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New stochastic modeling strategy on the prediction

enhancement of pier scour depth in cohesive bed

materials

Ahmad Sharafati, Ali Tafarojnoruz and Zaher Mundher Yaseen
ABSTRACT
Scouring around the piers, especially in cohesive bed materials, is a fully stochastic phenomenon and

a reliable prediction of scour depth is still a challenging concern for bridge designers. This study

introduces a new stochastic model based on the integration of Group Method of Data Handling

(GMDH) and Generalized Likelihood Uncertainty Estimation (GLUE) to predict scour depth around

piers in cohesive soils. The GLUE approach is developed to estimate the related parameters whereas

the GMDHmodel is used for the prediction target. To assess the adequacy of the GMDH-GLUE model,

the conventional GMDH and genetic programming (GP) models are also developed for evaluation.

Several statistical performance indicators are computed over both the training and testing phases for

the prediction accuracy validation. Based on the attained numerical indicators, the proposed GMDH-

GLUE model revealed better predictability performance of pier scour depth against the benchmark

models as well as several gathered literature studies. To provide an informative comparison among

the proposed techniques (i.e. GMDH-GLUE, GMDH, and GP models), an improvement index (IM) is

employed. Results indicated that the GMDH-GLUE model achieved IMtrain ¼ 6% and IMtest ¼ 3%,

demonstrating satisfying performance improvement in comparison with the previously proposed

GMDH model.
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INTRODUCTION
Since the 1950s, several field surveys have clarified that

scour development around piers is the main cause of

bridge collapses across the globe and, due to the importance

of this issue, a large amount of research has been performed

to study the pier scour phenomenon (Breusers et al. ;

Chiew & Melville ; Ferraro et al. ). Briefly, construc-

tion of a bridge on a river alters the flow pattern, resulting in

the development of two main types of vortices (i.e. horse-

shoe and wake vortices). Horseshoe vortices extend like a

necklace at the base of the pier front, while the development

and shedding of the wake vortices occur downstream of the

pier. Both experimental and numerical studies on the turbu-

lent flow field around the piers confirmed that the shape,
dimensions and location of these vortices may significantly

vary during time (Dargahi ; Kirkil et al. ). The

scouring process initiates when such stochastic phenomena

interact with bed sediment. It is worthwhile noting that the

sediment transport is also stochastic and can be estimated

through some statistical approaches (Dodaro et al. ,

). Therefore, it is quite reasonable to consider the scour-

ing process entirely as a complex stochastic phenomenon.

Complicated scour development is usually experienced

when the bridge piers are found in cohesive soils. For gran-

ular non-cohesive soil particles, the submerged density of

the soil particles and the gravity forces are the major resist-

ance agents to the sediment motion, while in cohesive
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sediments the physico-chemical characteristics play a criti-

cal role. In fact, scouring occurs when the fluid shear on

the erodible bed exceeds the physico-chemical forces

between the cohesive bed particles and the submerged

unit weight of the sediment particles (Rambabu et al.

). Therefore, scour depth around a pier in cohesive

bed materials is associated with higher uncertainty than in

non-cohesive ones (Chang et al. ; Firat & Gungor ).

The use of semi-empirical regression-based equations is the

most common method applied for scour estimation at bridge

piers. In these equations, the ultimate pier scour depth is

defined as a function of flow properties and sediment charac-

teristics (Breusers et al. ; Melville ; Arneson et al.

). In spite of extensive laboratory studies, owing to the exist-

ence of a complex flow field around the pier foundation and

unknown influencing parameters on scour development, the

regression-based equations have not always provided promis-

ing predictions (Gaudio et al. , ; Tafarojnoruz ).

This is due to the high stochasticity phenomena of the scouring

problem. Recently, the implementation of artificial intelligence

(AI) methodologies has been considered as a reliable alterna-

tive to the existing conventional equations to solve

complicated problems when a simple equation may not rep-

resent the whole complexity of a phenomenon (Najafzadeh

et al. , ; Sharafati et al. a, c). Regarding the

pier scour depth issue, researchers have already reported sev-

eral AI models such as artificial neural networks (ANNs)

(Toth & Brandimarte ), genetic programming (GP)

(Azamathulla et al. ), linear genetic programming (LGP)

(Guven et al. ), group method of data handling (GMDH)

(Najafzadeh & Barani ) and model tree (MT) (Etemad-

Shahidi & Ghaemi ; Etemad-Shahidi et al. ) in which

better modeling methodologies are demonstrated in

comparison with the empirical equations. However, several

limitations still exist, particularly the stochastic intrinsic pro-

blem. Hence, some prediction inaccuracies relating to the

stochastic issues still exist and hydraulic scientists need to

tackle these problems to improve predictions.

It is noteworthy that none of the above approaches take

into account the stochastic behavior of the scouring process.

In fact, researchers assume scour development is a determi-

nistic phenomenon. On the contrary, owing to the random

nature and complexity of the scouring process, expected

uncertainties may lead to an unavoidable risk in pier scour
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
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estimation during foundation design (Yanmaz ). There-

fore, the use of a probabilistic framework to evaluate the

likelihood of achieving different scour depths is essential

to estimate failure probabilities due to excessive scour

depth (Johnson & Dock ). Variable uncertainties that

may originate due to the difficulties of an accurate measure-

ment should be predicted, aimed at quantifying the risk of

pier failure (Yanmaz ).

Quantifying the uncertainty of model parameters can be

accomplished through several approaches. Among them,

generalized likelihood uncertainty estimation (GLUE),

developed in the 1990s (Beven & Binley ), has been

adopted by several researchers for uncertainty analysis in

hydraulics and water resource engineering. For example, it

was recently successfully used to assess sediment yield in a

watershed (Ayele et al. ), analysis of the groundwater

transport time (Zell et al. ) and increasing the accuracy

level in the prediction of pipeline scour depth (Sharafati

et al. ). In this method, it is not necessary to maximize

or minimize the objective function, while the information

concerning various parameter sets is derived from the likeli-

hood measure indices. In the following sections, this

technique is described in detail and evaluated for the predic-

tion of scour depth around a pier in cohesive bed materials.

This investigation aims to reanalyze and revise the coef-

ficients and exponents of recently developed scour depth

equations of a cylinder founded in cohesive soils taking

into account the stochastic methodology GLUE. The

selected equations, as described in the following section,

were proposed by Najafzadeh et al. () based on the

GMDH network. Moreover, in this study, a new equation

is extracted utilizing the GP approach and its performance

and the accuracy of the novel stochastic equation in esti-

mation of the scour depth is evaluated using common

statistical indices during the training and testing phases.
METHODS

Influencing parameters and scour depth prediction

formulations

In addition to the effective parameters on scouring phenom-

ena in non-cohesive bed sediment, scour depth evolution in
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cohesive sediment particles may be also affected by the

initial water content of soil, clay percentage, and bed shear

strength (Briaud et al. ; Ansari et al. ; Rambabu

et al. ; Debnath & Chaudhuri ). The parameters

within the following equation are commonly considered as

effective parameters on maximum scour depth, ds, around

a cylinder founded in a cohesive bed sediment:

ds ¼ g1(ρ, μ, d50, y , S, U, D, Cp, IWC, g) (1)

where ds denotes maximum scour depth, g1 stands for an

unknown function, and the dependent variables

ρ, μ, d50, y , S, U, D, Cp, IWC, g are mass density of

water, water dynamic viscosity, median diameter of soil par-

ticles, flow depth, bed shear strength, mean flow velocity,

pier diameter, clay percentage, initial water content, and

acceleration due to gravity, respectively. After dimensional

analysis, the following dimensionless groups are extracted

for prediction of non-dimensional maximum scour depth

ds/D:

ds

D
¼ g2 Rep,

y
D
, Frp,

D
d50

, IWC, Cp,
S

ρU2

� �
(2)

where g2 represents an unknown function, Rep ¼ ρUD
μ

,

Frp ¼ Uffiffiffiffiffiffiffi
gD

p , and
S

ρU2 are, respectively, pier Reynolds

number, pier Froude number and non-dimensional bed

shear strength. In line with Najafzadeh et al. (), Frp

and
y
D

were replaced with the flow Froude number,

Fr ¼ Uffiffiffiffiffi
gy

p . Moreover, the influence of pier Reynolds

number on scour evolution is negligible assuming that the

flow around the pier is turbulent and in general it is insignif-

icant in the prediction of ultimate pier scour depth

(Tafarojnoruz et al. ). Concerning the selected data

utilized in the present investigation, the magnitude of non-

dimensional sediment size,
D
d50

, is not significant (Chiew &

Melville ). Therefore, Equation (2) is shortened to

Equation (3) and adopted for analysis of the present study.
://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
g3 is also an unknown function:

ds

D
¼ g3 Fr, IWC, Cp,

S
ρU2

� �
(3)

In this study, it was attempted to improve the traditional

GMDH method in the estimation of ultimate scour depth at

a pier founded in cohesive bed materials using a stochastic

approach. In this way, a new hybrid model named

GMDH-GLUE is introduced as a novel approach. Further,

the accuracy of the newly developed model was checked

by comparing it with the GP model. In this section, first

the GMDH and GP methods and their formulas are

described then the GLUE approach, as well as the

GMDH-GLUE model, is presented.
Description of GMDH based scouring model

The GMDH technique is a system identification method-

ology able to model and predict the behavior of a

complicated system according to certain input–output data

pairs (Ivakhnenko & Ivakhnenko ). Its principle was

developed on the basis of heuristic self-organizing taking

into account some certain operations such as seeding, rear-

ing, crossbreeding, and selection and rejection of seeds

attributable to the input model parameters, and model defi-

nition (Ivakhnenko & Ivakhnenko ; Amanifard et al.

; Najafzadeh & Tafarojnoruz ). The capability of

this technique in scour depth prediction has been exten-

sively assessed. For instance, the GMDH network was

successfully developed to model basin sediment yield

(Garg ), scour depth downstream of grade control struc-

tures (Najafzadeh ), stable channel design (Shaghaghi

et al. ), discharge coefficient of cylindrical weirs (Parsaie

et al. ), scouring rate under pipelines due to waves

(Najafzadeh & Saberi-Movahed ). All these investi-

gations and other similar studies prove the merits of the

GMDH technique in the estimation of scour depth around

river and marine structures.

The relationship between the output and input model

parameters in GMDH methodology was built based upon

a function of the following nonlinear Volterra functional

series which is known as Kolmogorov–Gabor polynomial
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(Farlow ; Ivakhnenko & Müller ):

ŷ ¼ a0 þ
Xn
i¼1

aizi þ
Xn
i¼1

Xn
j¼1

aijzizj þ
Xn
i¼1

Xn
j¼1

Xn
k¼1

aijkzizjzk þ . . .

(4)

where z stands for the input variables, a denotes the weight-

ing coefficients and ŷ represents the model output. Having

employed the quadratic polynomial terms, the GMDH net-

work has the following structure (Najafzadeh et al. ):

ŷ ¼ a0 þ
Xn
i¼1

aizi þ
Xn
i¼1

Xn
j¼1

aijzizj (5)

In the training step, the weighting coefficients of

GMDH network are estimated using the standard orthog-

onal least square (OLS) method so that the difference

between observed output (y) and model output (Equation

(5)) is minimized as follows (Najafzadeh & Saberi-

Movahed ):

a ¼ (ZTZ)�1ZTY (6)

Z ¼

1
1

z1p
z2p

z1q z1pz1q z21p z21q
z2q z2pz2q z22p z22q

..

. ..
.

..

. ..
. ..

.

1 zmp zmq zmpzmq z2mp z2mq

2
666664

3
777775 p, qϵ {1, 2, . . . , n}

(7)

Y ¼ {y1, y2, . . . , ym}
T (8)

where m and n denote the number of observed data and

input parameters, respectively.

Regarding the prediction of pier scour depth, combi-

nations of iterative and evolutionary algorithms by means

of GMDH technique may offer more reliable predictions

than those resulting from traditional equations and some

other soft computing techniques (Najafzadeh & Barani

; Najafzadeh & Azamathulla ). Concerning the

pier scour estimation at cohesive bed soils, Najafzadeh

et al. () suggested the quadratic polynomial GMDH

based formulas to forecast scour depth around a pier in
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
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cohesive soils as follows:

ŷ1 ¼ 0:3278þ 0:0022IWC � 0:585Fr þ 0:1309IWC:Fr

� 48 × 10�5IWC2 � 1:35Fr2
(9)

ŷ2 ¼ �0:2806þ 0:00288
S

ρU2 þ 5:34Fr � 0:0232
S:Fr
ρU2

� 7:62 × 10�7 S
ρU2

� �2

�2:42133Fr2 (10)

ŷ3 ¼ 1:657� 0:0573Cp þ 2:304Fr � 0:0675Cp:Fr

þ 5:86 × 10�4C2
p þ 7:834Fr2 (11)

ŷ4 ¼ 0:1303� 0:128ŷ1 þ 0:507ŷ3 � 0:5687ŷ1ŷ3

þ 0:5865ŷ21 þ 0:4168ŷ23 (12)

ŷ5 ¼ 0:0489� 0:369ŷ2 þ 1:138ŷ3 � 0:6505ŷ2ŷ3

þ 0:5937ŷ22 þ 0:2156ŷ23 (13)

ds

D
¼ 0:0208þ 2:9068ŷ4 � 1:957ŷ5 � 0:9366ŷ4:ŷ5

� 0:445ŷ24 þ 1:4092ŷ25 (14)
From Equations (9)–(14), it is revealed that Najafzadeh

et al. () employed four non-dimensional parameters�
i.e. IWC, Fr,

S
ρU2 and Cp

�
to predict non-dimensional

scour depth
ds

D

� �
.

Description of GMDH-GLUE based scouring model

Beven & Binley () proposed the GLUE methodology

that is a stochastic approach to quantify the variability of a

model output. Having employed the GLUE approach, it is

possible to extract the best parameters set among many

random combinations of them. Therefore, this method gen-

erates many sets of parameters using their probability

distribution functions. Afterwards, all generated sets are

divided into behavioral and non-behavioral sets using a

specified value of the behavioral threshold. Then, the re-

scaled likelihood weights of the ith set of parameters (liw)

would be determined as follows (Wang et al. ):

liw ¼ liPN
k¼1 lk

li ¼ exp � RMSEi

RMSEmin

� �
8>>><
>>>:

(15)



Table 1 | Prior distribution parameters of stochastic coefficients

Scouring formula coefficients PDF

PDF parameters

(Lower limit) (Upper limit)

a4 Uniform 0.113826 0.150535

a5 –55.2 × 10–5 –41.7 × 10–5

b2 2.50 × 10–3 3.31 × 10–3

b3 4.643478 6.141000

b4 –0.026680 –0.020170

b5 –8.76 × 10–7 –6.63 × 10–7

c2 –0.065900 –0.049830

c4 –0.077630 –0.058700

c5 5.10 × 10–4 6.74 × 10–4
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where li is the value of the ith likelihood measure of behav-

ioral and RMSEmin is the minimum value of RMSE (herein

the root mean square error parameter was considered as a

performance measure) among the total number of behav-

ioral simulations (N). Ultimately, having assigned the

uniform distribution as the prior probability distribution

of stochastic parameters, it is possible to determine the pos-

terior distribution of them using Equation (15) (Freni et al.

).

In the current investigation, the parameters of the

GLUE-GMDHmodel are modified by estimating the weight-

ing coefficients of the GMDH network using the GLUE

approach. In this way, the parametric model (random

model) was developed as Equations (16)–(21) while all

weighting coefficients of GMDH (36 coefficients) were con-

sidered as random variables:

ŷ1 ¼ a1 þ a2IWC þ a3Fr þ a4IWC:Fr þ a5IWC2 þ a6Fr2

(16)

ŷ2 ¼ b1 þ b2
S

ρU2 þ b3Fr þ b4
S:Fr
ρU2 þ b5

S
ρU2

� �2

þb6Fr2 (17)

ŷ3 ¼ c1 þ c2Cp þ c3Fr þ c4CpFr þ c5C2
p þ c6Fr2 (18)

ŷ4 ¼ d1 þ d2ŷ1 þ d3ŷ3 þ d4ŷ1ŷ3 þ d5ŷ21 þ d6ŷ23 (19)

ŷ5 ¼ e1 þ e2ŷ2 þ e3ŷ3 þ e4ŷ2ŷ3 þ e5ŷ22 þ e6ŷ23 (20)

ds

D
¼ f1 þ f2ŷ4 þ f3ŷ5 þ f4ŷ4:ŷ5 þ f5ŷ24 þ f6ŷ25 (21)

where a1 ∼ a6, b1 ∼ b6, c1 ∼ c6, d1 ∼ d6, e1 ∼ e6, f1 ∼ f6 are

the stochastic coefficients.

To simplify the proposed model, the number of stochas-

tic coefficients is reduced using sensitivity analysis. To this

end, the impact of each coefficient on the model perform-

ance is measured. Based on the results of sensitivity

analysis, it was found that among all considered stochastic

coefficients, nine stochastic coefficients (e.g. a4 ∼ a5,

b2 ∼ b5, c2 and c4 ∼ c5) exert a significant effect on maxi-

mum scour depth. Therefore, these variables were

estimated using the GLUE approach and the other ones

were considered by means of the Najafzadeh et al. () for-

mulas. In total, the proposed GMDH-GLUE has nine

influencing parameters. To estimate the prior probability
://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
distribution function (uniform distribution) of final stochas-

tic variable, the cross-validation method was applied to the

employed dataset. The parameters of the extracted prior

probability distribution functions are presented in Table 1.

To estimate the stochastic coefficients by the GLUE

approach, the posterior probability distribution functions

of stochastic coefficients were extracted using Equation

(15) and methodology, which is presented in Figure 1.
Description of GP based scouring model

Genetic programming (GP) presents a functional expression

which consists of some logical and mathematical formulas

(Koza ). In this way, GP generates many equations (fit-

ting equations) and selects the best one using performance

criteria such as RMSE (root mean square error) and MAE

(mean absolute error) (Barmpalexis et al. ). The

development of each GP based formulas evolves in

five steps as (Najafzadeh & Saberi-Movahed ): (a)

specifying terminals set (e.g. input variables, constants),

(2) defining operators and symbolic functions (e.g.

þ, � , × , ÷ , ffip , . . .), (3) measuring the fitness of individ-

uals in the population using goodness of fit criterion (e.g.

RMSE), (4) controlling the run using specified parameters

(e.g. population size), (5) specifying the termination cri-

terion (e.g. maximum number of generations). In this

study, a new scouring equation (Equation (22)) was devel-

oped using genetic programming and compared with other

developed stochastic scouring models. In this way, the



Figure 1 | The GMDH-GLUE method for predicting pier scour depth in cohesive bed

materials.
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arithmetic operators { þ, � , × , = } and also basic functions

{ exp, log, power, √ } were utilized for developing the GP

model (see Figure 2). Moreover, the variables of the pro-

posed GP model are shown in Table 2. Note that a

comprehensive analysis by Najafzadeh et al. () demon-

strates that the performance of Equations (14)–(21) is only

acceptable for certain ranges of the dimensionless groups.

The recommended ranges are IWC¼ 36–43%, Cp¼ 35–100%
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
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and Fr¼ 0.07–0.44, adopted herein for the application of

Equation (22):

ds

D
¼

1:72
�0:957Fr
0:558Cp

�0:897IWC

� �þ exp
�0:09S
ρU2

� �
þ exp(�0:093Cp)

0
BB@

1
CCA

0
BB@

1
CCA

þ0:107 (22)
DATASETS DESCRIPTION

In this study, a total number of 95 experimental datasets

were collected from three open source researches (Rambabu

et al. ; Debnath & Chaudhuri ; Najafzadeh &

Barani ). For analysis and deriving new equations, 70%

of the collected data (i.e. 67 data sets) were randomly

selected for training the proposed predictive model and

the remaining 30% (i.e. 28 data sets) were utilized for the

testing phase. A frequency diagram of the employed dataset

and statistics of them in both training and testing phases are

shown in Figure 3 and Table 3, respectively. Furthermore,

Table 4 presents the range of dimensionless groups of the

datasets.
DESCRIPTION OF EMPLOYED PERFORMANCE
INDICES

The adequacy of the predictive equation sets in training and

testing phases are measured using performance indices such

as root mean square error (RMSE), mean absolute error

(MAE) and correlation coefficient (CC) as in the following

formulas (Yaseen et al. a, b; Abdulelah Al-Sudani

et al. ; Sharafati et al. b):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NT

XNT

j¼1

ds

D

� �
Obs,j

� ds

D

� �
Sim,j

 !2
vuut (23)

MAE ¼ 1
NT

XNT

j¼1

ds

D

� �
Obs,j

� ds

D

� �
Sim,j

�����
����� (24)



Figure 2 | Tree structure of the developed GP model to predict the pier scour depth in cohesive bed materials.

Table 2 | Parameters of developed GP model

Parameter Description of parameter
Value of
parameter

P1 Maximum symbolic expression tree depth 5

P2 Maximum symbolic expression tree length 150

P3 Population size 1,000

P4 Maximum generations 50

P5 Mutation probability 15%

P6 Internal crossover point probability 90%
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CC ¼

PNT
j¼1

ds

D

� �
Obs,j

� ds

D

� �
Obs

 !

ds

D

� �
Sim,j

� ds

D

� �
Sim

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNT

j¼1
ds

D

� �
Obs,j

� ds

D

� �
Obs

 !2

PNT
j¼1

ds

D

� �
Sim,j

� ds

D

� �
Sim

 !2

vuuuuuuuut

(25)
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where
ds

D

� �
Obs,j

and
ds

D

� �
Sim,j

represent the jth observed

and predicted normalized scour depth magnitudes,

ds

D

� �
Obs

and
ds

D

� �
Sim

are the observed and predicted

mean values of the normalized scour depth. NT is the

number of datasets.

In order to determine the proficiency of the introduced

models (e.g. GMDH-GLUE and GP) to a traditional GMDH

model (base model), an improvement index (IM) is com-

puted in both training and testing phases (Sharafati et al.

). It should be noted that the training performance

metrics have been used to evaluate the performance of a pre-

dictive model for memorizing the presented information by

training dataset, while the testing performance metrics

measure the model adequacy for predicting target values

using the attained framework during the training phase.

Owing to the different concept between training and testing

phases, the IM values were computed separately in training

(IMtrain) and testing (IMtest) phases as follows:

IMtrain ¼ (IMRMSE
train þ IMMAE

train þ IMCC
train)

3
(26)



Figure 3 | Frequency of the employed data test in training and testing stages: (a) Cp , (b)
S

ρU2, (c) IWC, (d) Fr, (e)
ds.

464 A. Sharafati et al. | Pier scour depth prediction using stochastic model Journal of Hydroinformatics | 22.3 | 2020

Downloaded fr
by guest
on 25 April 202
IMtest ¼
(IMRMSE

test þ IMMAE
test þ IMCC

test)
3

(27)

IMRMSE
train=test ¼

(RMSEbase model
train=test � RMSEModel

train=test)

RMSEbase model
train=test

× 100 (28)

IMMAE
train=test ¼

(MAEbase model
train=test �MAEModel

train=test)

MAEbase model
train=test

× 100 (29)
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
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IMCC
train=test ¼

(CCModel
train=test � CCbase model

train=test )

CCbase model
train=test

× 100 (30)

where RMSEbase model
train=test , CCbase model

train=test and MAEbase model
train=test are,

respectively, the computed RMSE, CC and MAE of the

base model (Najafzadeh et al. ) while RMSEModel
train=test,

CCModel
train=test and MAEModel

train=test are the calculated indices of

the proposed models (e.g. GMDH-GLUE and GP) in train-

ing or testing phases.

D



Table 3 | Statistics of employed dataset in training and testing stages

Statistic

Training stage Testing stage

ds

D
Cp

S

ρU2 IWC Fr
ds

D
Cp

S

ρU2 IWC Fr

Max 1.91 100 1790.65 45.84 0.44 1.71 100 633.04 45.92 0.43

Min 0.15 20 9.23 10.70 0.07 0.17 34 11.61 20.20 0.08

Ave 0.86 59.21 131.89 30.38 0.30 0.79 59.79 76.68 32.88 0.28

S.D.* 0.48 22.86 333.57 8.15 0.12 0.40 22.55 142.15 5.81 0.11

C.V.þ 0.56 0.39 2.53 0.27 0.40 0.51 0.38 1.85 0.18 0.40

Note: *S.D.: Standard deviation.þ C.V.: Coefficient of variation.

Table 4 | Range of dimensionless groups used in present study and Najafzadeh et al.

(2013)

Parameter Range

Cp (%) 20–100

S
ρU2 (–) 9–1791

IWC (%) 11–46

Fr ¼ Uffiffiffiffiffi
gy

p (–) 0.07–0.44
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APPLICATION RESULTS AND DISCUSSION

The main objective of this study is to make an enhancement

on the published research by Najafzadeh et al. (), in

which the scour depth around a pier in cohesive soil is pre-

dicted by the GMDH technique. Due to the high

stochasticity of the targeted variable
ds

D
in response to

various random variables
�
e.g.�;Fr, IWC, Cp,

S
ρU2

�
, the

authors were inspired to adopt a reliable stochastic model-

ing strategy (i.e. GLUE) integrated with GMDH as a

tuning procedure. In addition to the proposed GMDH-

GLUE, an outstanding evolutionary computing GP model

was developed for validation purposes.

Development of GMDH-GLUE model for estimating

of scour depth

To develop a GMDH-GLUE model for estimating the scour

depth around a cylinder founded in cohesive sediments, the

significant stochastic parameters (e.g. a4 ∼ a5, b2 ∼ b5, c2
://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
and c4 ∼ c5), as shown in Equations (16)–(18), were

employed as basic stochastic variables. To estimate the sto-

chastic parameters, uniform probability distributions were

employed as the prior distribution of the mentioned par-

ameters (Table 1). Further, the GLUE method was

employed to extract the posterior distributions of the vari-

ables by performing 10,000 simulations (Figure 4).

From Figure 4 it is revealed that the b3, c4 and c5 (coeffi-

cients of Fr and Cp) have positive skewness. Therefore, the

performance of scour depth prediction is increased using

the lower value of these parameters. Also, the negative skew-

ness values of a5, bb
�
coefficients of IWC and

S
ρU2

�
implies that the accuracy of scour depth prediction can be

increased using large values of these parameters resulting

in increasing the accuracy of scouring prediction.

Having generated the posterior distributions of the sto-

chastic parameters, the best parameter set was selected

among preformed simulations by the GLUE approach. The

GMDH-GLUE model produced several stochastic formu-

lations based on the influential nine hyper-parameters

toward the scouring depth, expressed as follows:

ŷ1 ¼ 0:3278þ 0:0022IWC � 0:585Fr þ 0:141IWC:Fr

� 47:2 × 10�5IWC2 � 1:35Fr2 (31)

ŷ2 ¼ �0:2806þ 0:00291
S

ρU2 þ 5:157Fr � 0:0232
S:Fr
ρU2

� 6:86 × 10�7 S
ρU2

� �2

�2:42133Fr2 (32)

ŷ3 ¼ 1:657� 0:0539Cp þ 2:3047Fr � 0:0766Cp:Fr

þ 5:62 × 10�4C2
p þ 7:834Fr2 (33)



Figure 4 | Posterior distribution of the employed stochastic coefficients in GMDH-GLUE model: (a) a4, (b) a5, (c) b2, (d) b3, (e) b4, (f) b5, (g) c2, (h) c4, (i) c5.
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As noted before, the use of Equations (31)–(33), as

well as Equations (9)–(14) is limited to IWC¼ 36–43%,

Cp¼ 35–100% and Fr¼ 0.07–0.44.

Assessment of GMDH-GLUE performance

The performance of the proposed GMDH-GLUE model was

validated using an uncertainty potential limit prior to the

modeling phase during the training learning process. The

criterion of 95PPU and P-factor were examined as reported

in Figure 4. In accordance with the established research by

Abbaspour et al. (), the computed value of 95PPU is

considered using a minimal percentage of 50 for the mod-

eled observations in the 95PPU bound, which is an

acceptable range. On the basis of the GMDH-GLUE

model results over the training phase (Figure 5), nine obser-

vations out of 67 were located out of the 95PPU bound with

P-factor magnitude (87%). In general, GMDH-GLUE exhib-

ited a reliable modeling strategy during the training phase.

One of the very common graphical examinations usually

performed for prediction evaluation is the scatterplot (see
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf

4

Figure 6). The figure reports an informative presentation of

the variance between the observed scouring data and the

predicted values. Figure 6(a) and 6(b) generated the scatter-

plots over the training and testing phases. The figures

indicate the square correlation coefficient R2 values where

the variance magnitudes are scattered. The R2 value of the

GMDH-GLUE model denoted a superior result followed

by the evolutionary GP and GMDH-BP models, with quan-

titative values of approximately R2≈0.84, 0.80 and 0.79, in

that order, over the training phase, whereas the testing

phase GMDH-GLUE, GP and GMDH-BP models attained

R2≈0.82, 0.62 and 0.81, respectively. Markedly, the

GMDH-GLUE model displayed the closest variance

towards the ideal fit line 45�.

Using the intercept between the correlation coefficient,

standard division and the root mean square metrics, the

Taylor diagram was generated for more constructive vali-

dation of the developed stochastic predictive model.

Figure 7(a) and 7(b) shows the Taylor diagram visualization

over the training and testing phases of the modeling. In both

figures the GMDH-GLUE model evidenced a closer



Figure 5 | Comparison between the generated 95PPU band of GMDH-GLUE scouring model and the observed training data.

Figure 6 | Scatter plot of the computed versus the observed scour depth: (a) training

phase, (b) testing phase.

Figure 7 | Normalized Taylor diagrams of the predicted and the observed scour depth:

(a) training phase, (b) testing phase.
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Figure 8 | Boxplot of the observed scour depth against the predicted ones: (a) training phase, (b) testing phase.
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coordinate to the observed benchmark scouring depth

value, while in the testing phase the GP model was less

accurate in the prediction of the scour depth. Indeed, this

is normal due to the lower magnitude achieved for the cor-

relation coefficient as reported in the scatterplot

presentation.

A boxplot is generated for the modeling evaluation of the

scour depth prediction where the degree of spread in the
om http://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
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prediction data is reported in the form of different quartiles

(25, 50, 75 and the interquartile range, IQR) (see Figure 8).

Based on the numerical magnitudes of the lower (Q25%),

median (Q50%) and upper (Q75%) quartiles, the GMDH-

GLUE model offered the best performance in comparison

with the GMDH-BP and GP models. However, in terms of

Q25% the GP model provided more reliable predictions in

some cases. These are usual outcomes where statistical
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models exhibit different behavior from a certain case to

another one when the nature of the modeled problem may

significantly change. In general, the IQR is an indicator for

the data variability proving the capability of the GMDH-

GLUE and GP models over the GMDH-BP model.

In numerical presentation (see Table 5), through the

absolute error metrics evaluation (RMSE and MAE), the

GMDH-GLUE model demonstrated better prediction

results over the classical GMDH modelled using a back

propagation learning algorithm. On the contrary, the

reported quantitative results clarify that the GP model per-

formed adversely. The statistical indices of the GMDH-

GLUE model in terms of RMSE and MAE metrics have

been improved by 3.23 and 12.11% in the training stage,

while those indices were enhanced by 4.02 and 4.76%

over the testing phase. It is clear from the statistical presen-

tation of the RMSE, and MAE metrics, that it is not

adequate to explain the superiority of the model’s accuracy.

Hence, another comprehensive metric, i.e. IM¼ improve-

ment index is computed for the validation of the proposed

method. A satisfactory improvement is achieved using the

GMDH-GLUE model over the training (IMtrain ¼ 6%) and

testing (IMtest ¼ 3%) phases, respectively.

To demonstrate the superiority of the new GMDH-

GLUE model, it is validated against the other studies in

this context. Here, the RMSE metric was utilized as a
Table 6 | The validation of the current research modeling approach against the established rese

metric

Literature research
Current research
(GMDH-GLUE)

Kaya (2010)
(ANN)

Najafzadeh & Baran
(2011) (GMDH-BP)

RMSE (testing phase) 0.173 0.59 0.25

Table 5 | Values of performance measures and improvement indices of the predictive models

Equation

Train

RMSE MAE C

Najafzadeh et al. () 0.221 0.170 0

GMDH-GLUE 0.195 0.164 0

GP 0.214 0.176 0

Improvement (%) GMDH-GLUE 12.11 3.23 3
GP 3.31 –3.55a 0

aNote: the negative value means the GP model has lower performance compared to the GMDH

://iwa.silverchair.com/jh/article-pdf/22/3/457/692736/jh0220457.pdf
determination factor for the evaluation. Several studies

were surveyed and their results are tabulated in Table 6.

Based on the reported numerical values of the RMSE,

the proposed GMDH-GLUE model demonstrated good

enhancement over the literature studies. GMDH-GLUE pro-

vided prediction enhancement of 70.6% against the ANN

model (Kaya ), 30.8% against GMDH-BP (Najafzadeh

& Barani ), 50.5% against the support vector regression

(SVR) model (Pal et al. ), 4.76% against GMDH

(Najafzadeh et al. ), 24.7% against the gene expression

programming (GEP) model (Muzzammil et al. ), and

24.6% against the evolutionary radial basis function neural

network (ERBFNN) model (Cheng et al. ). Apparently,

the proposed GMDH-GLUE model revealed an acceptable

prediction accuracy improvement over the literature studies

and that demonstrated its potential for comprehending the

actual relationship between the influencing parameters

and the maximum scour depth.
CONCLUSIONS AND FUTURE RESEARCH
DIRECTION

Scouring phenomena are one of the vital problematic issues

in riverine and marine structures and hydraulic engineers

need to take into account optimal effective parameters in
arches over the literature for depth scouring around piers using the root mean square error

i Pal et al.

(2011) (SVR)
Najafzadeh et al.

(2013) (GMDH)
Muzzammil et al.

(2015) (GEP)
Cheng et al.

(2015) (ERBFNN)

0.35 0.182 0.23 0.23

Test

C IMTrain RMSE MAE CC IMTest

.888 – 0.182 0.150 0.905 –

.916 – 0.173 0.144 0.906 –

.894 – 0.266 0.216 0.789 –

.16 6 4.76 4.02 0.11 3

.71 0.2 –46.27 –44.11 –12.80 –34

model.
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the design of those structures, ensuring adequacy and accu-

racy of the prediction results. The current study provided a

new integrated stochastic model based on GMDH-GLUE

for predicting scour depth around piers using effective vari-

ables. In fact, the use of the standard GMDH technique

provides deterministic predictions based on a complex

relationship between the influencing parameters and the

output variable. In the present study, the prediction was

improved, taking into account the stochastic behavior of

the data that is generally neglected when only the GMDH

approach is considered. This investigation proves the accep-

table adequacy of the selected stochastic technique, GLUE,

to extract the stochastic characteristics of the experimental

data. The new concept, GMDH-GLUE, denotes a combined

model whose predictions are based on both the stochastic

and deterministic properties of the input and output

variables.

To validate the selected methodology, the proposed sto-

chastic model was validated against the previously

published GMDH model (Najafzadeh et al. ) in addition

to one reliable evolutionary computing model called genetic

programming. The modeling results were authenticated

using numerous statistical metrics and graphical evaluation

indicators. The findings of this study evidenced the feasibility

and accuracy of the adopted GMDH-GLUE model in com-

parison with the benchmark models. The statistical metric

IM substantiated a satisfactory accuracy improvement of 6

and 3%, respectively, over the train and test modeling phases

against the original GMDH model. Overall, the explored sto-

chastic predictive model captured the internal nonlinear

mathematical behavior of the influencing parameters and the

output variables. Although satisfactory prediction accuracy

was achieved utilizing the selected methodology, the modeling

strategy would be enhanced through the incorporation of a

non-linear mask approach to abstract the mostly correlated

input attributes using the potential of the recently explored

nature-inspired optimization algorithms.
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