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Modeling total resistance and form resistance of movable

bed channels via experimental data and a kernel-based

approach

Seyed Mahdi Saghebian, Kiyoumars Roushangar, V. S. Ozgur Kirca

and Roghayeh Ghasempour
ABSTRACT
An accurate prediction of roughness coefficient in alluvial channels is of substantial importance for

river management. In this study, the total and form resistance in alluvial channels with dune bedform

were assessed using experimental data. First, the data of experiments carried out at the Hydraulic

Laboratory of University of Tabriz was used to investigate the impact of hydraulic and sediment

parameters on roughness coefficient. Then, these data were combined with other laboratory data,

and the total and bedform resistance were modeled via a Gaussian Process Regression (GPR)

approach. For models, developing different input combinations were considered based on flow and

sediment characteristics. The obtained results from the experiments showed that the Reynolds

number has a better correlation with flow resistance in comparison with other hydraulic parameters.

It was found that the roughness variations due to bedform are almost between 40 and 80% of the

total roughness coefficient. Also, the obtained results proved the capability of the GPR method in the

modeling process. It was found that the model which took the advantages of both flow and sediment

characteristics performed better compared to the other models. The sensitivity analysis results

showed that the Reynolds number has the most significant impact in the prediction process.
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INTRODUCTION
Assessment of flow resistance is not a trivial matter, due to the

multitude of factors influencing roughness (e.g. bed material,

bedforms, cross-sectional and plan form variability, vegetation

etc.). Flow resistance in alluvial channels can be due to two

roughnesses: (1) the grain (or friction) roughness, which in

turn depends on size of the bed grain, and (2) the shape rough-

ness, which depends on the shape and dimensions of the

bedform as well as the depth of flow (Rouse ; Morvan

et al. ). According to Kazemipour & Apelt () and

Talebbeydokhti et al. (), almost 90% of the total base

flow resistance may be caused by form resistance; therefore,

the form roughness should not be overlooked.
Total roughness coefficient can be developed in the form

of a linear separation concept. The linear separation of the

Manning roughness coefficient is expressed in two parts: (i)

grain resistance (skin roughness), (ii) form resistance (shape

roughness). Thus, the total bed roughness coefficient can be

expressed as: n¼ f (n0, n″), where n0 is the skin resistance

and n″ is the form resistance that is due to bedform drag

(form drag) or roughness bedform.

Also, the following equations are used for calculating

the roughness coefficient in channels with bedforms

(Meyer-Peter & Müller ; Einstein ). The approach

follows the momentum concept assuming that the bed
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shear τ0 can also be separated linearly as:

τ0 ¼ τ00 þ τ000 (1)
Here, τ0 is the total shear stress, τ 00 is the shear stress due

to the grain, and τ 000 is the shear stress due to the bedform.

The Shields parameter (non-dimensional shear stress) can

also be decomposed into two accordingly:

θ ¼ τ0
γD50(s� 1)

¼ θ0 þ θ00 (2)

where θ is the total dimensionless shear stress, θ0 is the

dimensionless shear stress due to the grain, θ00 is the dimen-

sionless shear stress due to the bedform, s is the specific

gravity, D50 is the median grain size of the bed material

and γ is the specific weight. According to Engelund &

Hansen () θ0can be calculated as follows:

θ0 ¼ D0Sf

D50(s� 1)
Vffiffiffiffiffiffiffiffiffiffiffi
gD0sf

q ¼ 6þ 2:5 ln
D0

ks

� �
(3)

Here, D0 is thickness of boundary layer over the bed-

form, Sf is the energy gradient, ks is the Nikuradse

equivalent sand roughness, g is gravitational acceleration

and V is flow velocity. In order to decompose the Manning

roughness coefficients into the grain (n0) and bedform (n″)

parts, the following procedure is followed. From conserva-

tion of momentum in a steady uniform open channel flow,

the bed shear stress (total resistance) can be expressed as:

τ0 ¼ γ RSf (4)

where R is the hydraulic radius. The Manning equation writ-

ten, again, for a steady uniform open channel flow case is:

V ¼ 1
n
R2=3 S1=2f (5)

Now, combining Equations (1), (4) and (5), one can

decompose the Manning roughness coefficient as:

τ 00 þ τ 000 ¼ γR(S0
f þ S00

f ) ¼
V2γ

R1=3
(n02 þ n002) (6)
://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
The complexities and uncertainties of bedform configur-

ations in alluvial channels continue to pose challenges for

engineers, which stem from a variety of bedform shapes

(i.e. plane bed, ripples, dunes, and antidunes) that arise

under different flow conditions. The development and van-

ishing of the bedforms change the flow velocity

distribution and flow resistance (Chien & Wan ). A var-

iety of analytical and semi-empirical approaches have been

developed to predict the roughness coefficient in alluvial

channels. Gilbert () performed some of the earliest

experiments on alluvial channels, and found that the resist-

ance coefficient varied with bedforms. Kennedy ()

investigated the mechanics of formation of bedform, and

the effect of bedform on the hydraulic resistance. Engel &

Lau () found that dune length to depth ratio (or dune

steepness) has a significant effect on the friction factor

when the dunes are steep. Karim () proposed a new

method for predicting relative dune height in a sand-bed

stream based on the concept of relating energy loss due to

form drag to the head loss across a sudden expansion in

open channel flows. Heydari et al. () proved that by

increasing the Shields number, the ratio of Manning’s rough-

ness coefficient related to dune bedforms and the total

Manning’s roughness coefficient increased with a logarith-

mic trend. However, the existing equations rely on a

limited database, untested model assumptions, and a general

lack of field data, and they do not show the same results

under variable flow conditions. These issues cause uncer-

tainty in the prediction of flow resistance phenomenon;

therefore, it is critical to utilize methods which are capable

of predicting roughness coefficient within the channels with

dune bedforms under varied hydraulic conditions.

In recent years artificial intelligence approaches (e.g.

Artificial Neural Networks (ANNs), Neuro-Fuzzy models

(NF), Genetic Programming (GP), Gene Expression Pro-

gramming (GEP), and Support Vector Machine (SVM),

Gaussian Process Regression (GPR)) have been used for

the assessment of the accuracy of complex hydraulic and

hydrologic phenomena, such as prediction of groundwater

levels (Amaranto et al. ), estimation of hydraulic jump

energy dissipation in channels with rough elements (Roush-

angar & Ghasempour ), prediction of flow resistance in

alluvial channels (Roushangar et al. ), prediction of pile

group scour in waves (Ghazanfari-Hashemi et al. ),
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computing longitudinal dispersion coefficients in natural

streams (Azamathulla & Wu ), real-time hydrologic fore-

casting (Yu et al. ), side weir discharge coefficient

(Azamathulla et al. ), and prediction of non-cohesive

sediment transport in circular channels (Roushangar &

Ghasempour ). Machine learning, a branch of artificial

intelligence, deals with the representation and generaliz-

ation of physical phenomena using a data learning

technique. Representation of data instances and functions

evaluated on these instances are part of all machine learning

systems. Generalization is the property that the system will

perform well on unseen data instances; the conditions

under which this can be guaranteed are a key object of

study in the subfield of computational learning theory.

There is a wide variety of machine learning tasks and suc-

cessful applications. In general, the task of an ML

algorithm can be described as follows: given a set of input

variables and the associated output variable(s), the objective

is learning a functional relationship for the input–output

variables set.

In this study, first, the impact of hydraulic and sediment

parameters on total and form roughness coefficient was

assessed by using the experimental data carried out at the

Hydraulic Laboratory of University of Tabriz. Then, these

data were combined with several available data sets in the

literature, and the capability of the GPR as a kernel-based

approach was investigated for modeling roughness coeffi-

cient in channels with dune bedforms. The models were

defined considering various input combinations alternatives,

specifically based on hydraulic characteristics and sediment

properties, in order to evaluate the most appropriate input

combination for roughness coefficients modeling. Finally, a

sensitivity analysis was performed to find the most signifi-

cant parameters in the modeling processes.
MATERIALS AND METHODS

Gaussian process regression (GPR) as a kernel-based

approach

Kernel-based approaches, such as GPR, are a relatively new

and important method based on the different kernel types,

which are based on statistical learning theory. Such
om http://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
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models are capable of adapting themselves to predict any

variable of interest via sufficient inputs. The training of

these methods is fast and has high accuracy. GPRs can

model non-linear decision boundaries, and there are many

kernels to choose from. They are also fairly robust against

overfitting, especially in high-dimensional space. However,

the appropriate selection of kernel type is the most impor-

tant step in the GPR due to its direct impact on the

training and classification precision. In fact, these methods

are memory intensive, trickier to tune due to the importance

of picking the right kernel, and do not scale well to larger

datasets. In these models the proper behavior of the

system can be predicted, although its intrinsic structure

and behavior cannot be characterized.

GPR models are based on the assumption that adjacent

observations should convey information about each other.

Gaussian processes are a way of specifying a priori directly

over function space. This is a natural generalization of the

Gaussian distribution, whose mean and covariance are a

vector and matrix, respectively. The Gaussian distribution

is over vectors, whereas the Gaussian process is over func-

tions. Thus, due to prior knowledge about the data and

functional dependencies, no validation process is required

for generalization, and GP regression models are able to

understand the predictive distribution corresponding to the

test input (Rasmussen & William ). A GP is defined

as a collection of random variables, any finite number of

which has a joint multivariate Gaussian distribution. Con-

sidered input space χ ¼ ℜn of n-dimensional vectors to

an output space γ ¼ ℜ of real-valued targets, in which n

pairs (xi, yi) are drawn independently and identically distrib-

uted. For regression, assume that y ⊆ ℜ; then, a GP on γ is

defined by a mean function μ : χ ! ℜ and a covariance

function k: χ × χ ! ℜ.

In GP regression the main assumption is that y values can

be calculated from y ¼ f(x) þ ξ, where ξ ∼ N(0, σ2). In GP

regression, for every input x there is an associated random

variable f(x), which is the value of the stochastic function f

at that location. In this work, it is assumed that the observa-

tional error ξ is normal independent and identically

distributed, with a mean value of zero (μ(x) ¼ 0), a variance

of σ2 and f(x) drawn from the Gaussian process on χ speci-

fied by k. That is, Y ¼ (y1, . . . . . . :, yn) ∼ N(0, K þ σ2 I)

where Kij ¼ k (xi, xj), and I is the identity matrix. Because
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Y=X ∼ N(0, K þ σ2 I) is normal, so is the conditional distri-

bution of test labels given the training and test data of

p(Y�=Y , X, X�). Then, one has Y�=Y , X, X�~N(μ, Σ),

where:

μ ¼ K(X�, X)(K(X, X) þ σ2 I)�1 Y (7)

Σ ¼ K(X�, X�) � σ2 I

� K(X�, X) (K(X, X) þ σ2 I))�1 K(X, X�) (8)

If there are N training data and N� test data, then

K(X, X�) represents theN × N�matrix of covariances eval-

uated at all pairs of training and test data sets, and this is

similarly true for the other values of K(X, X), K(X�, X)

and K(X�, X�); here X and Y are the vector of the training

data and training data labels yi, whereas X� is the vector of

the test data. A specified covariance function is required to

generate a positive semi-definite covariance matrix K,

where Kij ¼ k(xi, xj). The term of the kernel function used

in Support Vector Machine (SVM) is equivalent to the

covariance function used in GP regression. With the

known values of kernel k and degree of noise σ2, Equations

(7) and (8) would be enough for inference. During the train-

ing process of GP regression models, one needs to choose a

suitable covariance function as well as its parameters. In the

case of GP regression with a fixed value of Gaussian noise, a

GP model can be trained by applying Bayesian inference, i.e.

maximizing the marginal likelihood. This leads to the mini-

mization of the negative log-posterior:

p(σ2, k) ¼ 1
2
yT (K þ σ2 I) �1 y þ 1

2
log jK þ σ2 Ij

� log p(σ2) � log p(k) (9)

To find the hyperparameters, the partial derivative of

Equation (8) can be obtained with respect to σ2 and k,

and minimization can be achieved by gradient descent.

For more details about GP regression and different covari-

ance functions, readers are referred to Kuss (). The

optimal value of capacity constant (C), the size of error-

intensive zone (ε), and kernel parameter (γ) in SVM and

Gaussian noise in GPR are required due to their high

impact on the accuracy of mentioned regression

approaches. In this study, optimization of these parameters
://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
has been performed by a systematic grid search of the par-

ameters using cross-validation on the training set. In this

grid search a normal range of parameters settings are inves-

tigated. First, optimized values of C and ε for a specified γ

were obtained and then γ was changed. Statistical par-

ameters (R, DC, and MAPE) were used to find optimums.

The values of C, ε and kernel parameter (γ) which lead to

the highest R and DC and lowest MAPE, were selected as

optimum amounts.

Data collection

Experimental setup

In order to study the variation of roughness coefficients in

open channels with dune bedform, several dune bedform

experiments were performed in a 10 m long, 0.5 and 1 m

wide, and 0.8 m high rectangular flume at the hydraulic

laboratory of Tabriz University (Saghebian ). The

flume had glass walls and a metal floor. Sediment particles

used in the experiments were sand with specific gravity of

2.65 and uniform average diameters of 0.15 and 0.27 mm.

Water flow was supplied by a pump, re-circulating between

the upstream and downstream. In these experiments, dis-

charge rate was controlled by a valve in the discharge

pipe of the pump, and sediment was re-circulated together

with water. The original flume had ratchet screw jacks for

adjusting the slope of the flume. In this research, the

flume slope was variable from 0 to 0.5%. To measure the

water depth, a point gauge was used with accuracy of

0.1 mm. The point gauge was able to move along the

length and width of the channel and measure the bedform

height and water depth in the entire channel. By changing

the flow depth and discharge, the average velocities,

Froude numbers, dune height, and other parameters were

calculated. In this study, at first several experiments were

performed in the state of channel without bedform. Then,

the friction coefficients of the channel’s walls and bed

were determined. To determine the form resistance, the

effective roughness coefficient was extracted using the

composite channel roughness equations. Finally, the walls

roughness coefficients were subtracted from effective

roughness coefficient and form resistance was obtained.

Figure 1 shows a view from the channel, and pebbles



Figure 1 | A view of the channel.
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used in downstream of the channel for reducing the turbu-

lence of the flow.

Together with these experiments, the data sets of lab-

oratory experiments of roughness coefficient in open

channels with dune bedforms carried out by Guy et al.

(), Williams () and Roushangar () were used.

The ranges of various parameters used in the experiments

are listed in Table 1. The used variables in this table are:

channel width (b), mean grain diameter (D50), Flow

depth (y), Froude number (Fr¼V/[g × y]1/2) in which V is

flow velocity and g is gravitational acceleration, and

Reynolds number (Re¼VR/ν) in which R is hydraulic

radius and ν is kinematic viscosity. Williams () organized

several experiments that were made in channels with

different widths and water depths in laboratories in

Washington, DC. Sediment transport rates, grain size, water

depth, and channel width were measured. Furthermore,

water discharge, mean velocity, slope (energy gradient), and

bedform characteristics were considered as the dependent
Table 1 | Details of the utilized experimental data

Researcher

Parameters

b (mm) D50 (mm) Fr

Williams () 76.2–1,118 1.35 0.34–

Guy et al. () 609–2,438 0.19–0.93 0.25–

Roushangar () 150 0.15–0.4 0.21–

Saghebian () 500, 1,000 0.15, 0.27 0.19–

om http://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
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variables. Guy et al. () studied the effects of the bed

material size, flow temperature, and the fine sediment

within the flow on the hydraulic and transport variables at

Colorado State University. The investigations for each set

covered flow phenomena ranging from a plane bed with no

sediment movement to violent anti-dunes. Roushangar

() organized several dune bedforms experiments that

were made in a 5 m long, 0.5 m wide, and 0.25 m high rec-

tangular flume in the hydraulic laboratory of Caen

University. Natural quartz sand was used as sediment par-

ticles in the experiments.
Performance criteria

Evaluating the performance of a model is commonly carried

out using different statistical indexes. In this study the per-

formance of the GPR models was evaluated using three

statistical indexes: Determination Coefficient (DC), Corre-

lation Coefficient (CC), and Mean Absolute Percentage
No. of dataRe y (mm)

0.84 11,932–101,920 87.1–222 89

0.65 46,800–255,500 91.4–405 114

0.40 24,192–45,869 71–145 54

0.49 23,561–47,238 190–370 65
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Error (MAPE). The DC measures the fraction of the var-

iance in the data explained by the model. The R provides

information for the linear dependence between measured

and predicted values, and the MAPE indicates the absolute

differences between estimated and observed values as

depicted in Equation (10):

CC ¼
PN

i¼1 (lo � lo) × (lp � lp)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (lo � lo)

2
× (lp � lp)

2
q ,

DC ¼ 1�
PN

i¼1 (lo � lp)
2

PN
i¼1 (lo � lp)

2 ,

MAPE ¼ 1

lo

Pn
i¼1

jlo � lpj
N

× 100

(10)

where lo, lp, lo, lp, N respectively represent: the measured

values, predicted values, mean measured values, mean pre-

dicted values and number of data samples.
SIMULATION AND MODEL DEVELOPMENT

Input variables

The appropriate selection of input parameters is an impor-

tant step in the modeling process. The total and bedform

resistance can be expressed as a function of different sets

of input variables. In this study, the total and bedform
Table 2 | GPR developed models

Hydraulic properties Hydraulic and sediment properties (

Model Inputs Model Inputs

H1 Re HS1 R/D50

H2 Fr HS2 V/[g(s–1)D5

H3 y/b HS3 Vy/[g(s–1)D

H4 Re, y/b HS4 Re, R/D50

H5 Fr, y/b HS5 Fr, R/D50

HB1 Re, y/L

HB2 Re, y/H

HB3 Re, y/L,L/H

://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
Manning roughness coefficients (n and n″) are used to

quantify the resistance, and these two coefficients are

expressed through a set of dimensionless variables.

To investigate the impacts of different parameters on

roughness coefficient, two states were considered for

developing the models. In the first state, parameters of

the flow condition were selected as the model input:

n and n″¼ f (Re, Fr, y/b). In the second state, flow,

bedform, as well as sediment properties were considered

as input combinations:

n andn00 ¼ f(Re, Fr, R=D50, y=L, y=H, Vy=[g × (s–1)D3
50]

0:5,

V=[g(s–1)D50]
0:5)

where R is the hydraulic radius, L and H are bedform

length and depth, respectively, and Vy/[g × (s–1) D50
3 ]0.5

and V/[g(s–1) D50]
0.5 are the relative discharge and modi-

fied (densiometric) Froude number, respectively. Table 2

shows the developed GPR models in the study along

with the input parameters used for each model. It should

be noted that 75% of data were used for training and

25% of data were used for validating or testing the

models. The order of the data sets was selected in a way

such that the training data set contains a representative

sample of all the behavior in the data in order to obtain

a model with higher accuracy. One method for finding a

good training set, which can give good accuracy both in

training and testing sets, is an instance exchange which

starts with a random selected training set (Bolat & Yildirim

).
HS) and hydraulic and bedform geometry (HB)

HS6 V/[g(s–1)D50]
0.5, R/D50

0]
0.5 HS7 V/[g(s–1)D50]

0.5, Re

50
3 ]0.5 HS8 Vy/[g(s–1)D50

3 ]0.5, Re

HS9 Vy/[g(s–1)D50
3 ]0.5, R/D50

HS10 Re, Vy/[g(s–1)D50
3] 0.5, R/D50
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RESULTS AND DISCUSSION

Results of the experimental study of total and bedform

friction factor

In this section, the variations of the total and bedform Man-

ning roughness coefficients with hydraulic parameters only

(Fr and Re), and both hydraulic and sediment parameters

(θ, Vy/[g(s–1) D50
3 ]0.5) were investigated through the exper-

imental data only. The results are shown in Figure 2. It

should be noted that for calculating the grain (skin) rough-

ness and bedform roughness coefficients the shear stresses

of τ 0 and τ 00 were used, which corresponds to the skin and

bedform resistances, respectively. At first, skin roughness

(n0) was calculated for the plane bed based on calculating

θ0 and τ 0. Then, θ00 was calculated using Equation (1). Finally,

the following equation was used for calculating the n″

parameter:

τ00 ¼ θ00

ρ
ρs
ρ
–1

� �
gD50

τ00 ¼ ρgRS00f n00 ¼
R

2
3S001=2f

V
(11)

It should be noted that at first D’ in Equation (3) was

solved by trial and error, followed by the determination of

θ0 given in this equation. Then θ00 could be found from
Figure 2 | The variation of the n and n″ versus hydraulic and sediment parameters.

om http://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
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Equation (1), since it is straightforward to find θ. Finally,

Equation (11) is used to solve the n″ value.

According to Figure 2, it can be seen that the corre-

lation of the n with the Reynolds number is slightly

better than the Froude number. For n″, there is no desired

correlation between this parameter and Re and Fr and,

with increasing the Froude number which leads to dune

bedform variation, the form friction coefficient decreased.

It seems that the total and bedform roughness coefficients

could not only depend on hydraulic parameters. According

to Figure 2, the Shields parameter (θ) shows the best corre-

lation with total and form resistance among the studied

parameters, and with increasing the Shields parameter

values, the values of n and n″ increase (due to the

direct relationship between the energy line slope and the

flow resistance coefficient). Also, it could be seen that n

and n″ did not show a significant correlation with Vy/

[g(s–1) D50
3 ]0.5. This issue indicates that there is an uncer-

tainty in using the hydraulic and sediment parameters as

the only input variables in the roughness coefficient esti-

mating process.

To investigate the impact of the form resistance on the

total roughness coefficient, the variations of the skin resist-

ance, form resistance and total resistance versus hydraulic

and sediment parameters are presented in Figure 3.



Figure 3 | (a) The variation of the n and n’, n″ versus hydraulic and sediment parameters, and (b): the percentage of n’ and n″ parameters variations.
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According to Figure 3(a), it can be seen that the roughness

variations due to the form resistance are almost in agree-

ment with the variations of the total Manning roughness

coefficient, and it can be concluded that the performance

of the n″ is similar to n. From the results, it was found

that the skin resistance variations are in a small range,
://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
meaning that bedform resistance dominates the flow. This

issue also could be deduced from Figure 3(b). According

to this figure, the roughness variations due to the bedform

are almost between 40–80% of the total roughness

coefficient, while the n0 variation percentage is between

20 and 60%.
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Modeling based on GPR approach

GPR models development

In the design of the GPR model, it is necessary to select the

appropriate type of kernel function. A number of kernels are

discussed in the literature. In this study, for determining the

best performance of GPR and selecting the best kernel func-

tion, the model SH10 was predicted using various kernels.

Figure 4 indicates the results of statistical parameters of

different kernels for this model. According to the results,

using the kernel function of Pearson led to better prediction
Table 3 | Performance evaluation of models with flow characteristics

Model Output

Performance criteria

Train

CC DC

H1 n″ 0.683 0.508
n 0.877 0.675

H2 n″ 0.368 0.131
n 0.576 0.198

H3 n″ 0.611 0.355
n 0.817 0.427

H4 n″ 0.738 0.631
n 0.869 0.757

H5 n″ 0.658 0.475
n 0.797 0.533

Re< 80,000 n″ 0.745 0.634
n 0.971 0.758

Re> 80,000 n″ 0.504 0.311
n 0.533 0.319

Figure 4 | Statistics parameters via GPR kernel function types for testing set of model SH10.
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accuracy. Pearson kernels were used as a core tool of GPR

which was applied for the rest of the models.
The impact of hydraulic characteristics on total and
bedform roughness coefficients

For evaluating the impact of flow features on total and bed-

form roughness coefficient, several models using only

hydraulic characteristics as input variables were developed.

Then, the developed models were trained and tested using

the GPR. The results of the developed models are listed in

Table 3 and shown in Figure 5. According to the obtained
Test

MAPE CC DC MAPE

18.560 0.664 0.513 20.173
17.405 0.827 0.546 18.679

27.142 0.315 0.118 30.910
24.088 0.555 0.132 25.843

22.025 0.573 0.323 25.788
19.933 0.793 0.325 22.442

16.185 0.716 0.614 18.561
14.445 0.858 0.713 15.504

23.122 0.589 0.423 24.391
18.463 0.672 0.466 19.806

15.08 0.721 0.618 19.23
12.08 0.867 0.716 14.21

25.18 0.412 0.208 33.84
23.05 0.446 0.244 29.58



Figure 5 | Scatter plots of predicted total and dune bedform roughness coefficients vs. observed values; based on flow characteristics.
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results, in both n and n0 modeling, the model H4 with input

parameters of Re and y/b shows better performance than the

others from the RMSE, CC, and DC viewpoints (i.e. highest

CC and DC and lowest RMSE). It seems that using par-

ameter y/b as the input parameter caused an increase in

model efficiency. Also, it could be seen that using Reynolds

number as the only input parameter yielded to the desired

accuracy compared to the case where Froude number was

used as the only input. Figure 5 represents the scatter plot

of the observed and predicted total and bedform roughness

coefficients for the best input combination. Additionally,

based on trial and error, data sets were divided into two

groups in terms of the Reynolds number (Re< 80,000 and

Re> 80,000). Then, the best input combination (Re, y/b)

was rerun for both data categories. The results are rep-

resented in Table 3 (last two rows). These findings

demonstrate that when the Reynolds numbers is less than

80,000, the model tends to be more accurate in predicting

the Manning’s coefficient. In higher ranges of the Reynolds

number (Re> 80,000) the model accuracy decreased.

The impact of hydraulic, bedform geometry, and sediment
characteristics on total and bedform roughness
coefficients

Flow and sediment characteristics were employed in the

establishment of input combination to evaluate the signifi-

cance of the bedform and sediment features for the

modeling of the total and bedform roughness coefficients.

The results in Table 4 reveal that the model HS10 including

Re, R/D50 and Vy/[g × (s–1)D50
3 ]0.5 as inputs parameters
://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
yielded better predictions. According to the results, it

could be inferred that the ratio of hydraulic radius to the

sediment diameter and Reynolds number led to the desired

results in predicting n and n″ roughness coefficients. There-

fore, both hydraulic and sediment characteristics have a

significant effect on the prediction process. It could be

seen that adding parameters Vy/[g × (s–1)D50
3 ]0.5 and R/D50

to Re caused an increase in models efficiency. Based on

the results, it was found that the developed models with

flow and bedform characteristics performed relatively

weakly in comparison with developed models with only

flow characteristics. Comparison between Tables 3 and 4

indicates that the applied methods for developed models

based on flow and sediment properties yielded better predic-

tions compared to using only flow parameters. Figure 6

presents the scatter plot of the observed and n and n″ rough-

ness coefficients for the best input combination.
Sensitivity analysis

To investigate the impacts of different parameters of the

GPR-best models on total and bedform roughness coeffi-

cients, a sensitivity analysis was performed. In order to

evaluate the effect of each independent parameter, the

model was run with all input parameters and then, one of

the input parameters was eliminated and the GPR model

was re-run. The MAPE performance criteria was used as

indication of the significance of each parameter. The

obtained results are shown in Figure 7. Based on obtained

results and according to Roushangar et al. (), it can be



Table 4 | Performance evaluation of models with flow and sediment characteristics

Model Output

Performance criteria

Train Test

CC DC MAPE CC DC MAPE

HS1 n″ 0.551 0.523 24.441 0.533 0.507 29.066
n 0.795 0.582 22.423 0.782 0.562 26.913

HS2 n″ 0.438 0.412 22.131 0.424 0.399 33.386
n 0.852 0.495 20.492 0.796 0.423 30.913

HS3 n″ 0.466 0.447 25.237 0.451 0.433 29.251
n 0.767 0.583 23.153 0.766 0.561 27.084

HS4 n″ 0.518 0.481 22.016 0.501 0.471 26.266
n 0.853 0.662 20.198 0.829 0.574 24.320

HS5 n″ 0.630 0.597 26.327 0.609 0.573 30.361
n 0.703 0.538 24.153 0.674 0.447 28.112

HS6 n″ 0.712 0.558 23.277 0.704 0.546 27.912
n 0.810 0.635 21.355 0.799 0.565 25.844

HS7 n″ 0.757 0.589 20.212 0.552 0.521 23.414
n 0.827 0.709 18.543 0.812 0.657 21.680

HS8 n″ 0.670 0.636 19.261 0.655 0.629 16.998
n 0.816 0.743 17.671 0.754 0.668 15.739

HS9 n″ 0.751 0.712 18.224 0.741 0.681 19.369
n 0.866 0.766 16.719 0.821 0.658 17.934

HS10 n″ 0.852 0.728 14.318 0.784 0.715 15.360
n 0.881 0.817 12.671 0.864 0.765 13.593

HB1 n″ 0.803 0.515 24.871 0.765 0.493 26.43
n 0.848 0.545 19.770 0.808 0.522 21.01

HB2 n″ 0.776 0.504 26.461 0.739 0.482 28.12
n 0.838 0.534 21.690 0.798 0.511 23.05

HB3 n″ 0.804 0.531 22.706 0.766 0.508 24.13
n 0.839 0.552 19.639 0.799 0.528 20.87

Figure 6 | Scatter plots of predicted dune bedform roughness coefficient vs. observed values; based on flow and sediment characteristics.
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Figure 7 | Comparison of statistical parameters obtained from sensitivity analysis.
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seen that Re and Vy/[g × (s–1)D50
3 ]0.5 had the key role in the

modeling process.
CONCLUSIONS

In the present study, the capability of the GPR model as a

kernel-based approach was verified for predicting the total

and bedform roughness coefficients in alluvial channels. In

this regard, an experimental study was conducted at the

Hydraulic Laboratory of University of Tabriz to investigate

the impact of hydraulic and sediment parameters on total

and bedform roughness coefficients. Then, these data were

combined with other laboratory data sets and the capability

of the GPR was assessed in modeling the roughness coeffi-

cients. Different input combinations based on flow and

sediment characteristics were considered in order to

develop the GPR models. The experimental study showed

that the Reynolds number has a better correlation with n

roughness coefficient in comparison with Froude number
://iwa.silverchair.com/jh/article-pdf/22/3/528/692634/jh0220528.pdf
for the tested conditions in the experiments. It was found

that the variation of Manning roughness coefficient due to

the bedform were almost in agreement with the variations

of the total Manning roughness coefficient, and the vari-

ations of skin resistance were in a small range. The

roughness variations due to the bedform were almost

between 40–80% of the total roughness coefficient. It was

shown that the total and bedform roughness coefficients

cannot be represented only by means of hydraulic par-

ameters, without including the sediment characteristics.

Also, the obtained results from the developed models

proved the desired capability of the GPR method in the

modeling process. The obtained results revealed that for pre-

dicting the roughness coefficient, the model which took the

advantages of flow and sediment characteristics performed

more successfully than the others. Regarding the total and

bedform roughness coefficients with sediment feature

characteristics, the model named HS10 with parameters

Re, R/D50, and Vy/[g × (s–1)D50
3 ]0.5 was the most accurate

model. These results showed that for predicting the total
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and bedform roughness coefficients under only hydraulic

characteristics, including (y/b) as an input parameter signifi-

cantly improved the efficiency of the models. According to

the conducted sensitivity analysis, it was found that the Re

and Vy/[g × (s–1)D50
3 ]0.5 played the most important roles in

predicting the total and bedform roughness coefficients in

alluvial channels. However, it should be noted that the

used method is a data-driven model and the GPR-based

model is data sensitive, so further studies using data

ranges out of this study and field data should be carried

out to determine the merits of the model to estimate rough-

ness coefficient in the real conditions of flow.
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