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Optimal sensor placement for pipe burst detection in

water distribution systems using cost–benefit analysis

Mengke Zhao, Chi Zhang, Haixing Liu, Guangtao Fu and Yuntao Wang
ABSTRACT
Fast detection of pipe burst in water distribution systems (WDSs) could improve customer

satisfaction, increase the profits of water supply and more importantly reduce the loss of water

resources. Therefore, sensor placement for pipe burst detection in WDSs has been a crucial issue for

researchers and practitioners. This paper presents an economic evaluation indicator named as net

cost based on cost–benefit analysis to solve the optimal pressure sensor placement problem. The

net cost is defined as the sum of the normalized optimal detection uncovering rate and investment

cost of sensors. The optimal detection uncovering rate and the optimal set of sensor locations are

determined through a single-objective optimization model that maximizes the detection coverage

rate under a fixed number of sensors. The optimal number of sensors is then determined by

analyzing the relationship between the net cost and the number of sensors. The proposed method is

demonstrated to be effective in determining both the optimal number of sensors and their locations

on a benchmark network Net3. Moreover, the sensor accuracy and pipe burst flow magnitude are

shown to be key uncertainties in determining the optimal number of sensors.
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INTRODUCTION
Water resource is one of the most important necessities for

human survival and development. However, many countries

in the world have been facing a severe shortage of water

resources due to rapid population growth and urbanization,

economic growth, environmental pollution and climate

change (Huang et al. ). It is estimated by the United

Nations that there will be an additional 3.5 billion people

with most of the growth in developing countries that have

been already suffering from water stress by 2050 (Salinas

). Water distribution systems (WDSs), as a critical infra-

structure, play a vital role in safely delivering drinking water

to customers. However, many networks have huge water

losses, pipe bursts and leakage due to pipe aging, inadequate

construction quality or lack of maintenance, which further

exacerbates the water scarcity. Hence, developing effective

and efficient detection methods of the anomaly events in
WDSs is a proactive means to reduce water losses and

improve water resources management. Moreover, it could

also help the water utilities cut operating costs, improve

water efficiency and customer satisfaction.

There are three main types of detection methods in pipe

burst detection, i.e. equipment-based methods (Muntakim

et al. ), transient-based methods (Ferrante et al. ;

Sun et al. ) and data-driven methods (Bicik et al. ;

Laucelli et al. ; Bakker et al. ; Jung et al. ;

Laucelli et al. ). Due to the recent advances in sensor

technology, information communication technology and

cutting-edge artificial intelligence, data-driven methods are

increasingly developed for anomaly detection of WDSs in

recent years (Wu & Liu ). Data-driven methods highly

rely on real-time monitoring hydraulic data, such as pipe

flows and nodal pressures, from supervisory control and
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data acquisition systems. These data follow periodically

daily patterns under the normal demand pattern and abnor-

mal events could cause changes different from the normal

trend (Wu & Liu ). Therefore, machine learning

methods such as artificial neural network and support

vector machine are developed to predict pressures/flows,

which are then compared with observed values to detect

pipe bursts based on given thresholds (Mounce & Machell

; Mounce et al. ). Statistical process control

methods are also used to detect pipe bursts by analyzing

observed hydraulic values based on mean values and stan-

dard deviations of historical hydraulic values (Jung et al.

). Real-time pressure data from multiple sensors are

fed into trained convolutional neural networks to detect

and localize leaks (Zhou et al. ). Therefore, this raises

a research question of how to design a sensor network

that can effectively detect pipe burst events in WDSs

within a given budget.

Various sensor placement models have been developed

over the past two decades. Most sensor placement studies

aimed for the purpose of contamination detection (Weick-

genannt et al. ; Sankary & Ostfeld ) or hydraulic

model calibration (de Schaetzen et al. ; Ostfeld et al.

; Behzadian et al. ), only a few aimed for the pur-

pose of pipe burst detection (Farley et al. ; Raei et al.

). With regard to the purpose of contamination detec-

tion, the main objectives of sensor placement are the

expected time of detection, expected population affected

and expected volume of contaminated water consumed

prior to detection and the detection likelihood (Ostfeld

et al. ). With regard to the purpose of model calibration,

most developed sensor placement methods aimed at finding

the optimal set of sensor locations that are more sensitive to

calibration parameters using a ranking (de Schaetzen et al.

) or optimization method (Behzadian et al. ). How-

ever, sensor placement for pipe burst detection is normally

set up to find out leak events by identifying the variation

of flow and/or pressure. A Jacobian sensitivity matrix of

pressure change was used as a function of burst magnitude

at given locations, and then, an optimization algorithm,

such as the genetic algorithm and linear programming,

was used to determine the optimal set of sensor locations

(Casillas et al. ). Sarrate et al. () proposed a depth-

first search method combined with a k-means clustering
://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
algorithm to reduce the size and the complexity of the

sensor placement optimization problem for the applicability

to large-scale WDSs. Blesa et al. () evaluated the robust-

ness of sensor placement to different leak magnitudes and

several operating points based on the proposed robustness

percentage index and then established a multi-objective

optimization model including maximization of both the

mean and the worst leak locatability index according to

the robustness analysis results. Hagos et al. () proposed

a single-objective optimal sensor placement model that

maximizes the detection probability (DP) or minimizes the

rate of false alarm (RF). The obtained result shows that

pressure sensors cannot detect all the pipe bursts even if a

large number of sensors are used and the optimal set of

sensor locations differs substantially under the maximum

DP and the minimum RF. However, it does not consider

multiple simultaneous bursts for the generation of pipe

burst events. Based on this trade-off between the DP and

the RF, the total cost and mechanical reliability of the

sensor network were also further considered to formulate

a multi-objective optimal sensor placement model (Jung &

Kim ).

However, all aforementioned studies have a common

assumption that the total number of sensors is fixed in the

sensor placement problem. There are only few studies focus-

ing on the determination of the optimal number of sensors.

Soroush & Abedini () proposed a single-objective opti-

mal sensor placement model to determine the optimal

sensor locations by minimizing the variance of residuals

between the estimated and true values of average pressure.

The variation of the optimal variance of residuals against

different numbers of sensors was analyzed to determine

the optimal number of sensors. However, it does not take

into account the cost of sensors. In addition, several studies

introduce the cost of sensors to a multi-objective optimiz-

ation model to determine the optimal number of sensors

(Weickgenannt et al. ; Simone et al. ; Raei et al.

). Weickgenannt et al. () formulated the water

quality sensor placement problem as a twin-objective

optimization problem including the minimization of risk of

the contamination and sensor cost. The variables include

the number of sensors and their locations. Based on the net-

work topology and weights assigned to pipes, a novel multi-

objective optimal sensor placement model was proposed to
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maximize the sampling-oriented modularity index and mini-

mize the cost of pressure sensors (Simone et al. ). Raei

et al. () formulated the pressure sensor placement as a

twin-objective optimization problem including the minimiz-

ation of the number of sensors and the detection time of

pipe leaks. Obviously, considering both the location and

number of sensors is practical and valid in the sensor place-

ment issues. Solving the bi-objective optimization problem

of sensor placement derives a trade-off relationship between

the cost and benefit of sensor placement. However, it is dif-

ficult to determine how many sensors are required given the

complex trade-off and the large number of optimal solutions.

Cost–benefit analysis (CBA) is a systematic approach to

conduct economic analysis for engineering projects and has

been widely applied to the WDSs management (Steffelbauer

& Fuchs-Hanusch ; Creaco & Walski ). Creaco &

Walski () analyzed the economic effectiveness of two

different pressure control solutions including conventional

mechanical pressure reducing valves and remotely real-time

pressure control valves for leakage and pipe burst reduction

based on CBA. The CBA approach for the sensor placement

problem was developed to estimate the relationships between

the number of sensors as a surrogate of costs and the percen-

tage of detected leak scenarios as a surrogate of benefits

(Steffelbauer & Fuchs-Hanusch ), which allows the

decision-maker to choose the number of required sensors

given a specific level of leakage detection.

In this paper, we propose an economic evaluation indi-

cator named as net cost based on CBA, defined as the sum of

the normalized optimal detection uncovering rate and

investment cost of sensors, to solve the problem of determin-

ing the optimal number of sensors and the set of sensor

locations in WDSs. First, the optimal detection uncovering

rate and the set of sensor locations are determined through

a single-objective optimization model. The model maximizes

the detection coverage rate under a fixed number of sensors

and is solved by the fast messy Genetic Algorithm (fmGA).

The optimization process is performed individually for

different scenarios of different numbers of sensors. The net

cost is then calculated by the sum of the normalized detec-

tion uncovering rate and investment cost of pressure

sensors. The optimal number of sensors is determined by

analyzing the relationship between the net cost and the

number of sensors. The proposed net cost indicator is
om http://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
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demonstrated on a benchmark network Net3 and used to

investigate the impact of uncertainties of sensor accuracy

and burst flow magnitude on the optimal number of sensors.

This new method can provide informed decisions on finding

the optimal number of sensors and their locations in a large

network that can accurately and effectively detect pipe

bursts should they occur.
METHODOLOGY

Problem formulation

Pipe burst event detection

Pipe burst can incur an unexpected demand increase at

some nodes, and thus result in variations in pressure

measurements. Assuming the WDSs installed with a given

number (N0) of pressure sensors at different locations, a

pipe burst event can be detected by comparing the differ-

ences between the real-time measured pressures by sensors

and the corresponding simulated pressures under the base

diurnal variation pattern with detection thresholds. The

difference between the measured and simulated pressures,

i.e. residual, is calculated as below:

Ri(t) ¼ PL
i (t)� PB

i (t) i ¼ 1, 2, . . . , N0 (1)

where Ri(t) is the pressure residual at ith sensor node at time

step t; PL
i (t) is the measured pressure after the event occurs;

PB
i (t) is the corresponding simulated pressure during an

extend period simulation under a base diurnal variation pat-

tern; N0 is the number of sensors. Nodal demand always

fluctuates on the basis of a base diurnal variation pattern

under the normal operational state. The normal pressure

difference between the normal operational state and the

base diurnal variation pattern could be determined.

Here, the detection threshold at each sensor node for

pipe burst events is defined as the sum of sensor accuracy

and normal pressure difference, as shown below:

ΔPthreshold
i (t) ¼ δsensor þ jΔPN

i (t)j (2)

where ΔPthreshold
i (t) is the detection threshold at ith sensor

node at time step t; δsensor is the sensor accuracy; ΔPN
i (t) is
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the normal pressure difference at ith sensor node at time

step t. If the residual pressure by at least one sensor exceeds

its detection threshold, it is considered to be a pipe burst.

In this paper, it is assumed that nodal demand always

follows the same diurnal variation pattern on different

days under the normal operational state. Thus, the normal

pressure difference ΔPN
i (t) is equal to 0, which means that

the detection threshold for the simulated pipe burst event

is determined only by the sensor accuracy.

Sensor placement cost

In general, the investment cost (IC) of sensors consists of

capital, maintenance and operational costs. The unit capital

sensor cost C(δ) is related to the sensor accuracy. It is

assumed that the overall investment of sensors (ICsp) is the

unit capital sensor cost multiplied by the number of sensors

(N ) as below:

ICsp ¼ C(δ) ×N (3)

where N is a variable representing the number of sensors.

The other costs are not taken into account here due to the

lack of the local price information.

Detection coverage rate

The performance of sensor placement with respect to pipe

bursts is evaluated by the index of detection coverage rate,

which reflects the effectiveness of a set of sensor locations.

Here, the detection coverage rate is defined as the ratio of

detectable events to the total simulated events, which is

same as the DP proposed by Jung et al. ():

DCR ¼ NSdetected

NStotal
¼

PN
i¼1

PNStotal
k¼1 Di,k

NStotal
(4)

where DCR is the detection coverage rate, which ranges

from 0 to 1; NSdetected is the total number of detectable

events by the set of sensors; i is the sensor index and k is

the event index; Di,k is equal to 0 or 1 and it is calculated

using Equation (5); NStotal is the total number of pipe

burst events. Therefore, if the value of DCR is greater, the

set of sensors can detect more pipe burst events and the
://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
deployment of the sensors is more effective:

Di,k ¼ 1 if(Ek is detected by Si but not by {S1, . . . , Si�1})
0 else

�

(5)

where Ek is the kth event and Si is the ith sensor. This

ensures that the value of NSdetected is always no greater

than the NStotal.
Solution methods

An optimal sensor placement problem needs to determine

the minimum number of sensors and their best locations

with the purpose of detecting as many burst events as poss-

ible. This paper presents an economic indicator named as

net cost based on the single-objective optimization model

and CBA to solve the optimal pressure sensor placement

problem. A two-stage decision-making framework based

on the proposed indicator is illustrated in Figure 1.
Stage 1: optimization for the set of sensor locations using
fmGA

When the number of sensors (N0) is given, the optimal

sensor placement is formulated as a single-objective optimiz-

ation problem. The decision variables used here are the

locations of sensors, denoted by XN0 ¼ [x1, x2, . . . , xN0 ],

which should be the candidate node ID in WDSs. The

objective function is the maximization of DCR given by

Equation (4).

To evaluate the DCR of different sets of sensor locations,

the database of the synthetic pipe burst events is generated

initially. Due to the event being difficult to mimic in the

real-world WDSs, the pressure measurements are simulated

by a hydraulic model of the network. Here, pipe burst is

simulated at a random node in the WDSs and concurrent

multiple pipe bursts are taken into account in the study.

All the nodes can be chosen as the potential burst locations

except the reservoirs and tanks. The Monte Carlo method

(Gasparini ) is employed to stochastically generate the

number of burst events, the position of the increasing

demand (i.e. node ID).



Figure 1 | Framework of the two-stage decision-making method for optimal sensor placement.
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EPANET 2 is an open-source software developed by the

United States Environmental Protection Agency and can be

used for extended period simulation of hydraulic and

water quality behaviors within pressurized pipe networks

(Rossman ). Therefore, the EPANET 2 is employed to

calculate the pressure changes at all nodes under the both

normal demand pattern and synthetic pipe burst events.

For the given number of sensors, the fmGA is selected

here to optimize the sensor placement model. As a variant

of the simple Genetic Algorithm (sGA), the fmGA was

developed by Goldberg et al. () to solve the large-scale

and high-dimensional optimization problem. In contrast to

the uniform-length string representation of sGA, fmGA

uses a variable-length string representation. The optimiz-

ation process consists of an outer loop and an inner loop.
om http://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
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Each outer loop corresponds to an inner loop, including

initialization, a primordial phase and a juxtapositional

phase. In comparison with the messy Genetic Algorithm

(Goldberg et al. ), the probabilistically complete initiali-

zation method is used to substitute the enumeration method

to generate the initial population in the initialization phase,

which effectively reduces the size of the initial population

and avoids the excessive memory use. In the primordial

phase, the lengths of the initial population are periodically

reduced using the build block filtering method to obtain

the population which can be juxtaposed to obtain an opti-

mal individual with high probability. In the juxtapositional

phase, the cut-and-splice operator is used to reproduce off-

spring for the next generation. The key parameters for the

fmGA are population size, generation number within the
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inner loop, cut rate and splice rate. Previous researches have

proved that the fmGA outperforms the sGA when applying

to the optimization of WDSs (Wu & Simpson ).

The optimal DCR and the corresponding set of sensor

locations under different numbers of sensors are determined

at Stage 1 and the results from Stage 1 are used to determine

the optimal number of sensors at Stage 2.

Stage 2: determination for the optimal number of sensors
using CBA

CBA is used to determine the optimal number of sensors at

this stage. In this paper, the maximal value of sensor number

is denoted by Nmax and the minimal one is denoted by Nmin

within all the cases of sensor numbers. For a case of sensor

number (N), the cost can be represented by the total IC of

sensors, denoted by ICsp(δ,N) in Equation (3), and the opti-

mal DCR is employed to represent the benefit, denoted

by DCR(N)opt. Due to the difference of units between the

ICsp(δ,N) and the DCR(N)opt, the cost and expected benefit

are normalized using Equations (6) and (7):

ICnor(δ, N) ¼ IC(δ, N)�min IC
max IC�min IC

(6)

DCRnor(N)opt ¼
DCR(N)opt �min DCRopt

max DCRopt �min DCRopt
(7)

where ICnor(δ, N) and DCRnor(N)opt are the normalized cost

and benefit, respectively; max IC and max DCRopt are the

maximum cost and maximum benefit, respectively; min IC

and min DCRopt are the minimum cost and minimum

benefit, respectively. Assumed that uniform sensors (i.e. uni-

form measurement accuracy) are employed for the sensor

placement, Equation (6) is simplified to Equation (8) based

on Equation (3):

ICnor(δ, N) ¼ C(δ) ×N � C(δ) ×Nmin

C(δ) ×Nmax � C(δ) ×Nmin
¼ N �Nmin

Nmax �Nmin
(8)

where Nmax and Nmin are the maximum and minimum

number of sensors. The maximum number of sensors can

be determined by analyzing the variation of optimal DCR

with the increase in the number of sensors, which has an

impact on the determination of the optimal number of
://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
sensors. When the optimal DCR does not show a significant

improvement, the maximum number of sensors is deter-

mined. The maximum number of sensors has an impact on

the determination of the optimal number of sensors.

In order to determine the optimal number of sensors,

the optimal detection uncovering rate (UCR), denoted by

UCR(N)opt, is introduced here:

UCR(N)opt ¼ 1�DCR(N)opt (9)

Similar toEquation (7), the normalizedUCR,UCRnor(N)opt
can be obtained.

The net cost (NC) of sensor placement is the difference

between the normalized cost and benefit, which can be also

denoted by the sum of the normalized UCR and IC, as

shown below:

NC(N) ¼ ICnor(δ, N)�DCRnor(N)opt

¼ ICnor(δ, N)þUCRnor(N)opt (10)

where NC(N) is the NC of sensor placement. The optimal

number of sensors, denoted by N*, can be determined by

analyzing the relationship between the NC and the

number of sensors.
CASE STUDY

The proposed two-stage decision-making method of sensor

placement is applied to a well-known example network

from the literature, i.e. Net3, as shown in Figure 2 (Diao

et al. ). It consists of 92 junctions, 117 pipes, 2 reservoirs

(one lake and one river) and 3 tanks. The total mean demand

for the Net3 network is approximately 10,950 GPM.

In this case network, some simplifications are made in

the simulation of pipe burst: (1) here, all the burst events

are assumed to be located at nodes of WDSs, which might

result in the loss of accuracy and information at the pipe

level (Hagos et al. ; Raei et al. ); (2) all of the

nodes are considered to be the possible leak nodes except

the reservoirs and tanks; and (3) pipe burst is simulated by

adding an extra demand at the target node (Casillas et al.

; Li et al. ). The minimum and maximum of the



Figure 2 | Layout of the Net3 network.

Figure 3 | Variation of the optimal DCR with the number of sensors.
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extra demands, which are used to represent the variation

range of burst flow, are set to 50 and 100 GPM, respectively.

The resulting burst magnitudes range from 0.46% to 0.92%

of the total mean demand. Only single or double leaks are

considered in this study since more than two simultaneous

bursts are unlikely to occur in a network in practice. In

total, 1,000 synthetic pipe burst events are generated using

the Monte Carlo method, i.e. by randomly sampling the

number of leak nodes (i.e. 1 or 2 leaks), their locations

and their burst flows. The sensor accuracy is initially set to

0.05 psi by which the pressure changes can be evaluated

in comparison with the normal operation mode of pressures,

and other sensor accuracies are considered in the impact

analysis.
RESULTS AND DISCUSSION

Optimal number of sensors and set of sensor locations

To analyze the variation of optimal DCR with an increasing

number of sensors, Figure 3 shows the boxplot from 10

random runs. It shows that for a given number of sensors,

the optimal DCRs obtained by 10 random runs are almost

the same, which indicates that the optimization process is

converged well with the fmGA. Moreover, the optimal

DCR increases with the increase in the number of sensors,
om http://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
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but increase slowly after 12 sensors. The optimal DCR is

approximately 92.23% after 25 sensors; thus, there is no

benefit in deploying more sensors. This is because some of

the pipe burst events cannot be detected by the deployed

sensors due to the sensor accuracy and the burst locations.

This result agrees with that obtained by Hagos et al. ().

However, with the improvement of the sensor accuracy,

the optimal DCR can be improved further as illustrated in

the next section.

Figure 4 shows how frequent a node is chosen to be the

location for sensor deployment, based on the optimal sol-

utions obtained. Recall that there are 21 cases with respect

to the number of sensors and for each case 10 runs are

conducted with the fmGA. Therefore, in total 210 solutions

of sensor placement are obtained. There are 11 sensor

locations which have been chosen over 60 times. This

demonstrates that these nodes are critical locations for

sensor placement which are more sensitive to simulated

pipe burst events and are highlighted in the topology of

Net3 in Figure 5. It demonstrates that the sensors tend to

be placed at the center of the WDSs. From the perspective

of a topological analysis, the sensors at the topological

center of the network can reach each boundary of the net-

work with the shortest paths and access to the variation of

pressures at nodes. Therefore, the sensors deployed at

these locations can cover more pipe burst events.

To determine the optimal number of sensors, the maxi-

mum number of sensors, Nmax, is set to 25 and the

minimum one, Nmin, is 1. The normalized UCR and the



Figure 4 | Occurrences of the optimal pressure sensor locations.

Figure 5 | Critical sensor locations in Net3.

Figure 6 | Determination of the optimal number of sensors using CBA.
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normalized IC are calculated by Equations (9) and (10) for

different numbers of sensors. Figure 6 shows the variation

of the normalized UCR, the normalized IC and the normal-

ized NC when the sensor accuracy is 0.05 psi. The

normalized IC is represented by the circular symbols. It

increases linearly with the number of sensors because the

overall investment of sensors is assumed here to be the

unit sensor cost multiplied by the number of sensors. The

normalized NC (i.e. the sum of the normalized UCR and

investment IC) is represented by the squared symbols in
://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
Figure 6. The lowest point of the green curve represents

the optimal number of sensors, which is 5 in this case.

Table 1 shows the node ID of optimal sets of sensor

locations and corresponding DCRs under 10 random runs

of fmGA when the optimal number of sensors is 5. Results

show that all of 10 solutions could achieve the equal DCR,

which has been demonstrated in Figure 3. However, the

optimal set of sensor locations vary slightly with different

solutions. Only Node 208 and 265 are chosen to be the opti-

mal sensor locations for all of the optimal sets of sensor

locations. It means that sensors at these two nodes are

more sensitive to the simulated pipe burst events.



Table 1 | Node ID of optimal sets of sensor locations for five sensors

Solution 1 2 3 4 5 6 7 8 9 10

Loc. 1 10 101 10 109 10 10 115 101 10 101

Loc. 2 149 147 153 147 147 143 147 145 143 143

Loc. 3 171 171 173 171 171 171 171 171 173 173

Loc. 4 208 208 208 208 208 208 208 208 208 208

Loc. 5 265 265 265 265 265 265 265 265 265 265

DCR (%) 86.86 86.86 86.86 86.86 86.86 86.86 86.86 86.86 86.86 86.86
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To analyze the topological relation inNet3 among different

solutions, theoptimal sensor locations of solution2 (represented

by triangles) and other alternative sensor locations (represented

by circles) are shown in Figure 7. As can be seen, the optimal

sensor locations are evenly distributed in the whole network.

This finding is different from the findings obtained in Hagos

et al. (), in which results show that the best locations for

sensors are located at the end of the case network. The main

reason is the topology difference between two case networks.

Comparing with Hagos et al.’s case network including only

one reservoir, there exist two reservoirs and three tanks in

network Net3. They are located in different areas of the Net3,

which could reduce the impact of pipe burst events on nodal

pressures at the end of the network. In addition, alternative

sensor locations obtained by other solutions are located

near to the sensor locations of solution 2, which illustrates

sensors in these areas could achieve a nearly equal DCR.
Figure 7 | Optimal sets of sensor locations for five sensors in Net3.
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To determine the best set of sensor locations for five

sensors, all the optimal solutions obtained by the fmGA

under the number of sensors (ranging from 5 to 10) are

analyzed to find the nested solutions, as shown in

Table 2. When the number of sensors is increased from 5

to 9, the optimal solution for N sensors is always a superset

of that for N� 1 sensors. It means that increasing the

number of sensors will not result in a complete variation

of the proposed sensor network but only its expansion.

Comparing with the solution for nine sensors, the differ-

ence of the solution for 10 sensors is that IDs of sensor

locations including 149, 171 and 181 are replaced by the

IDs of 147, 173 and 183, respectively. According to the

topological analysis, they are located near to each other

in Net3. Thus, the flexibility of sensor placement can be

guaranteed if water utilities have an increase in the

budget or network expansion.

Impact of sensor accuracy

According to Equations (3) and (4), the DCR and the IC

of the sensors are significantly influenced by the sensor

accuracy. To investigate the impact of the sensor accu-

racies on the determination of the optimal number of

sensors, four-sensor accuracies, including 0.03, 0.05,

0.07 and 0.09 psi, are used to test the variation of press-

ures and analyze the DCRs and the optimal number of

sensors. Here, both the single leak and double leak are

considered to analyze the impact of sensor accuracy.

The minimum and maximum of the extra demands at

one leak node are set to 50 and 100 GPM, respectively,

for single leak condition. The minimum and maximum

of the extra demands at one leak node are set to 25 and

50 GPM, respectively, for double leak condition.



Table 2 | Best sensor locations with different numbers of sensors

Number ID of sensor location DCR (%)

5 10 149 171 208 265 86.86

6 10 149 171 208 265 59 88.36

7 10 149 171 208 265 59 159 89.43

8 10 149 171 208 265 59 159 119 90.29

9 10 149 171 208 265 59 159 119 181 90.94

10 10 147 173 208 265 59 159 119 183 271 91.47

Figure 9 | Optimal DCRs for different sensor accuracies (Double leak condition).
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Figure 8 shows the optimal DCRs for different sensor

accuracies under the single leak condition. It shows that

the maximal DCR can approximately reach 93.1% with

the sensor accuracy of 0.03 psi, while the maximal one is

only 64.7% with the sensor accuracy of 0.09 psi. Under the

double leak condition, the optimal DCRs for different

sensor accuracies are shown in Figure 9. The results show

that the maximal DCR can approximately reach 94.5%

with the sensor accuracy of 0.03 psi, while the maximal

one is only 54.0% with the sensor accuracy of 0.09 psi.

Under both single leak and double leak conditions, the

higher the sensor accuracy, the larger the optimal DCR is.

For all sensor accuracies, the best DCR appears to have an

upper limit. It indicates that the sensor accuracy has a sig-

nificant impact on the detection coverage effectiveness. To

achieve the higher DCR, increasing the sensor accuracy is

more effective than increasing the sensor number.
Figure 8 | Optimal DCRs for different sensor accuracies (Single leak condition).

://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
With different sensor accuracies, the normalized NCs

(i.e. the sum of the normalized UCR and normalized IC)

under the single leak and double leak conditions are

shown in Figures 10 and 11, respectively. The results

reveal that the optimal number of sensors gradually

decreases from 6 to 4 under the single leak condition, and

the optimal number of sensors gradually decreases from 6

to 3 under the double leak condition when the sensor accu-

racy improves from 0.09 to 0.03 psi. The variation is

consistent with the practical experience that the sensors

with higher accuracy are more sensitive to the variation of

pressure and easily detect the occurrence of the pipe burst

event. However, high accuracy would incur the extra cost

for the sensor network construction. Thus, both the sensor

accuracy and the number of sensors should be considered

in the sensor placement, and the CBA can illustrate the opti-

mal sensor number in the trade-off relationship between the

sensor cost and the optimal DCR.



Figure 10 | Optimal number of sensors for different sensor accuracies (Single leak

condition).

Figure 11 | Optimal number of sensors for different sensor accuracies (Double leak

condition).

Figure 12 | Optimal number of sensors under different pipe burst flow magnitudes

(Single leak condition).

Figure 13 | Optimal number of sensors under different pipe burst flow magnitudes

(Double leak condition).
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Impact of the uncertainty of burst flow magnitude

Due to the effect of pipe pressure and burst characteristics

(such as cracking size), the burst flow varies significantly.

The large burst incidents can severely change the pressures

of nodes in WDSs. To analyze the impact of the uncertainty

of burst flow on the optimal sensor placement, the uncer-

tainty of burst flow is investigated here. The single leak

and double leak are also considered here to analyze the

impact of the uncertainty of burst flow magnitude. Four vari-

ation ranges of total pipe burst flow are examined, including
om http://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf

4

S1 (30–40 GPM), S2 (50–60 GPM), S3 (70–80 GPM) and S4

(90–100 GPM). The pipe burst flow is sampled from these

four ranges. The sensor accuracy is fixed to 0.05 psi. The

optimization and CBA are conducted using the same par-

ameters with the section of the case study.

Figures 12 and 13 show the cost–benefit curves for four-

pipe burst flow cases under the single leak and the double

leak conditions, respectively. Both figures indicate that the

optimal number of sensors is reduced with the increase in

the pipe burst flow magnitude. If the large bursts frequently

happen or only the large burst flows are concerned with, the
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number of sensors to achieve the same detection level can

be reduced. By contrast, to detect the smaller burst events,

more sensors should be deployed in the network, resulting

in the cost increase. Thus, in the practice of the sensor pla-

cement, factors such as infrastructure deterioration, external

conditions and pipe pressure should be taken into account,

which can impact the burst flow magnitude.
CONCLUSIONS

This paper proposes an economic evaluation indicator named

net cost, defined as the sum of the normalized optimal detec-

tion uncovering rate and investment cost of sensor based on

CBA, to determine the optimal number of sensors and opti-

mal set of sensor locations. The benchmark network Net3

is used to evaluate the performance of the proposed econ-

omic evaluation indicator. Moreover, the impacts of sensor

accuracy and pipe burst flow uncertainty on the optimal

sensor placement under both single leak and double leak con-

ditions are analyzed. According to the results obtained from

the case study, the key conclusions are drawn as follows:

1. The proposed net cost indicator based on the single-objec-

tive optimization model and the CBA method has been

proven to be effective in determining the optimal number

of sensors by analyzing the relationship between the NC

(i.e. the sum of the normalized UCR and IC of sensors)

and the number of sensors. Moreover, the critical sensor

locations tend to be placed at the center of the WDSs.

2. The sensor accuracy has a significant impact on the

detection coverage effectiveness. The optimal number

of sensors deployed in WDSs reduces with the improve-

ment of the sensor accuracy. To achieve the higher

detection coverage rate, improving the sensor accuracy

is more effective than increasing the sensor number.

3. Pipe burst flow magnitude is shown to be a key uncertainty

in determining the optimal number of sensors.More sensors

are needed to be deployed in effective places to detect small

leaks in WDSs. Thus, the burst flow magnitude should be

considered in practice for sensor placement.

In future work, the DCR indicator could be further modi-

fied by taking into account the number of nodes covered by

sensors, which might evaluate the effectiveness of sensor

locations more appropriately. Real WDSs cases should be
://iwa.silverchair.com/jh/article-pdf/22/3/606/692594/jh0220606.pdf
investigated. In terms of pipe burst events, they should be

simulated on a specific location of the pipe, which could rep-

resent the relationship of burst flow with pipe pressure and

the characteristics of the crack. It will be more appropriate

than simulating burst at nodes. Although demand-driven

analysis has been selected here to calculate variations of

nodal pressures under small burst, the pressure-driven analy-

sis must be conducted to calculate more accurate nodal

pressures under large burst in real WDSs cases. Burst prob-

abilities of different pipes could be considered by analyzing

historical pipe burst data and other factors impacting the

pipe burst, such as infrastructure deterioration, external con-

ditions and operating pressure.
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