r), such ordering of the sensitivity index

can be justified.

According to the fact that the sensitivity index (the aver-

age of Ti index) is a dimensionless value, if the average of

this index is calculated, it will reveal that the proposed

methodology has the most sensitivity to upstream flow

(QUpstream), the ninth discharger’s BOD concentration and
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
flow (BOD9 and Q9), and the seventh discharger’s flow

(Q7). It has also revealed that the methodology has less sen-

sitivity to the reareation rate at the second reach of the river.

An overall view of the sensitivity analysis for all 76 inputs is

displayed in Figure 11.

To have a comprehensive view about the variability of

output’s CDF, Figures 12 and 13 show the variability of

output’s CDF based on the change in velocity of the

seventh reach of the river (u7) and upstream flow

(QUpstream) as the most and the least effective inputs on

the standard violation function, respectively. In these

figures, the red line indicates the unconditional CDF of

output values while the gray lines depict the conditional

CDF. A black and white spectrum exists at the right side

of the graphs, which is an indicator of velocity in the

seventh reach in Figure 12 and upstream flow (QUpstream)

in Figure 13, both at the conditional mode. It can be

understood from Figure 13 that as the upstream flow

receives a more significant value at the conditional

status, Q¼ 0.551 CMS, the standard violation will lead

to the smallest value. This CDF, the first gray CDF of the

graph from the left side, indicates the lowest variability

of CDF for standard violation. On the other hand, the

smallest amount of upstream discharge, Q¼ 0.1766

CMS, causes the most violations from a specified



Figure 11 | Sensitivity index of all parameters and variables (76 inputs) for three objectives.

Figure 12 | Variability of standard violation CDF against variability in the velocity of the seventh reach of the river. Please refer to the online version of this paper to see this figure in color:

http://dx.doi.10.2166/hydro.2020.181.
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standard; the CDF for this conditional output is drawn up

in black color at the end of the graph.

Conflict resolution

Two of the intended objective functions, cost, and FRVS, are

in contrast to each other, so that achieving better perform-

ance for one of them requires getting away from the best
om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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performance for another one. Reducing the FRVS needs

higher treatment percentage, and hence increases dischar-

gers’ costs, therefore reducing the system’s total cost will

lead to a higher FRVS amount.

Two different entities rule water management issues in

Iran. The Ministry of Energy (MOE) is responsible for sup-

plying water to all consumers as well as providing

wastewater facilities. The Department of Environment

http://dx.doi.10.2166/hydro.2020.181


Figure 13 | Variability of standard violation CDF against variability in upstream discharge. Please refer to the online version of this paper to see this figure in color: http://dx.doi.10.2166/

hydro.2020.181.

Table 2 | Players’ payoffs for six scenarios; MWW and PS look at their cost and penalty

($/y) and DOE focus on FRVS

Scenarios

DMs’ payoffs

MWW ($/y) PS ($/y) DOE (FRVS) Inequity index

S1 1,304,698 286,711 10.80 17.68

S2 2,279,411 77,457 14.01 9.63

S3 2,291,446 182,080 0.04 11.78

S4 1,860,174 89,264 15.90 11.19

S5 1,137,180 160,932 11.29 14.65

S6 1,797,812 110,790 6.72 13.11

Table 3 | Players’ preferences

Preference no.

Players (DMs)

DOE MWW PS

1 S3 S5 S2

2 S6 S1 S4

3 S1 S4 S6

4 S5 S6 S5

5 S4 S2 S3

6 S2 S3 S1
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(DOE) is liable for protecting water bodies’ environmental

quality. Regulations issued by DOE are not mandatory for

MOE because of institutional problems, so there is a conflict

among these parties on water quality. The Municipal Waste

Water (MWW), as an affiliation of MOE, specifically focuses

on wastewater affairs, tries to reduce its costs of construc-

tion and operation of wastewater treatment facilities and

thus decrease the treating of wastewater’s cost. Whereas

the Iranian government is responsible for building and oper-

ating wastewater treatment facilities, the DOE and its

affiliate, MWW, are its representatives.

On the other hand, DOE only considers declining waste

load discharged from municipal and private wastewater

treatment facilities to the water bodies to increase water

quality, specifically in checkpoints.

The third player in this conflict is the private sector (PS),

which is representative of a coalition of industries surround-

ing the river and owned by the non-governmental sector.

This player or DM aims to maximize its profit or minimize

its cost; thus, it has specific preferences, which would be

in contrast to other players’ preferences. Table 2 reveals

the player’s payoffs for various scenarios obtained from

the simulation-optimization section and summarized in

Table 1. The differences among scenarios’ payoffs for each

one of the players show the differences in their preferences.

Players’ preferences, which are provided in Table 3,

based on their payoffs and interests, introduced to the

GMCRþ model. DOE tries to reduce the FRVS, so its
://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
choices are sorted based on the minimum amount of this

objective up to the maximum ones. MWW and PS both

also try to reduce their costs; thus, they will sort their prefer-

ences based on the cost that they must pay for scenarios.

http://dx.doi.10.2166/hydro.2020.181
http://dx.doi.10.2166/hydro.2020.181
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In the GMCRþ model, a player should decide about an

option clearly and answer explicitly about the selection of

an option: Yes or No. The combination of scenarios

(options) selected by players creates a state. For instance,

one option can be S3, S5, and S2 which means the DOE

selects scenario number S3, MWW selects S4, and even-

tually, PS chooses S2. The presence of three players and

six options for each one lead to 23�6 ¼ 218 ¼ 262, 144

states in this conflict. Defining impossible states reduced

the entire states to 216. One player does not decide about

a specific option in a state (null status), one player does

not select any options in a state so that it selects No for all

options and eventually, selecting more than one choice in

a state are impossible states.

Analyzing conflict stability leads to 125 stable equili-

brium states, in which the status quo is one of them. In

the status quo, which is representative of the worst situation

of the river in terms of quality, dischargers treat waste load

as little as possible to pay the lowest cost on waste load treat-

ment. It should be noted that GMCRþ finds stable

equilibriums or solutions only based on equilibrium defi-

nitions and does not consider the status quo. After finding

stable equilibriums, the status quo should be selected

among states that exist in the model and detect final stable

equilibrium or ultimate solution of conflict by tracing a

tree graph. In the status quo of this conflict, MWW will

pick option S5; PS will select S2, and it is inevitable for

DOE to choose S4. The GMCRþ model numbered this

state as 64. Analyzing the extracted graph (Figure 14) from

the model reveals that, based on the current status quo,

the conflict will not obtain a single stable equilibrium.
Figure 14 | Graph of players movement from the initial status quo to states which have stable

see this figure in color: http://dx.doi.10.2166/hydro.2020.181.

om http://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
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In this figure, blue lines show the DOE movements,

green lines depict WWC movements, and yellow lines indi-

cate PS movements. Since each player prefers to move to a

state with more payoff for itself in comparison to the status

quo, DOE can change its selected state from state number

64 to one numbered 61, 62, 63, 65, or 66. WWC will

prefer to choose one of the state numbers 40, 46, 52, 58,

or 70 to achieve more payoff, while the best payoff for PS

will be to move to one of the states numbered 28, 100,

136, 172, or 208. By changing its selection, each player

will motivate two other players to improve their choice;

thus, the current status quo alongside the players’ prefer-

ences will not lead to a common option selection by two

other players, and a stable equilibrium will not be achieved.

For instance, PS comprehends that selecting state number

58 is in its favor; thus, select this state, but two other players

try to choose other states, which has more payoff for them in

comparison to status number 58.

The intervention of a third party was assessed to

comprehend whether it is useful to resolve the conflict.

Hence the judiciary entered the conflict as an arbitrator

who can force players not to select specific options, includ-

ing the options with the highest FRVS and the most

significant inequity index. The judiciary will ban players

from selecting S2 and S4 as the options, with the highest

amount of FRVS and S1 as the option with the highest

inequity index.

Removing the afore-mentioned triple options causes a

change in the status quo, and selected options will move

to the nearest ones. In this state, which is representative of

the worst situation and numbered 23 by GMCRþ , MWT
equilibrium (output from GMCRþ model). Please refer to the online version of this paper to

http://dx.doi.10.2166/hydro.2020.181
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still select S5, DOE selected option will move from S4 to S5,

and finally, PS will select S6.

Analyzing the new conflict results from the entrance of

arbitrator to previous conflicts shows that all possible stable

equilibriums will decline to nine items. By considering the

new status quo, GMCRþ outputs prove PS will move from

S6 to S5, and consequently, two other players comprehend-

ing moving from S5 to another option will not increase their

payoffs, and thus they do not change their selection. This

state is named number 14 by the model. Therefore, one

movement from status number 23 to status number 14 by

PS will lead to a stable equilibrium, which is the final resol-

ution (Figure 15). Table 4 shows the twelve dischargers’

removal percent for stable equilibrium, which is the final

WLA based on the predefined objective functions and

triple decision makers’ preferences.
Figure 15 | Graph of final stable equilibrium for conflict resolution; PS move its position

from state 23 to 14, and stable equilibrium will be achieved (output from

GMCRþ model).

Table 4 | Removal percent for all dischargers in the selected scenario for waste load allocatio

Discharger D1 D2 D3 D4 D5

Removal percent (ri) 0.38 0.28 0.49 0.19 0.24

://iwa.silverchair.com/jh/article-pdf/22/4/815/715269/jh0220815.pdf
S5 will be the option in which the entrance of an arbitra-

tor causes it to be accepted by all parties of the conflict. This

option leads to a total cost of 1,298,112 USD per year and

MWW should pay 1,137,180 USD, and PS should pay

160,932 USD. Selecting this option also leads to an inequity

value of 14.65 and FRVS of 11.29.
CONCLUSION

Three objectives were considered in this article simul-

taneously to allocate waste load quotes among dischargers

located adjacent to a river. Minimizing dischargers’ cost

for their wastewater treatment, as well as the penalty for vio-

lating the standard, was one of those objectives. Fuzzy risk

of violating the standard (FRVS) was the second function,

which represents the amount of the risk that may exist in

the riverine system to infract the predefined BOD level at

the checkpoint due to the wastewater discharged. The

inequity index function was considered to increase fairness

among dischargers which belong to the Municipal Waste

Water treatment facilities and private sector industries.

The allowable range of all variables is taken into account

for considering their variability and uncertainty, which

affect WLA. In the first phase, the MOPSO algorithm was

coupled to the Streeter–Phelps equation in Matlab software

to find the undominated solution surface Pareto Front. By

considering the most distribution on the feasible space for

the answer, six scenarios from 100 undominated solutions

were selected from the Pareto Front surface. Although the

performance of solution procedure can be impressive theor-

etically, its low capacity to implement in real-world cases

leads to its rejection by decision makers. Therefore, because

of the successful implementation of the game theory in

different fields, the graph model for conflict resolution

was utilized to find a stable equilibrium or ultimate resol-

ution among the selected scenarios. Modeling scenarios in

the GMCRþ model indicate that three decision makers
n

D6 D7 D8 D9 D10 D11 D12

0.39 0.47 0.57 0.18 0.51 0.59 0.62
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(DOE, MWW, and PS) had not attained a single stable equi-

librium unless an arbitrator intervenes in the conflict. In this

study, a sensitivity analysis was carried out by the PAWN

method for intended functions. Its results indicate that dis-

charge of the upstream of the Sefidrood river, the case

study, has the most influence on the cost and the standard

violation sensitivity. The results also show that the inequity

index was not sensitive to the upstream discharge, it was

sensitive to discharge and the BOD level of one of the

nearest dischargers to the checkpoint. Using qualitative

approaches of game theory could compensate for the draw-

back of confining the selectable scenario for players to a

limited number of points on the Pareto Front. Instead of

using a stochastic simulation-optimization as has been

developed in this article, a robust optimization algorithm

could be used to deal with seasonal uncertainties and

extreme events and find robust solutions. Using a more

extensive range of pollution such as phosphorous and nitro-

gen in WLA, considering each discharger’s treatment cost

function and compelling the agriculture sector to take part

in reducing the discharged load to the water body, thus redu-

cing the total cost of the system, are among other extensions

for further development.
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