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Riprap incipient motion for overtopping flows with

machine learning models

Mohammad Najafzadeh and Giuseppe Oliveto
ABSTRACT
Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many

empirical equations have been proposed in the past to estimate the unit discharge at the failure

circumstance of riprap layers. However, these equations lack general impact due to the limited range

of experimental variables. To overcome these shortcomings, support vector machine (SVM),

multivariate adaptive regression splines (MARS), and random forest (RF) techniques have been

applied in this study to estimate the approach densimetric Froude number at the incipient motion of

riprap stones. Riprap stone size, streambank slope, uniformity coefficient of riprap layer stone,

specific density of stones, and thickness of riprap layer have been considered as controlling

variables. Quantitative performances of the artificial intelligence (AI) models have been assessed by

many statistical measures including: coefficient of correlation (R), root mean square error (RMSE),

mean absolute error (MAE), and scatter index (SI). Statistical performance of AI models indicated that

SVM model with radial basis function (RBF) kernel had better performance (SI¼ 0.37) than MARS

(SI¼ 0.75) and RF (SI¼ 0.63) techniques. The proposed AI models performed better than existing

empirical equations. From a parametric study the results demonstrated that the erosion-critical

stone-referred Froude number (Fs,c) is mainly controlled by the streambank slope.
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INTRODUCTION
Rock armor (commonly known as riprap) has been used in

hydraulic engineering to protect hydraulic structures such as

bridge piers, grade-control structures, bridge abutments,

culvert outlets, end sill of stilling basin, ski-jump bucket

spillways, dam embankments, and channel beds, which

are exposed to scour and erosion processes (e.g., Borah

; Froehlich ; Lauchlan & Melville ; Dey &

Barbhuiya ; Eli & Gray ; Hiller et al. ). Stability

of ripraps is a significant factor in their design. The unit dis-

charge of the overtopping flow, the gradation and shape of

riprap stones, and the bed and bank slope of waterways

highly affect the stability of ripraps (e.g., Ullmann & Abt

; Thornton et al. ; Eli & Gray ). Underestima-

tion of these effective variables may increase the possibility
of scouring or liquidation of armored rock layer. In contrast,

overestimation of these important elements increases the

cost of the project (Thornton et al. ). For instance, the

accurate estimation of the stone sizes enhances the stability

of ripraps, especially when they are vulnerable to overtop-

ping (Thornton et al. ). Hence, a large number of

studies investigated the riprap stability on steep slopes for

different hydraulic conditions, and gradation of riprap

stones (Hartung & Scheuerlein ; Abt et al. ; Wittler

& Abt ; Ullmann & Abt ; Gallegos ; Eli & Gray

; Hiller et al. , ).

In the effort to quantify the overtopping phenomenon,

many empirical equations, extracted from experimental

observations, have been proposed to estimate the unit
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discharge at the failure circumstance of riprap layer for var-

ious streambank slopes and properties of bed sediments

(Thornton et al. ). However, these equations lack gener-

alization due to the limited range of experimental variables

and hence do not extend to a wide range of hydraulic con-

ditions (Thornton et al. ; Najafzadeh et al. ).

Moreover, these empirical relationships are developed on

the traditional regression-based approaches that cannot

robustly capture the non-linear relationship between the

key variables at the incipient motion of riprap stones.

Due to the above-mentioned restrictions, artificial intel-

ligence (AI) approaches have been recently employed to

accurately estimate the riprap stone size. Najafzadeh et al.

() used evolutionary algorithm-based formulations to

predict the size of riprap stones in overtopping flows.

From their research, it was found that the utilized AI

models could provide more accurate predictions.

Recently, AI-based data classification and machine

learning methods have been employed for forecasting

groundwater table (Giustolisi ; Amaranto et al. ),

evaluation of circumstances of sewer networks (Caradot

et al. ), estimation of chlorophyll-a concentration in

water surfaces (Yajima & Derot ), prediction of water

demand for a short-time period (Antunes et al. ), esti-

mation of suspended sediment concentration in river

(Babovic ), run-off forecasting (Babovic ;

Adamowski et al. ; Meshgi et al. ), prediction of

standardized precipitation index (Komasi et al. ), shear

strength of soil (Pham et al. ), and longitudinal dis-

persion coefficients in rivers (Haghiabi ). Through

these studies, support vector machine (SVM), multivariate

adaptive regression spline (MARS), and random forest

(RF) are the most robust machine learning models which

have ever applied in solving various problems in water

engineering. Because of their remarkable advantages, these

AI models were considered. The most remarkable character-

ization of SVM is the high potential of generalizing datasets

whose number is small in the training stage and additionally

SVM does not get stuck in local optimum like artificial

neural networks. Furthermore, RF is generally fast to build

the model and has the capability to automatically select

datasets from a large number of input variables. For quite

a few datasets, RF is able to produce a highly precise classi-

fier. As a merit, MARS techniques will no longer need the
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functional relationship among independent and dependent

variables and, in addition to this, relationships given by

MARS model are additive and iterative. In the case of the

incipient motion of a riprap for overtopping flows, there

are more than 20 empirical equations obtained by exper-

imental investigations. Each empirical equation was

extracted from certain experimental conditions and limited

range of experimental variables. Khan & Ahmad ()

collected previous experimental data and presented a

multiple regression equation over all the available datasets.

Even though their equation had the highest precision in

comparison to previous empirical equations, Khan &

Ahmad () just performed the validation of their proposed

equation. Additionally, their equation was not subsequently

tested (or checked) by the new experimental datasets. On

the other hand, the accuracy level of the empirical equation

by Khan & Ahmad () was not checked. This means that

the generalization of this equation due to randomizing data-

sets/partitioning datasets into calibration (training) and

validation (testing) stages cannot be reached. During the

recent half-century, data-acquiring systems have been

employed to obtain information about some processes.

With the emergence of contemporary sciences, these kinds

of systems have shown more accurate and reliable results.

Furthermore, data acquisition systems can be automated

by advanced machines, introduced as machine learning

models, to obtain more reliable recognition of behavioral

patterns for various phenomena with engineering appli-

cations. There is no denying that the use of machine

learning models in prediction of various variables can effi-

ciently cover limitations of empirical techniques.

With this study, there is no claim to clarify the overtop-

ping phenomena in a comprehensive manner, but there is a

tendency to: (i) emphasize the limitations of the current

empirical equations; (ii) highlight the key dimensionless

variables controlling the overtopping phenomena; and (iii)

try to provide predictive models that, even though more

structurally complex, are more accurate. To the best of the

authors’ knowledge, three powerful AI models, SVM,

MARS, and RF have not been used in designing the size of

riprap stones. To all this, new contributions in terms of AI

modeling methodology are also provided in this study.

Namely, the insufficient number of reliable empirical

equations for the estimation of unite discharge at failure
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state, which is employed in the design of the riprap stone

size, can jeopardize the slope stability of bed in waterways,

rivers, and channels. It is known that regression-based

equations still have a high level of inaccuracy. More specifi-

cally, in such investigations, the results from the AI models

under study are required to be connected with the problem.

The only way to show how AI results are linked to solve the

problem consists in the investigation of AI results for con-

sistency. This implies that the recognition of general

patterns between input and output variables should be con-

ceptually investigated so that agreements between general

pattern and experimental studies (given in literature) are

recognized. In this study, it is suggested how AI models

could be reliable techniques, recognizing existing general

variation of input–output systems. Therefore, experimental

datasets from the literature are used to assess the perform-

ance of SVM, MARS, and RF techniques in the prediction

of dimensionless overtopping discharge at the riprap failure

condition. A parametric study is conducted to illustrate the

consistency of the AI models’ results in riprap designing.

Finally, results from the AI techniques are compared to

those obtained from the empirical equations.
A SURVEY OF EXPERIMENTAL AND FIELD STUDIES

Riprap design approaches are employed to keep safe various

hydraulic structures exposed to erosion. This section wishes

to present a survey of the literature studies. The original

structure of the literature models is preserved, which may

be more attractive for readers even if that means the use

of unit of measurements in the imperial and US customary

systems. In addition, the transformation of the original

formulas into different ones could cause confusion for

experts/readers to identify them properly. A basic design

method is on the basis of hydraulic calculations in order

to define flow-field properties; average size of riprap stones

by means of design curve can be found in engineering guide-

lines (Walters ). To develop engineering manuals for

fully complete appreciation of erosion caused by floods, a

wide range of experimental and field studies was conducted.

According to the literature, Olivier () investigated an

experimentally protective method to support the body of

rock-fill dam. He considered the influence of riprap stone
://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
application on seepage flow and water flow profile through

a rock-fill dam. The following empirical equation for unit

discharge at the incipient motion of riprap stone was

suggested:

qf ¼ 0:423S�1:167D1:5
50 (Gs � 1)1:5 (1)

in which, qf, S, D50, and Gs denote: unit discharge at failure

(or incipient motion) of a riprap layer, bed (or embankment)

slope, median riprap stone size, and specific density of

riprap stone, respectively. Specifically, Gs is the ratio of

the riprap stone density (ρs) to the water density (ρ). In

Equation (1), qf and D50 are in square feet over second

and feet, respectively.

Abt & Johnson () constructed a physical model with

approximately full scale in order to investigate the protec-

tion of embankments exposed to overtopping flows.

Through their experiments, slopes of embankment, which

were sheltered by means of riprap layers with median

stone sizes ranging from 1 to 6 inches, varied from 1 to

20%. They concluded that incipient motion of riprap stone

occurred at roughly 74% of the unit discharge in the failure

state. Additionally, the following equation was drawn

through their study:

qf ¼ 0:052S�0:767D1:78
50 (2)

where units of D50 and qf are in feet and ft2/s, respectively.

Sommer () proposed an empirical (dimensionless)

relationship to obtain the unit discharge at the failure state

based on the slope of embankment as:

qfffiffiffiffiffiffiffiffiffiffiffi
gD3

50

q ¼ 2:25� 2:25Sþ 0:3S�1:167 (3)

From Robinson et al.’s () study, a rock chute as a

riprap layer whose geometry is angular was designed. They

presented the following empirical equations predicting the

unit discharge at the failure condition, on the basis of the

geometric characteristics of a riprap layer:

qf ¼ D1:89
50 × 9:76 × 10�7S�1:5 S< 0:1

8:07 × 10�6S�0:58 0:1 � S � 0:4

�
(4)
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where the unit of measure for the median riprap stone size

(D50) is mm and that of qf m
2/s.

In the case of rock-fill dam spillways, Dornack ()

proposed an empirical equation to estimate Fs,c. Through

his experiments, the slope of riprap varied from 0.29 to

0.67. Additionally, D50 values were between 0.03 and

0.05 m and the riprap stones’ density ρs was equal to

2,610 kg/m3. The following relationship was recommended:

Fs,c ¼
qfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΔD3

50

q
¼ (0:649(tanS)�0:6 þ 1:082(tanS)0:4) × ( cos (α) × S)0:5

(5)

where Fs,c is the stone-referred densimetric Froude number, α is

the slope angle, S ¼ tan(α) and Δ is equal toGs� 1¼ (ρs� ρ)/ρ.

Hereafter, the current terminology of Fs,c is also in harmony

with the definition provided by Siebel ().

Later, Siebel (), on the basis of a large-scale physical

model, presented a regression-based equation to determine

the unit discharge in the overtopping circumstances as:

qf ¼ 0:447D1:5
50 S

�1:02(Gs � 1)0:5 (6)

In Equation (6),D50 and qf are in cm and L/m·s, respect-

ively. Khan & Ahmad () inferred from previous

experimental works the following regression-based equation

for the unit discharge at the riprap failure state:

qf ¼ 6:59S�1D4:54
50 C2:04

u t�2:63 (7)

where Cu ¼ D60=D10 is the uniformity coefficient of riprap

stones and t (in mm) is the thickness of riprap layer. More-

over, qf is in m2/s and D50 in mm. Then, Khan & Ahmad

() asserted that qf is a function of the physical proprieties

of the riprap stones.

With the aid of comprehensive datasets from deep

appreciation of the literature, Abt et al. () compared 21

practical formulations. From their study, a power regression

relationship has been drawn which had the capability to

compare the observed values of D50 against the predicted

ones for both the comprehensive datasets and the
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subdivided one considering a lower range (D50< 5.1 cm),

a middle range, (5.1 cm�D50� 25.4 cm), and an upper

range (D50> 25.4 cm). They found that the following

equation, proposed by Thornton et al. () considering

102 experimental datasets:

qf ¼ 7:17S�0:95D4:76
50 C1:33

u t�2:95(Gs � 1)1:42 (8)

could provide the most level of accuracy with the same units

of measurement as for Equation (7). In particular, Equation

(8) exhibited more accurate prediction than Equation (7).

Finally,Hiller et al. () conducted afield study including

a large-scale riprap layer with D50¼ 0.37 m. Also, a corre-

sponding experimental set up in scale 1:6.5 was constructed

with slope 1:1.5 (vertical:horizontal) in order to investigate

stability criterion, packing density of riprap stones, and

illustrative flow patterns. Their study revealed an interesting

similarity between field and laboratory results when consider-

ing the stone-referred densimetric Froude number Fs,c.
DATA DESCRIPTIONS

Overtopping phenomenon is basically contingent upon the

physical properties of sediments, the hydraulic gradient,

and flow discharge (Abt et al. ). Controlling unit dis-

charge in the incipient motion of riprap stones can

ameliorate occurrence of the overtopping phenomenon

and, additionally, an accurate estimation of this variable

may result in an increase of stability level of riprap layer sub-

ject to overtopping. The stability of riprap stones depends on

the maximum value of unit discharge, height of roughness,

specific gravity of water, riprap stone size, and embankment

slope (Isbash ; Hartung & Scheuerlein ; Mishra

; Abt et al. ). More specifically, according to pre-

vious experimental works, the unit discharge at failure (or

incipient motion) of a riprap layer (qf) is a function (ψ) of

bed (or embankment) slope (S), mean diameter of riprap

stone size (D50), uniformity coefficient of riprap stones

(Cu), riprap layer thickness (t), stone density (ρs), and

water density (ρ) (Abt et al. ):

q f ¼ ψ(S, D50, Cu, t, ρs, ρ, g) (9)



753 M. Najafzadeh & G. Oliveto | Riprap design by machine learning models Journal of Hydroinformatics | 22.4 | 2020

Downloaded from http
by guest
on 24 April 2024
Figure 1 provides a scheme of a riprap embankment pro-

tection exposed to overtopping flow and the description of

the main variables in Equation (9).

S, qf , and Cu are the most frequently seen variables

through empirical equations given in the literature (Abt

et al. ). On the basis of dimensional analysis, introduced

as the Buckingham theorem, Equation (9) can be expressed

as (Hiller et al. ):

Fs,c ¼
qfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΔD3

50

q ¼ φ S, Cu,
t

D50

� �
(10)

In the case of AI applications into hydraulic engineering

issues, especially in sediment transport problems, the use of

non-dimensionless parameter gave accurate estimations

rather than results obtained by dimensional variables (e.g.,

Azamathulla et al. ; Samadi et al. ; Khan et al.

; Sharafati et al. ). Furthermore, the use of Froude

number due to riprap stone conceptions is a reasonable

selection for prediction of unit discharge for a riprap layer

at the failure state, as mentioned in the literature (Siebel

).

The three dimensionless parameters on the right-hand

side of Equation (10) were used as inputs in the SVM,

MARS, and RF models. Explored ranges of the dimensional
Figure 1 | Schematic diagram of riprap stones for streambank protection.

://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
variables are given in Table 1. In this work, 102 experimen-

tal data points collected from the literature were considered.

The raw data (i.e., unprocessed data) were considered just

like measured in the experimental works. The datasets

were collected from a wide range of experimental conditions

of studies as small, large, and very large-laboratory scales,

and in Table 1 the nature of the data (e.g., laboratory exper-

iments, field experiments) related to each literature source is

given. The influence of various scales on the accuracy level

of AI approaches and empirical equations has become

ignorable. Reportedly, this issue can decrease capacity gen-

eralization of AI models’ performance, as introduced in

previous literature (Najafzadeh et al. ). The experimen-

tal dataset was divided into two parts: 75% of the data (76

data points) was used to train the AI models, and the

remaining 25% (26 data points) was utilized to test the

models. Overall, empirical equations to predict the dis-

charge at the failure state are in non-dimensional form

and, additionally, illustrative representation of the dimen-

sionless parameters against non-dimensional effective

parameter (i.e., design curve) is of high interest to engineers.

This means that non-dimensional parameters were used to

run AI models in order to wipe out the effects of input–

output scale (experimental data) on the performance of AI

models. In this way, the use of dimensionless parameters



Table 1 | Explored ranges of dimensional and non-dimensional variables from laboratory and field data considered in this study

Authors D50(cm) qf (m2=s) Cu(� ) Δ(� ) S(� ) φ(Deg) t(cm) t=D50 Fs,c

Abt et al. () 2.59–5.59 0.21–0.66 1.75–2.09 1.72 0.01–0.02 38–40 7.77–16.77 3 12.15–29.20

Abt & Johnson () 2.60–15.70 0.03–0.42 1.75–2.30 1.65–1.72 0.01–0.20 38–42 7.54–31.20 2–3 0.92–8.13

Maynord () 1.52 0.75 2.07 1.65 0.002 36 2.54 1.67 99.49

Wittler () 8.13–8.38 0.103–0.291 1.56–5.33 1.52–1.70 0.05–0.20 41 24.39–25.14 3 1.08–3.18

Mishra () 27.10–65.50 0.204–0.929 1.52–1.90 1.65 0.5 42 53.11–122.48 1.58–1.96 0.23–0.43

Robinson et al. () 1.5–27.8 0.003–1.626 1.25–1.73 1.54–1.82 0.02–0.40 36–42 3.00–55.60 2 0.39–5.63

Siebel () 5.2–7.3 0.050–0.282 2 1.65 0.10–0.33 40–41 15.98–16.03 2.19–3.08 0.93–3.55

Thornton et al. () 9.91–12.19 0.467–0.697 1.54–1.86 1.65 0.005 41 19.82–24.38 2 3.66–4.02

Thornton et al. () 1.98–12.19 0.026–0.562 1.54–1.86 1.69 0.006–0.500 38–41 3.98–24.38 2 1.15–29.00

Note: φ is the angle of repose of the sediment.
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causes to increase not only the applicability of traditional

equations from experimental to field scale, but also makes

estimations more reliable. Furthermore, there are three

important issues regarding the considered experimental

datasets. First, approach flow was fully turbulent and

second, the effect of channel side-walls was negligible. The

third issue is that the flow at the interface flow–riprap was

fully turbulent.

The results from empirical equations are compared with

the proposed AI models in the testing stage. Furthermore,

histograms for all the variables are illustrated in

Figures 2(a)–2(f). These histograms represent the frequency

distributions for the main variables controlling the processes

under study, in order to provide a compact and effective

summary of the literature data characteristics. Incidentally,

this analysis might turn out to be useful in the planning of

future experimental research. The number of classes was

selected so that reasonable displays were developed. In gen-

eral, the number of classes mainly depends on the number of

observations (although also the amount of scatter or dis-

persion in the data is of significance) and, typically, a

number between 5 and 20 bins is satisfactory in most

cases. Choosing the number of bins approximately equal

to the square root of the number of the observations often

works well in practice. Since the number of observations

related to the diagrams from Figures 2(a)–2(f) is always the

same (i.e., 102 observations), we consider a fixed number

(equal to 9) of classes for each variable. For each variable,

the frequency represents the number of times an outcome
om http://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
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takes place in the dataset, in relation to the total number

of observations. From these histograms it follows that the

explored range for the embankment slope S is satisfactorily

large (i.e., from 0.002 to 0.50) with an approximately uniform

frequency distribution within it. Conversely, the frequency

distribution for the other variable of particular interest,

namely, the uniformity coefficient Cu, is almost asymmetric

and positively skewed. The tail of the distribution goes to

the largest value of 5.33, but the majority of tests (around

90%) were conducted with Cu around 2.0, which would

imply the use of bed sediments only slightly different from

the uniform ones (i.e., Cu< 1.5). It is worth noting here that

also the relative riprap layer thickness, t/D50, was not ade-

quately tested in the literature with values almost always

around 2–3, as can be seen from Table 1. Finally, Figure 2(e)

shows how the specific density of riprap layer, Gs, is practi-

cally always around 2.65, as one would expect for natural

bed sediments. However, for future research, it would be

interesting to test synthetic materials, with Gs significantly

different from 2.65, in order to definitely assess the role of

the stone-referred densimetric Froude number Fs,c.
MODELS AND METHODS

In this section, basic definitions of SVM, MARS, and RF

models are introduced in brief. More details can be found

in the literature (e.g., Vapnik ; Giustolisi ). After-

wards, development of the proposed models using



Figure 2 | Hydrographs for the variables considered in this study: (a) embankment slope, S; (b) uniformity coefficient of riprap stones, Cu; (c) unit discharge at failure (or incipient motion) of

riprap layer, qt; (d) thickness of riprap layer, t; (e) specific density of riprap layer, Gs; and (f) median riprap stone size, D50.
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databases extracted from experimental studies will be

implemented.
Table 2 | A variety of kernel functions used in the SVM model

Kernel type Formulation

Linear k(oi, oj) ¼ oT
i :oj

Radial basis function (RBF) k(oi, oj) ¼ exp (�γ ∥ oi � oj ∥ )2, γ > 0

Polynomial k(oi, oj) ¼ (oT
i :oj þ r)d, γ > 0

Sigmoid k(oi, oj) ¼ tanh(γoTi � oj þ r) , γ > 0
Support vector machine (SVM)

The SVM is one of the powerful supervised learning tech-

niques to provide reliable and robust predictions. SVM can

yield minimum value of the expected computational error

by means of structural risk minimization (SRM) technique

so as to eradicate occurrence of overfitting. Basically, SRM

is used in machine learning theory. Commonly in machine

learning, a generalized model should be essentially selected

from a dataset with a certain (finite) sample. Consequently,

the problem of overfitting may occur in a way that the

model suffers from not only becoming too strongly tailored

to the particularities of the training dataset, but also general-

izing poorly to contemporary (or new) dataset (lack of

generalization). In fact, the SRM can eradicate the possibility

of this problem by balancing the model’s complexity against

its prosperity at fitting the training datasets. SVM can map

input datasets related to the training phase into a higher

dimensional feature space (Vapnik ; Yu et al. ;

Amaranto et al. ; Antunes et al. ).

A series of datasets (o1, z1), (o2, z2),….., (oi, zi),

….., (oN, zN) is given in which oi is the input variable, zi is

the output variable which pertains to oi, and N is the

sample size of data. These sets of input–output variables

are considered to conduct the training stage. The regression

function, ϕ, is generally expressed as (Komasi et al. ):

ϕ(o) ¼ 〈w, O〉þ b (11)

wherew and b are weighting vector in the feature space with

the dimension o and bias term, respectively, and 〈�, �〉
denotes the inner product. Moreover, by addition of func-

tion of empirical risk, Equation (11) is converted to a

minimization problem as (Komasi et al. ):

Minimize ϕ ¼ 1
2
wTwþ C

XN
i¼1

δi þ C
XN
i¼1

δ0i (12)

Subject to
〈w, o〉þ b� zi � σ þ δ0i
zi � 〈w, o〉� b � σ þ δ0i
δi , δ0i � 0 i ¼ 1, 2, . . . , N

8<
: (13)
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where C denotes a constant value, greater than zero, which

defines the penalty for computational error by model, δi and

δ0i are the slack variables which are required to define in

order to measure the observed (or actual) values to the

related boundary values of σ. In SVM, quadratic program-

ming (QP), as one of the most efficient techniques, is

applied to solve non-linear optimization problems

(Equations (12) and (13)) with linear constraints. With

respect to QP method, Equations (12) and (13) are

rearranged as (Pham et al. ):

Maximize ϕ(o) ¼
XN
i¼1

zi(βi � β:i)� σ
XN
i¼1

(βi þ β:i)

� 0:5
XN
i:j¼1

(βi � β:i)(βj � β:j)k(oi, oj) (14)

Subject to

PN
i¼1

(βi � β:i) ¼ 0

0 � βi, β
:
i � C

i ¼ 1, 2, . . . , N

8>><
>>: (15)

where βi and β:i are the Lagrange multipliers, N is the sample

size, and k(·) is the kernel function, which is defined as an

inner product of ∅(oi) and ∅(oj) functions as follows:

k(oi, oj) ¼ ∅(oi) �∅(oj) (16)

Input variables in SVM are transferred to kernel func-

tion-based formulations (i.e., radial basis function, sigmoid,

linear, and polynomial). In this mapping process, input vari-

ables in the forms of kernels are prepared to create a non-

linear problem. Different kernel functions are shown in

Table 2. They are used in SVM to determine the best one.

There are some tuning SVM parameters, such as optimal

regularization parameter (C), kind of kernel function, and
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optimal kernel parameters (r, d, γ), which are required to be

assigned (Amaranto et al. ). With reference to this study,

the optimal magnitudes of parameters for each type of

kernel function are given in Table 3. All types of the

kernel functions have been tested and their corresponding

mean squared errors (MSEs) in the training stage were con-

sidered for selection of the best performance. Table 3

indicated that the RBF (MSE¼ 1.27) and polynomial

(MSE¼ 1.41) kernels could achieve comparatively lower

computational errors for predicting Fs,c in comparison

with linear (MSE¼ 3.36) and sigmoid (MSE¼ 4.41) kernel

functions. Also, SVM with RBF kernel function had higher

accuracy level in the prediction of Fs,c than that with poly-

nomial kernel function. Hence, in this study, the RBF

kernel function was used in the SVM technique. Moreover,

through modeling the SVM, control parameter of K-fold

number was considered to eradicate the possibility of over-

fitting. In fact, various K-fold numbers (3, 5, 8, and 10)

were assigned and generally it was found that K-fold¼ 10

had the best performance in terms of accuracy level.
Multivariate adaptive regression splines (MARS)

MARS, as a non-parametric regression technique, is able to

diminish the complexity degree of non-linear systems by

establishing a set of piecewise linear splines (segments)

among system variables. Pre-assumptions in the case of
Table 3 | Performance of different types of kernel functions used in SVM model for train-

ing stage

Kernel functions

Dimensionless variables

Setting parameters MSE

Linear γ¼ 0.0164 3.36
C¼ 149.071

Radial basis function (RBF) γ¼ 2564.67 1.27
C¼ 58.548

Polynomial r¼ 1.66 1.41
γ¼ 0.1312
d¼ 5
C¼ 73.061

Sigmoid γ¼ 0.1560 4.41
r¼ 1.85
C¼ 54.210

://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
reasonable connection among the input–output of a compli-

cated system do not exist. The point at the end of a specific

segment, introduced as a knot, denotes not only the end of a

region corresponding to the dataset but also the earliest

point of the next segment. MARS model searches in a step-

wise pattern in order to construct basis functions (BFs). An

adaptive regression technique is applied to select the

locations of knots. Basically, MARS technique is performed

within a two-phase approach. In the first step, known as for-

ward selection, the model generates all probable BFs and

corresponding knots. The backward phase removes linear

BFs, which have lower impacts on MARS performance

(Adamowski et al. ). To enhance the accuracy of

MARS, the backward technique is employed in order to

wipe out the unnecessary datasets using generalized cross

validation (GCV). The GCV relationship is computed as:

GCV ¼ MSE

(1� (PF=N))2
(17)

where PF denotes the penalty factor which is calculated as:

PF ¼ Pþ 0:5 × de × (P� 1) (18)

in which, de and P denote the determination parameter and

number of BFs, respectively.

In the case of BFs’ creation through stepwise manner,

input vector of O, {o1, o2, o3, . . . , oN} is required to be

assigned. Basically, T ¼ H(O)þ μ is utilized to make a con-

nection between O with T (output vector), in which μ is

known as the specific pattern of the predicted error by the

model. H(O) is a function being estimated by the BFs. In

point of fact, mathematic formulations of BFs are generally

linear at least (or polynomials) with smooth trend. For

smoothing polynomials’ degree, the piecewise linear

regression is taken into account. Basic mathematical formu-

lation of piecewise linear regression is known as

max (0, o� u), where a knot exists at u value. Real values

of max (0, o� u) are determined as:

max(0, o� u) ¼ o� u if o � u
0 otherwise

�
(19)



Table 5 | Results of ANOVA decomposition for the proposed MARS models

MARS technique by dimensionless variables

Function
Standard
deviation GCV

Number of
basis functions Variables

1 6.54 261.97 1 t/D50

2 3.81 74732.21 4 S

3 3.48 110.35 2 Cu

4 10.96 601.93 5 t/D50 and S

5 5.16 106.58 4 t/D50 and Cu

6 2.05 32.28 1 S and Cu

1 6.54 261.97 1 t/D50

758 M. Najafzadeh & G. Oliveto | Riprap design by machine learning models Journal of Hydroinformatics | 22.4 | 2020

Downloaded fr
by guest
on 24 April 202
MARS technique can generate BFs with linear combi-

nation as:

H(O) ¼ v0 þ
XP
p¼1

vp:θp(O) (20)

in which, θp(O) is a basis function at least, v denotes the con-

stant coefficients of BFs which are approximated via least

square method (LSM).

At the final stage of MARS performance, a simplified

formulation, H(O), is obtained using a combination of BFs.

To assess comparative significance of the input vectors

and the BFs, analysis of variance (ANOVA) decomposition

is applied (Haghiabi ). In the present investigation, 17

BFs were adjusted for the prediction of Fs,c in Table 4.

Results of ANOVA decomposition of the proposed MARS

technique is given in Table 5. The GCV values, in the

third column, provide information about the comparative

significance of the corresponding ANOVA function. The

best model extracted from the MARS model for prediction
Table 4 | BFs extracted from MARS model using dimensionless variables

BF Equations

BF1 max(0, S� 0.04)

BF2 max(0, 2� t/D50) ×max(0, 0.2� S)

BF3 max(0, t/D50� 2.9)

BF4 max(0, S� 0.04) ×max(0, t/D50� 2.9)

BF5 max(0, S� 0.04) ×max(0, 2.9� t/D50)

BF6 max(0, 0.05� S)

BF7 max(0, S� 0.05) ×max(0, t/D50� 2.9)

BF8 max(0, S� 0.05) ×max(0, 2.9� t/D50)

BF9 max(0, 2.9� t/D50) ×max(0, Cu� 1.65)

BF10 max(0, 2.9� t/D50) ×max(0, 1.65�Cu)

BF11 max(0, Cu� 1.54)

BF12 max(0, S� 0.1)

BF13 max(0, 0.1� S)

BF14 max(0, Cu� 2.3)

BF15 max(0, 2.3�Cu) ×max(0, t/D50� 2.39)

BF16 max(0, 2.3�Cu) ×max(0, 2.39� t/D50)

BF17 max(0, 1.75�Cu) ×max(0, 0.04� S)

om http://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
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of Fs,c is expressed as:

Fs,c ¼ �129:02þ 2386:20 × BF1þ 884:98 × BF2þ 143:95

× BF3� 12393 × BF4� 2043:40 × BF5� 1698:4

× BF6þ 12356 × BF7þ 2042:60 × BF8þ 36:34

× BF9� 18:12 × BF10� 17:68 × BF11� 2389:40

× BF12þ 2428:50 × BF13 þ 17:37 × BF14

� 28:29 × BF15þ 29:16 × BF16� 7056:80 × BF17

(21)

Intrinsically, MARS technique is capable of producing a

polynomial regression (with quadratic form) based on spline

conceptions. However, in this study, all the 17 BFs have

simple formulations. Additionally, all the input variables

(S, Cu, t/D50) used in these BFs are easy to acquire. As

will be shown in the following, statistical benchmarks indi-

cated that MARS technique provided a more satisfying

performance than empirical equations. Additionally, results

from the MARS model are absolutely flexible to the changes

in ranges of inputs. In this regard, two important issues were

considered through running MARS: (1) preserving the phys-

ical meaning of results or consistency and (2) obtaining the

highest level of accuracy in comparison to the empirical

equations. Finally, it has been implied that the proposed

MARS model does not replace the traditional equations in

which physical essence is most explicit, but the joint use

of this AI model and empirical models can lead to extremely

reliable results.
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Random forest (RF)

RF model is introduced as a group-training model that pre-

sents an efficient solution for problems whose dimensions

are high. Basically, RF is a tree-based group technique in

which all trees are structurally contingent upon a set of vari-

ables being randomized, and additionally the forest is

originated from a large number of regression trees combined

from a group (Breiman ; Caradot et al. ). In RF

model, input variables are converted to splitting parameters

and then their corresponding values are obtained. In fact, in

this step, impurity of children nodes are evaluated and,

additionally, the best splitting parameter is selected among

input variables by using the Gini index (GI). This index is

a benchmark of how each input variable contributes to the

homogeneity (or impurity) of the nodes and leaves in the

resulting RF model. Each time a particular variable is

applied in order to split a node, the GI related to the child

nodes is computed and compared to that of the original

node. Furthermore, in tree structure of the RF approach,

the ultimate decision is obtained by means of output aver-

age, after ascertaining fitness for single trees within

bagging technique. The bias value related to the bagged

trees is equal to that obtained in single trees, whereas the

variance decreases by decreasing the meaningful correlation

among trees (Antunes et al. ). Development of RFs is at

the mercy of tree-growing technique which is contingent

upon a random vector (ϕ) with the aim that tree estimator,

λ (X, ϕ), has the capability of numerical results’ derivation.

To evaluate the performance of RF, the mean squared

error (E), pertained to each numerical estimator λ(X ), is

expressed as (Breiman ):

EX,Y (Y � λ(X))2 (22)

Basically, the more voluminous trees get the more accu-

rate the results. However, the development of trees declines

as the number of trees increases, i.e., at a certain point the

benefit in precision level of RF from training more trees

will become lower than the cost in computation time for

training these additional trees. RFs are known as ensemble

techniques implying an average over some trees. In a similar

way, should one wish to estimate an average of a real-valued
://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
random variable, a sample could be considered. In this case,

for 102 data series, a forest with 10 trees performs more

accurately in comparison with 500 trees. This issue is due

to the statistical variance value. If this took place automati-

cally, something goes wrong with the implementation.

Typical values for the number of trees (or level trees) are

10, 30, or 100. In the case of very few practices, more

than 300 trees outweighs the cost of training trees. In this

study, 10 level trees had the most accurate level rather

than other level trees.
RESULTS AND DISCUSSION

The results extracted from the AI models and traditional

methods are presented in this section. In terms of quantitat-

ive comparisons, a variety of statistical parameters was used

to evaluate the performance of AI-based machine learning

models in various applications (Babovic & Keijzer ;

Keijzer & Babovic ; Chadalawada & Babovic ).

To benchmark performances of the proposed techniques

in this study, three widely known statistical measures includ-

ing coefficient of correlation (R), root mean square error

(RMSE), mean absolute error (MAE), and scatter index

(SI) are considered. They are defined as follows:

R¼
PN

i¼1 Fs;c ið Þobs�Fs;cobs
� �

ðFs;c ið Þpre�Fs;c preÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Fs;c ið Þobs�Fs;cobs

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Fs;c ið Þpre�Fs;c pre
� �2

r
(23)

RMSE ¼
PN

i¼1 (Fs,c (i) pre � Fs,c(i) obs)
2

N

" #1=2

(24)

MAE ¼ 1
N

XN
i¼1

jFs,c (i) pre � Fs,c(i) obsj (25)

SI¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=N)

PN
i¼1((Fs,c (i)pre�Fs,cpre)�(Fs,c(i)obs�Fs,c obs))

2
q

(1=N)
PN

i¼1Fs,c(i)obs
(26)

in which,N is the number of observations and the meaning of

the other symbols is easy to understand. In terms of quantifi-

cation, RMSE is always non-negative, and a value of 0
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(almost never achieved in practice) would indicate a perfect

fit to the data. In general, a lower RMSE is better than a

higher one. SI is calculated by dividing RMSE by the mean

of the observations at each grid point. It presents the percen-

tage of RMSE difference with respect to mean observation or

it gives the percentage of expected error for the parameter.
Quantitative comparisons of the proposed AI models

Quantitative comparisons to investigate the performance of

SVM-RBF, MARS, and RF were carried out for both training

and testing phases. Table 6 presents the statistical results of

models’ performance. Through the training phase, the

values of R (0.99) and RMSE (1.11) given by MARS indi-

cated higher level of precision of this model when

compared to SVM-RBF (R¼ 0.99 and RMSE¼ 1.62) and

RF (R¼ 0.98 and RMSE¼ 3.61). Moreover, with respect to

MAE and SI parameters, MARS technique, introduced as
Table 6 | Evaluation of the proposed models’ performance using dimensionless variables

Training stage

R RMSE MAE SI

AI models

SVM-RBF 0.99 1.62 0.31 0.37

MARS 0.99 1.11 0.27 0.25

RF 0.98 3.61 0.23 0.81

Testing stage

R RMSE MAE SI

AI models

SVM-RBF 0.98 1.17 0.58 0.37

MARS 0.92 2.32 0.31 0.75

RF 0.89 1.93 0.37 0.63

Empirical equations

Olivier () 0.94 1.45 0.36 0.48

Abt & Johnson () 0.91 2.41 0.37 0.77

Sommer () 0.94 6.01 1.77 1.45

Robinson et al. () �0.58 4.57 0.47 1.32

Dornack () 0.93 3.95 0.53 1.18

Siebel () 0.94 1.79 0.37 0.52

Khan & Ahmad () 0.95 1.67 0.43 0.53

Thornton et al. () 0.95 1.38 0.75 0.40

om http://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
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a set of linear and quadratic relationships, has estimated

the Fs,c with the lowest value of computational errors

(MAE¼ 0.27 and SI¼ 0.25) than the SVM-RBF (MAE¼
0.31 and SI¼ 0.37) and RF (MAE¼ 0.23 and SI¼ 0.81)

techniques. Table 6 indicates that the proposed SVM-RBF

technique with RBF kernel function has a higher level of

accuracy compared to the RF approach. Overall, statistical

information in Table 6 showed that R-values for the training

phase had marginal differences together and, consequently,

these values may not be a permissible platform in order to

quantify comparison of performance, whereas other statisti-

cal parameters could provide valuable information about

models’ performance.

Through testing stages, SVM-RBF model indicated more

accurate prediction of Fs,c with regard to RMSE (1.17) and

SI (0.37) in comparison to MARS (RMSE¼ 2.32 and SI¼
0.75) and RF (RMSE¼ 1.93 and SI¼ 0.63). Similarly, R-

values indicated slight superiority of SVM-RBF to the

other two AI models. With respect to R and MAE values,

MARS approach with R value of 0.92 and MAE of 0.31 pre-

dicted Fs,c more accurately than RF (R¼ 0.89 and MAE¼
0.37). Even though the MARS model has provided stone-

refereed densimetric Froude number, Fs,c, values with rela-

tively lower accuracy level than SVM-RBF, Equation (21)

has more practicability and it is easy to use compared to

SVM-RBF and RF approaches.

Qualitative comparisons of the proposed AI models

Figures 3(a)–3(f) illustrate the graphical performance of the

AI models used in the current investigation at both training

and testing phases. At the training stage, SVM-RBF and

MARS techniques had the best performance for the extreme

value of Fs,c¼ 99.49 (Figures 3(a) and 3(b)), while RF tech-

nique indicated relatively high underestimation

(Figure 3(c)). For Fs,c around 30, SVM-RBF and RF models

demonstrated the same manner, showing slight underpredic-

tion in the allowable error range, whereas the MARS

approach had both underprediction and overprediction.

Furthermore, the three AI models indicated the best per-

formance for Fs,c< 10. At the testing stage, Figure 3

indicates that, for observed values of Fs,c between 1 and 2,

SVM-RBF overpredicted Fs,c remarkably (Figure 3(d)).

Figure 3(e) illustrated that MARS had the best performance



Figure 3 | Qualitative performance of AI models considered in this study: (a) SVM-RBF; (b) MARS; and (c) RF for training stage; (d) SVM-RBF; (e) MARS; and (f) RF for testing stage.
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for Fs,c< 5. Moreover, MARS had underprediction and

overprediction for the ranges of Fs,c 5–10 and 10–15, respect-

ively. From Figure 3(f), for Fs,c< 2, RF model had a relative

acceptable performance with slight overprediction. Fs,c just

over 6 demonstrated remarkable overprediction whereas,

for Fs,c approximately 10, RF had underprediction.

Comparative study of the empirical equations

performance

In this section, the efficiency of the considered empirical

equations (fromEquation (1) to Equation (8)) was investigated

by using testing datasets. According to Table 6, Equation (1),

suggested byOlivier (), had the absolute superiority in esti-

mating Fs,c in comparison to other experimental equations,

showing RMSE¼ 1.45 and SI¼ 0.48. In contrast, Equation

(3), proposed by Sommer (), predicted Fs,c with higher

computational error in comparison with other equations.

Sommer’s () equation indicated significant overprediction

with RMSE¼ 6.01 and SI¼ 1.45. Moreover, Siebel’s ()

equation achieved the second rank of accuracy level with
://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
MAE¼ 0.37 and SI¼ 0.52. With respect to RMSE and SI

criteria, Siebel’s () equation (Equation (6)) had better

performance than Equation (4) by Robinson et al. ()

(RMSE¼ 4.57 and SI¼ 1.32) and almost the same perform-

ance as Equation (7) by Khan & Ahmad () (RMSE¼ 1.67

and SI¼ 0.53). According to Table 6, Equation (2), proposed

by Abt & Johnson (), has provided the Fs,c predictions

with relatively higher accuracy than Equation (5) by Dornack

() (RMSE¼ 3.95 and SI¼ 1.18). In addition, RMSEand SI

values obtained by Thornton et al.’s () equation would

demonstrate that this equation definitely estimates more accu-

rate Fs,c values in comparison with Dornack’s () equation

(RMSE¼ 3.95 and SI¼ 1.18).

In terms of qualitative comparisons, Figures 4(a)–4(h))

show the performance of the empirical equations with sig-

nificant over- and underpredictions. As can be seen in

Figure 4(a), Olivier’s () equation (Equation (1)) had a

permissible level of performance, whereas Abt & Johnson’s

() equation had slight overprediction for lower values of

Fs,c, as illustrated in Figure 4(b). Fs,c values by Sommer’s

() equation suffered from remarkable overpredictions



Figure 4 | Qualitative performance of empirical models considered in this study: (a) Olivier (1967); (b) Abt & Johnson (1991); (c) Sommer (1997); (d) Robinson et al. (1998); (e) Dornack (2001);

(f) Siebel (2007); (g) Khan & Ahmad (2011); and (h) Thornton et al. (2014).
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Table 7 | Statistical results of AI models’ performance for various ranges of bed slope

AI models S¼ 0.002–0.008 S¼ 0.10–0.17 S¼ 0.20–0.25 S¼ 0.30–0.50

SVM-RBF RMSE¼ 2.90 RMSE¼ 0.84 RMSE¼ 0.46 RMSE¼ 0.42
SI¼ 0.23 SI¼ 0.45 SI¼ 0.33 SI¼ 0.43

MARS RMSE¼ 2.90 RMSE¼ 0.53 RMSE¼ 0.44 RMSE¼ 0.39
SI¼ 0.24 SI¼ 0.28 SI¼ 0.32 SI¼ 0.40

RF RMSE¼ 6.70 RMSE¼ 0.33 RMSE¼ 0.27 RMSE¼ 0.38
SI¼ 0.52 SI¼ 0.17 SI¼ 0.20 SI¼ 0.33
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(Figure 4(c)); on the contrary, Figure 4(d) illustrates the

opposite trend exhibited by Robinson et al.’s () equation.

As shown in Figure 4(e), Dornack’s () equation has indi-

cated high underpredictions for Fs,c greater than 2. In fact,

Equation (5), proposed by Dornack (), depends only

on the slope of the riprap layer with a range of S from

0.29 to 0.67. According to Figures 4(f) and 4(g), both Siebel’s

() and Khan & Ahmad’s () equations had compara-

tively perfectible performance. Ultimately, Figure 4(h)

shows how the equation by Thornton et al. () is prone

to provide relatively high overpredictions for Fs,c< 4.

In the final analysis, therefore, the equation proposed by

Sommer () would appear quite conservative. Conversely,

the equations proposed by Robinson et al. () and Dor-

nack () would lead to considerable underpredictions

already from values of Fs,c> 2 (i.e., D50 low-values). Perhaps

this is linked with the objectives pursued by these authors in

their studies: rock-fill dam spillways, in the case of Dornack

(), and rock chutes, in the case of Robinson et al. ().

Both cases imply a better focus on D50 high-values and then

more restricted values of Fs,c. To a lesser extent, also the

equation suggested by Abt& Johnson () would lead to sig-

nificant underpredictions, but for Fs,c> 10. A plausible

reason may relate to the experimental range of the values of

Fs,c explored by the authors (from 0.92 to 8.13, as shown in

Table 1), values on which their equation was calibrated.
PARAMETRIC STUDY

In this part of the research, the effects of S on Fs,c were

investigated for different ranges of S itself (Table 7). As
://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
regards RMSE and SI criteria, for S values between 0.002

and 0.080, SVM-RBF and MARS models had the same per-

formance in predicting Fs,c. Conversely, RF indicated a

lower value of accuracy (RMSE¼ 6.70 and SI¼ 0.52) in

comparison with the other two AI techniques. For S ran-

ging from 0.100 to 0.167, the RF model could achieve

higher values of accuracy (RMSE¼ 0.33 and SI¼ 0.17)

than SVM-RBF (RMSE¼ 0.84 and SI¼ 0.45) and MARS

(RMSE¼ 0.53 and SI¼ 0.28). For slope values in the

ranges from 0.20 to 0.25 and from 0.30 to 0.50, the RF

technique had a similar trend to that observed in the

range from 0.10 to 0.17. In addition, Figures 5(a)–5(c) indi-

cate that all the proposed AI models have predicted a

downward trend of Fs,c versus S. This trend is in good

agreement with the experimental findings by several

researchers. Experimental studies by Knauss (), Whit-

taker & Jäggi (), Palt (), and Siebel () were

conducted for Fs,c¼ 0.5–7.0 and S¼ 0.005–0.550. From

these ranges and performances of AI models, it can be

inferred that the simulated variations of Fs,c versus S

values are rational and have the capability of preserving

the consistency of results.

In addition to the slope S, the control by the uniformity

coefficient of riprap stones, Cu, and the relative thickness of

riprap layer, t/D50, over the stone-referred densimetric

Froude number Fs,c was explored. This is based on the

MARS model proposed in this study (Equation (21)) by vary-

ing either Cu or t/D50 and keeping the other independent

variables constant. In particular, it was found that the

greater is Cu (i.e., the non-uniformity of the riprap material)

the greater is the resistance of the riprap layer to erosion.

This result is in harmony with some empirical equations



Figure 5 | Variation of Fs,c versus S extracted from: (a) SVM-RBF, (b) MARS, and (c) RF

models.
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from the literature (e.g., Equations (7) and (8)), but the

dependence of Fs,c on Cu would appear more reliable in

this study because it is based on a much more wide-ranging

dataset. Analogous trend was found for t/D50 (i.e., the

greater is t/D50 and the greater is the resistance of the

riprap layer to erosion), as it is reasonable to expect from

a physical point of view. This result would be suitably in con-

tradiction with Equations (7) and (8) from the literature

according to which the probability of riprap failure would

strangely increase with increasing the thickness t of the

riprap layer.
om http://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
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EVALUATION OF THE PROPOSED TECHNIQUES
USING DISCREPANCY ANALYSIS

In the previous part of this study, it was found that the

MARS model shows some superiority above the other AI

approaches. Applying statistical criteria, as expressed in

Equations (23)–(26), one can select the most accurate AI

technique and, additionally, just quantify the relatively

lower computational error. In fact, the error indices

given by Equations (23)–(26) do not have the required poten-

tial to generate a reasonable pattern for error values. Thus,

there is high importance to evaluate the performance of

the proposed AI techniques by means of error. In the cur-

rent study, a statistical parameter, known as discrepancy

ratio (DR), is used to give more in-depth information

about the performance of models. DR can be expressed as:

DR ¼ Fs,c ( pre)

Fs,c (obs)
(27)

On the basis of Equation (27), if DR is just (or roughly)

equal to 1, the estimated Fs,c values are just the same as the

observed Fs,c values. If DR becomes larger than 1, the AI

model overpredicts Fs,c values, and finally, if DR becomes

smaller than 1, the AI model would show underprediction

status (Noori et al. ).

In the current investigation, results of testing stages

obtained by the AI models and empirical equations were

used to calculate DR values. Table 8 indicates quite a few

statistical parameters of DR values. From Table 8, the

MARS approach could achieve the minimum value of var-

iance compared with the SVM-RBF and RF models.

Furthermore, the average of DR values calculated by

Sommer () (Equation (3)) was indicative of having the

lowest accuracy level of performance in comparison to the

other equations obtained by experimental observations. In

the case of Olivier’s () equation, average and variance

of DR values showed relatively better performance than

Dornack’s () equation. Table 8 indicates that the average

and variance for Abt & Johnson’s () equation are practi-

cally the same as Olivier’s () equation. Moreover, the

average of DR values given by Thornton et al.’s ()

equation showed higher accuracy than Equation (3) by



Table 8 | Statistical results of DR values for the AI models and empirical equations

DR statistics Average Minimum Maximum Variance

AI models

SVM-RBF 1.04 0.31 2.53 0.32

MARS 1.15 0.44 2.53 0.12

RF 1.22 0.57 4.00 0.42

Empirical equations

Olivier () 1.20 0.38 3.00 0.44

Abt & Johnson () 1.19 0.42 3.56 0.44

Sommer () 2.70 1.58 8.19 2.24

Robinson et al. () 0.64 0.02 3.01 0.39

Dornack () 0.95 0.12 4.36 0.86

Siebel () 0.76 0.38 2.41 0.21

Khan & Ahmad () 1.10 0.22 3.92 0.63

Thornton et al. () 1.59 0.26 3.93 0.75

Figure 6 | Variation of DR versus S for: (a) AI models and (b) empirical models.
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Sommer (). For assessing qualitative term comparisons

of DR index, variations of DR values versus S for the AI

techniques and conventional equations are shown in

Figures 6(a) and 6(b), respectively. Figure 6(a) shows that

almost all the DR values for AI models are from 0.5 to

1.5. Figure 6(a) also shows qualitatively that all the proposed

models had either a lower level of underprediction or over-

prediction. For instance, AI models have overpredicted Fs,c
values for S around 0.125. Furthermore, most of the points

are concentrated around the perfect line of DR¼ 1. Evi-

dently, Figure 6(b) illustrates that Equation (3) by Sommer

() predicted Fs,c values with remarkable overprediction

in comparison with other traditional equations. This result

clearly corroborates what has previously been said about

the rather conservative nature of the Sommer ()

equation.
CONCLUSIONS

This study aimed to evaluate the non-dimensional unit dis-

charge (Fs,c) at the failure condition of riprap layer for

various streambank slopes using three data-mining

approaches including MARS, SVM-RBF, and RF models.

Five input variables were extracted from experimental

works with the aim of developing AI approaches. Generally,
://iwa.silverchair.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
the following conclusions can be drawn from the current

investigation:
• Statistical performance of both training and testing stages

demonstrated that the SVM-RBF model provided Fs,c
values with a higher level of accuracy compared with

MARS model, as a set of BFs, and RF techniques. Fur-

thermore, Equation (21), given by MARS technique,

was a more precise soft computing tool than other

regression-based models.

• Results of empirical equations indicated that Equations

(3)–(5) are lower than the proposed machine learning

approaches in terms of all statistical criteria considered

in this study. Equations (1), (6), and (7) exhibit a more

relatively acceptable precision in estimating Fs,c than

those obtained by Equations (3)–(5).

• Quantitative and qualitative variations of Fs,c versus the

slope S indicated that findings of the AI approaches

were in permissible agreement with the preceding exper-

imental investigations carried out by Siebel (). In

fact, this issue preserved the consistency of results.

• DR analysis has proven that the Fs,c values predicted by

the AI techniques are placed in the permissible error
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bound in comparison with empirical equations, which

produced a large amount of over- or underestimation.
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