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Knowledge-based multi-objective genetic algorithms for

the design of water distribution networks

Matthew B. Johns, Edward Keedwell and Dragan Savic
ABSTRACT
Water system design problems are complex and difficult to optimise. It has been demonstrated that

involving engineering expertise is required to tackle real-world problems. This paper presents two

engineering inspired hybrid evolutionary algorithms (EAs) for the multi-objective design of water

distribution networks. The heuristics are developed from traditional design approaches of practicing

engineers and integrated into the mutation operator of a multi-objective EA. The first engineering

inspired heuristic is designed to identify hydraulic bottlenecks within the network and eliminate

them with a view to speeding up the algorithm’s search to the feasible solution space. The second

heuristic is based on the notion that pipe diameters smoothly transition from large, at the source,

to small at the extremities of the network. The performance of the engineering inspired hybrid EAs is

compared with Non-Dominated Sorting Genetic Algorithm II and assessed on three networks of varying

complexity, two benchmarks and one real-world network. The experiments presented in this paper

demonstrate that the incorporation of engineering expertise can improve EA performance, often

producing superior solutions both in terms of mathematical optimality and also engineering feasibility.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,
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INTRODUCTION
The use of evolutionary algorithms (EAs) by researchers in

the field of hydroinformatics for the design and optimisation

of water systems has grown over the past two decades. With

the emergent maturity of the field, an increased focus on

the real-world application has also come. These real-world

water distribution problems present a much greater chal-

lenge due to their drastically increased size, complexity

and number of objectives to consider. Aside from the stan-

dard considerations, such as cost, adequate water pressure

and water quality, there are a host of additional performance

measures that have been suggested in the literature. These

primarily fall into the areas of risk (Murray et al. ),
resilience (Prasad & Park ), reliability (Lansey ),

environmental impact (Marchi et al. ) and social welfare

(Amit & Ramachandran ), thus making the optimisation

of WDNs a truly multi-objective problem. It has been shown

that the discovery of the globally optimal Pareto fronts

for large multi-objective water distribution network (WDN)

problems is particularly challenging (Marchi et al. ).

In the case of the Battle of the Water Networks II (Marchi

et al. ), several participant researchers utilised domain

knowledge and heuristic information to either decrease the

size of the search space or locate favourable areas of the sol-

ution space to initialise the search. These knowledge-guided

techniques are generally aimed at achieving near-optimal sol-

utions with the use of limited computational resources,

rather than attempting to find the globally optimal Pareto

front of a complex problem (Tolson & Shoemaker ;

mailto:m.b.johns@ex.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2019.106&domain=pdf&date_stamp=2019-11-29


403 M. B. Johns et al. | Knowledge-based MOGAs for the design of water distribution networks Journal of Hydroinformatics | 22.2 | 2020

Downloaded from http
by guest
on 19 April 2024
Gibbs et al. , ; Tolson et al. ; Khedr & Tolson

). An important consideration when applying EAs to

real-world problems is the large computational overhead

incurred when solving complex hydraulic models (Maier

et al. ). It becomes apparent that there is a need for

approaches that are capable of finding near-optimal solutions

within the constraints of available computational resources

and in doing so will aid in the effective application of EAs in

the practical domain (Maier et al. ). Tolson et al. ()

have shown that with limited computational resources, high

quality solutions can be achieved if a significant amount of

engineering judgement is used. Marchi et al. () suggest

that there is always a trade-off between the engineering experi-

ence and computational resources needed to solve complex

WDN problems. However, they also claim that engineering

judgement can never be completely avoided. This notion

expands beyond hydroinformatics to a wider set of problem

domains where domain knowledge has been shown to be

an important factor when tackling real-world problems.

Some examples of this can be found in the wider field of engin-

eering, including aeronautical (Ong & Keane ) and

mechanical design (Sapuan ).

As previously stated, there is a growing interest in the use

of domain-specific knowledge in the design of WDNs.

Keedwell & Khu () developed a hybrid cellular automa-

ton and genetic approach which included a hydraulically

based heuristic used in the formulation of initial EA popu-

lations. The method was found to be highly effective when

tested on a set of large-scale real-world networks. The heuristic

was based on the premise that the diameter of a pipe connected

to a demand node in pressure deficit can be expanded to

increase pressure and the diameter of a pipe connected to a

node in pressure excess can be decreased to improve network

cost. Zheng et al. () used knowledge of pipe network top-

ology and a nonlinear programming technique to identify

promising areas of the solution space, subsequently seeding

the initial population of a differential evolution (DE) algor-

ithm. Another initialisation method was proposed by Kang

& Lansey () which used pipe flow velocity thresholds to

form a set of initial solutions, and Bi et al. () then adapted

this idea and added a heuristic based on the notion that pipe

diameters generally reduce with the distance from the

source. This concept could be expressed as network smooth-

ness, a measure of how ‘smooth’ the transition of pipe
://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
diameters is throughout the network. Although a similar

concept to diameter uniformity (Creaco et al. ), network

smoothness takes into account flow direction.

The growing body of research in Hydroinformatics,

which focuses on the use of specific domain knowledge

and heuristic information to boost EA performance, has

produced many promising results, often outperforming

standard methods on a range of problems. Unlike other

domains, however, the majority of techniques presented in

the hydroinformatics literature tend to focus on the use of

specific domain knowledge for the initialisation of starting

populations and less on the operators such as crossover

and mutation. Therefore, it is interesting to explore the

impact that integrating engineering knowledge into the

operators of an EA would have on performance and,

therefore, filling this gap in the body of research. Another

observation is that the majority of hydroinformatic knowl-

edge-based EAs discussed in this section has only

been applied to single-objective WDN problems with the

exception of Keedwell & Khu () and Bi et al. ().

Therefore, exploring the impact knowledge-based operators

has on a multi-objective EA adds to the body of knowledge.

This paper presents two hybrid multi-objective genetic

algorithms (MOGAs) which employ water systems knowledge

to increase computational performance and solution optimal-

ity, both from a mathematical and also a real-world feasibility

standpoint. The heuristics at the heart of these algorithms

have been inspired by the practices of water systems engineers

and implemented in a way as to incur minimal computation

overhead. Unlike the majority of methods presented in the lit-

erature where domain knowledge is used to produce the initial

population of solutions, the algorithms presented here inte-

grate domain expertise into the mutation operators of the

algorithms, guiding the search towards the feasible solution

space with a view to improving efficiency and performance.

The performance of the algorithms is assessed on a range of

multi-objective WDN problems from the literature.
METHODS

Multi-objective WDN design problem

There are many considerations to account for when

designing a WDN. When applying new optimisation
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methodologies to the problem, a common approach is to

simplify the real-world nature of the problem and consider

a smaller number of elements. The primary consideration

is often the allocation of diameters to the pipes in the net-

work with the objective to minimise infrastructure cost. In

addition to cost, the hydraulics of the network must be

considered to ensure that the constraints of the network

are met. The most fundamental hydraulic constraint is

ensuring the head at each demand node meets the problem

requirements. In this paper, the authors introduce a multi-

objective formulation of the least-cost WDN design problem

(Cheung et al. ), with the addition of network smooth-

ness. The notion of network smoothness was introduced

earlier in this paper. In this formulation, the smoothness

of a network is measured by the number of smoothness vio-

lations present in the network. An example would be if the

diameter of a given pipe is greater than the diameter of

the pipe directly upstream, and this is described in more

detail later in the paper. This multi-objective formulation

enables the designer to observe the trade-off between the

hydraulic performance of the network and the infrastructure

cost with the view to making better design decisions.

The first objective is the total network cost or infrastruc-

ture cost which is given by the following equation:

f(D1, . . . , Dn) ¼
XN
i¼1

c(Di, Li) (1)

where c(Di, Li) is the cost of pipe i with diameter Di and

length Li and N is the number of pipes in the network.

This function is to be minimised during the optimisation

process. The second objective is to minimise the total head

deficit within the network and is given by the following

expression:

f(Hi, . . . , Hj) ¼
XJ
i¼1

(Hi) (2)

where the head deficit in the junction i is Hi and J is the

number of junctions present in the network. The third objec-

tive used in this formulation of the optimisation of least-cost

WDNs is a measure of network smoothness. A smooth net-

work is achieved when pipes can be seen to ‘smoothly’
om http://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
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transition from large to small diameters from the source to

the extremities of the network. In this case, the objective

is to minimise the number of pipe smoothing violations

in a candidate network and is given by the following

expression:

f(S1, . . . , Sn) ¼
XN
i¼1

(Si) (3)

where the smoothing violations of pipe i is Si and N is the

number of pipes in the network. For example, in the case

where a pipe i violates the smoothing rule Si¼ 1; otherwise,

if the rule is satisfied Si¼ 0. Pipe smoothing is described in

detail in the next section.

To assess the hydraulic performance of a WDN solution,

EPANET (Rossman ) is employed. The EPANET

engine enables the simulation of pressurised pipe networks

by solving flow continuity and pipe headloss equations

using the gradient method (Todini & Pilati ).
Water system heuristic-based genetic algorithms

The genetic algorithm (GA; Holland ) has proved to be a

versatile process for solving a large variety of optimisation pro-

blems spanning many fields and disciplines (Haupt & Haupt

). The strength of the approach comes from the ability

that the GA has to traverse large search spaces, avoiding

local optima and, therefore, can be viewed as a truly global

search technique (Goldberg ). The performance and versa-

tility of the GA can be attributed partly to the independence it

has over the problem being undertaken. Although seen as an

asset, this problem independence can have a detrimental

effect on performance in the case where the algorithm has

not been tuned enough to solve the problem at hand.

For the problem of WDN design, the GA relies on gen-

etic operators such as crossover and mutation to alter the

configuration of the network (Mala-Jetmarova et al. ).

These operators, however, are blind to the direct effect any

changes made to elements of the network have on the

overall performance of the resultant solution. For example,

from the perspective of the GA, a change in the diameter

of a pipe has no bearing on the hydraulic behaviour of

connected elements until the resultant design is evaluated



Figure 1 | Bottleneck identification and elimination example.
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(e.g., by using EPANET). However, an engineer making the

same change would know that the head at adjacent junc-

tions would be affected. The performance of a newly

created network, therefore, is only known following solution

decoding and hydraulic simulation. Although this abstraction

is partly why GAs can be applied to many different water

system design problems, there is definite scope for the inte-

gration of problem-specific knowledge into the approach.

An important consideration when integrating problem-

specific knowledge into a GA is computational efficiency.

In most cases and particularly in large-scale real-world net-

works, the most computationally demanding operations are

solution evaluations. In the case of water distribution

design problems, this comes in the form of the hydraulic

simulations. Therefore, it is important not to incur any

additional objective function evaluations where possible.

Another consideration is the apparent lack of uptake

and utilisation of techniques, such as EAs, by engineers in

the field of WDN design. One likely reason for this is the

solutions produced by such methods are usually only ‘math-

ematically feasible’ and not ‘engineering feasible’ which

results in the engineer having to manually correct features

of a solution network to better suit real-world application

and deployment.

In this section, two separate water system heuristic

methods are described both of which draw upon expert

engineering knowledge and techniques with a view of inte-

gration into a GA to improve search performance and

solution feasibility. The heuristics presented in this paper

have been developed and refined from earlier work

(Johns et al. , ).

Heuristic 1: targeting hydraulic deficit/surplus

One of the primary constraints of the least-cost WDN design

problem is ensuring that junction head requirements are met

throughout the network. This can be a complex task, as this

constraint is in direct conflict with the primary objective of

minimising cost through the reduction of pipe diameters.

The key issue here is headloss; as a fluid flows through a

pipe, pressure is lost due to friction along the inner surfaces

of the pipe. The Hazen–Williams equation (Williams &

Hazen ) states that headloss is directly influenced by

the length, diameter, roughness and flow rate of a pipe.
://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
When solving the least-cost WDN design problem, a GA

only has a direct influence over the diameters of pipes in

the network, as the length and roughness of the pipes are

normally fixed parameters of the problem. Therefore, to

reduce headloss, the diameter of a pipe must be increased;

however, as stated previously, this increases the cost of the

pipe and directly conflicts with the objective function

which is trying to minimise infrastructure cost.

One of the key characteristics of a WDN is that the

diameters of pipes close to the source have a greater hydrau-

lic influence over the whole system. For example, if a pipe

close to the source has a small diameter, large amounts of

headloss can be introduced, and subsequently, the down-

stream junctions will not receive the required hydraulic

head; this can be referred to as a ‘bottleneck’. Figure 1

shows two versions of a simple WDN. The first contains

a pipe (second from the source) which is introducing a

large amount of headloss due to its small diameter, thus

resulting in the downstream junctions not receiving

enough pressure and, therefore, reporting a head deficit.

The bottleneck is eliminated by increasing the diameter of

the offending pipe, hence reducing headloss and increasing

the subsequent pressure in the downstream junctions. This

approach is often applied by water systems engineers

when designing distribution networks to eliminate hydraulic

bottlenecks, unlike a standard GA which cannot implement

this simple process as the operators do not have awareness

of the hydraulic behaviour of the individual parts of the

system during the crossover and mutation stages.
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It is proposed that this method of bottleneck identifi-

cation and elimination can be integrated into a GA by

applying the heuristic directly to a modified version of the

mutation operator. The aim of this operator is to direct

the search of the algorithm to the boundary of the feasible

solution space in an efficient way using hydraulic constraint

information from prior solution evaluations. As stated

previously, computational efficiency is an important con-

sideration when applying any rule-based operator into a

standard algorithm. Unlike some other constraint handling

techniques such as repair algorithms, the proposed mutation

operator will not perform any additional partial or full

fitness evaluations. This is achieved by applying the con-

straint-based rule directly to the genotype without evaluating

the effect this process has on network performance.

During the evaluation of the solutions in the initial

population, the algorithm records the flow directions of

each pipe. Utilising this information, the pipe and junction

directly upstream of each junction are logged, facilitating

the identification of pipes that are restricting junction head

downstream. In some instances, an alteration to the network

can result in flow direction changes, the heuristic takes this

into account by checking the flow direction each time it

encounters a pipe and updates the network model

accordingly.

Figure 2 shows a flow chart representation of the pro-

cess employed by the hydraulic bottleneck elimination

mutation operator. The modified mutation operator initially

chooses a junction using a roulette wheel procedure, which

allocates wheel segment sizes using head deficit information

from the previous hydraulic evaluation of the solution. This
Figure 2 | Flow chart of the hydraulic bottleneck elimination algorithm.
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process results in junctions with a high-pressure head deficit

having a greater probability of being selected. The following

equation is used to calculate the probability of a junction

being selected (P(i)):

P(i) ¼ hiPN
j¼1 hj

(4)

where hi is the head deficit at junction i and N is the total

number of junctions in the network.

Once a junction is selected, the heuristic searches

upstream of that point until a junction with head excess

is found. In the event of multiple upstream pipes, the

heuristic follows the path of the pipe, which has the highest

head deficit of its upstream junction. The pipe immediately

downstream of the identified junction is then changed to a

larger diameter. It has been shown that incremental pipe

diameter changes during mutation are normally beneficial

to the search of a GA. This is in contrast to large changes

to network elements that can have a drastic effect on the

overall solution quality, sometimes for the worse. However,

it was decided that only allowing the operator to make

single diameter increments would potentially slow the rate

of search of the algorithm, and therefore, a weighted roulette

wheel approach is used to select the new diameter. This is

achieved by firstly populating a list of all available pipe

diameters greater than the diameter of the selected pipe

and placing them in ascending order. Each diameter is

then assigned a probability of selection (P(I)) using the

following expression:

P(I) ¼
1
2i

) (i<N)

1
2i�1 ) (i ¼ N)

8><
>: (5)

where i is the list position of the diameter and N is the total

number of available pipe diameters present in the list. This

results in the smaller diameters in the list having the greater

probability of selection and the largest diameters having a

smaller selection probability.

In the event, where a network contains no junctions in

deficit, the modified mutation operator concentrates on

reducing network cost by targeting oversized pipes. Firstly,
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a junction is selected using a roulette wheel where the seg-

ment size is directly proportional to the amount of head

excess at each junction. Through this process, junctions

with higher head excess have a greater probability of being

selected. The pipe directly upstream of the selected junction

is then mutated to a smaller diameter using a similar

weighted roulette wheel approach to that of the diameter

increasing method described above. In this case, the avail-

able pipe diameters smaller than the diameter of the

selected pipe are placed in a list in descending order.

The probability of a diameter being selected from the list is

dictated by Equation (5) where the smaller the diameter,

the greater the probability of selection.

As stated previously, the modified mutation operator

requires junction head and pipe flow information to

identify potential bottlenecks in the network. Due to this

dependency, mutation must be applied pre-crossover to pre-

vent the requirement to re-evaluate the hydraulic network of

resultant solutions. Therefore, mutation precedes crossover

in order to preserve the hydraulic information gained from

the simulation of the original solution. It should be noted

that the heuristic can be invoked multiple times in one

mutation operation, the frequency being primarily depen-

dant on the base mutation rate of the algorithm.

Heuristic 2: pipe smoothing

The pipe smoothing approach described in this section aims

to identify pipes in a network which can be mutated to

increase network smoothness (in terms of progression

from one diameter to the next) using network topology

information and a heuristic. This is based around the prin-

ciple that in gravity-fed WDNs, the diameter of any pipe is

never greater than the sum of the diameter(s) of the

upstream pipes connected to the same junction. Networks

that adhere to this rule can be seen to ‘smoothly’ transition

from large to small diameters from the source to the extremi-

ties of the network. Figure 3 shows an example of a ‘smooth’

solution for the Hanoi problem where the arrows indicate

flow direction.

This rule is routinely and implicitly applied by engineers

when selecting pipe diameters in a network, as it makes little

sense for a smaller diameter pipe to proceed a larger one in

most situations. A larger pipe downstream will likely
://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
increase network cost and will not add to the hydraulic capa-

bility of the system, as it will be limited by the smaller pipe

upstream. One additional adverse effect of this arrangement

is that the velocity in the larger pipe will be lower, potentially

leading to high water age which can lead to poor water qual-

ity. A standard GA will inevitably mutate some of these

inconsistent pipe selections from some solutions, as they

have the corresponding improvement in the cost function

with no hydraulic penalty. However, considerable exper-

imentation has demonstrated that even in well-optimised

solutions following hundreds of thousands of function,

evaluations of a standard GA will still contain significant

numbers of incorrectly sized pipes in larger networks. This

is unsurprising given the stochastic nature of mutation and

the changing solution landscape. Given a standard mutation

rate of 2.5%, the mutation operator will only visit this pipe,

on average, once every 40 invocations of the mutation oper-

ator. Once selected, the probability of the operator selecting

a ‘smooth’ diameter ranges from N� 1/N in the best case,

where the required diameter is the second largest in the

diameter range, to 1/N where the smallest diameter must

be selected to adhere to the smoothness constraint. There-

fore, with 15 available diameters, a single ‘non-smooth’

pipe could be expected to be rectified, on average, once

every 43–600 invocations of the mutation operator. How-

ever, of course, there will potentially be many of these

within the network and as the diameters in the solution

change, so there is the potential to create new instances of

non-smoothness which must also be rectified. Clearly, stan-

dard random mutation is far from an optimal method to

meet these constraints.
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The pipe smoothing mutation operator applies the

heuristic described above to the genotype without directly

evaluating the impact this has on the phenotype. The heur-

istic employed by the pipe smoothing mutation operator is

developed from the network topology of a specific problem,

remaining consistent throughout the algorithm’s search. It is

the aim of the heuristic to guide the algorithm’s search to

the engineering feasible solution space to locate smoother

WDN designs while maintaining the performance of a

standard GA. The pipe smoothing mutation operator does

not perform any additional partial or full fitness evaluations,

with pipe flow directions being established during the

evaluation of the initial population of solutions. This was

an important consideration when developing the pipe

smoothing genetic algorithm (PSGA), as additional fitness

evaluations would require further hydraulic simulations,

increasing algorithm run time.

Figure 4 shows two configurations of parallel pipes

entering and exiting a junction, the first of which (left)

violates the pipe smoothing rule, as the sum of the down-

stream pipe diameters (A and B) is greater than the sum of

the diameters of the upstream pipes (C and D). It is the

goal of the pipe smoothing heuristic to modify the diameters

of the downstream pipes so that the sum of the diameters is

equal to or less than the sum of the diameters of the

upstream pipes, resultant in a configuration which satisfies

the pipe smoothing heuristic (right).
Figure 4 | Downstream pipe smoothing rule violation (left) and corrected downstream

diameters that satisfy the smoothing constraint (right).
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The pipe smoothing mutation operator randomly

selects a pipe to be mutated. The maximum allowable

diameter of the current pipe is calculated by taking the

sum of the diameters of the immediately upstream pipes

and subtracting the sum of the diameters of any pipes par-

allel to the selected pipe. This is described by the following

expression:

Dmax
s ¼

XU
i¼1

Di

 !
�

XP
j¼1

Dj

0
@

1
A (6)

where Dmax
s is the maximum allowable diameter of selected

pipe s, Di is the diameter of upstream pipe i with U being

the total number of directly upstream pipes and Dj is the

diameter of parallel pipe j with P being the total number

of pipes parallel to the selected pipe.

Similarly, to the hydraulic deficit approach, the pipe

smoothing operator uses a skewed roulette wheel procedure

to select the new pipe diameter. This is achieved by weight-

ing the larger diameters within the maximum allowable size,

so that the bigger the diameter, the higher the probability of

use. A list is first populated of all available pipe diameters

equal to and less than the maximum allowable diameter of

the selected pipe. The list is sorted into descending order

by diameter and each diameter is then assigned a probability

of selection (P(I)) using the expression detailed in the

previous section (Equation (5)). This process prevents the

heuristic from selecting small diameters on every appli-

cation. With an upper-bound on possible diameters, the

repeated application of a uniform probability of selection

would result in an undersized, hydraulically infeasible net-

work. Upon a diameter being selected, the pipe being

mutated is changed to the selected diameter.

The pipe smoothing mutation operator needs each

decision pipe in the network to be ‘aware’ of the pipes

directly upstream and downstream of it. Making changes

to pipe diameters in a network can sometimes result in

flow reversal in some pipes; hence, it is necessary to swap

upstream and downstream pipes relative to the pipe in

question. Flow direction is recorded after each hydraulic

evaluation of a solution; therefore, to preserve this infor-

mation, the pipe smoothing mutation operator precedes

the crossover operator.
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Non-Dominated Sorting Genetic Algorithm II

The Non-Dominated Sorting Genetic Algorithm (NSGA-II)

(Deb et al. ) is a multi-objective EA which utilises a

fast non-dominated sorting approach which decreases com-

putational complexity compared with other non-dominated

sorting approaches. Although well established, NSGA-II is

still considered a good benchmark algorithm, as it performs

well in a wide range of problem domains. It produces a

good spread of solutions and converges close to the true

Pareto-optimal front. More recent EAs were considered

such as Borg (Hadka & Reed ) and NSGA-III (Deb &

Jain ); however, these algorithms are thought to be

not as suitable to this problem formulation. Although the

Borg algorithm has shown promise on some large-scale

multi-objective WDN network problems, it was found that

the performance of NSGA-II was more consistent on a

larger range of networks (Wang Qi et al. ). NSGA-III

is designed primarily for many objective (3þ) problems

and requires reference points to be supplied prior to

execution. NSGA-II forms the base algorithm upon which

the two engineering inspired heuristics are applied, but

they are generic and can be applied with other EAs.

Multi-objective adaptive locally constrained genetic

algorithm

The multi-objective adaptive locally constrained genetic

algorithm (MOALCO-GA) applies heuristic 1 described

earlier in the paper to target network head deficit and

surplus. The heuristic is applied to a solution through the

mutation operator where the probability of the heuristic

mutation operator is directly driven by the convergence

rate of the population. The purpose of this operator is to

guide the algorithm’s search to the feasible solution space

in a fast and efficient manner utilising hydraulic data from

previous fitness evaluations. MOALCO-GA is essentially

NSGA-II but with some additional features; these include

a heuristic-based mutation operator (HMO) and a hypervo-

lume gradient monitor (HGM). The HMO is designed to

guide the algorithm to feasible network designs earlier in

the optimisation. It can be configured for use with any

appropriate objectives, but here the application to network

hydraulic performance only is considered. MOALCO-GA
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employs the hydraulic deficit-based heuristic detailed

above. It was found that when the HMO used heuristic 1

exclusively (i.e., without pipe-wise mutation) throughout

the evolutionary process, the population would become

stagnant and prematurely converge on a suboptimal sol-

ution. Therefore, it was necessary to limit the amount the

HMO employs the heuristic. The algorithm employs an

HGM presented below to control the application probability

of the heuristic:

P(m) ¼ gc
gi

(7)

where gi is the initial gradient of the hypervolume curve, gc is

the current gradient of the hypervolume curve and P(m) is

the probability of HMO employing heuristic 1. The gradient

of the hypervolume curve is calculated at the end of

each generation, comparing the current hypervolume

value with that 75 generations previous. If heuristic 1 is

not utilised, then random pipe mutation is used instead.

This method ensures a smooth transition between the use

of the heuristic and random pipe mutation as the algorithm’s

search progresses. This additional process ensures that the

engineering inspired heuristic is applied aggressively at the

start of the algorithm’s search, improving solution feasibility,

but is able to smoothly reduce the influence of the heuristic

as the search progresses and the rate of conversion slows.
Multi-objective pipe smoothing genetic algorithm

The multi-objective pipe smoothing genetic algorithm

(MOPS-GA) is based around the principle that in a WDN,

the diameter of a pipe is never greater than the sum of the

diameter(s) of the pipes directly upstream (heuristic 2).

Networks that obey this rule can be seen to ‘smoothly’ tran-

sition from large to small diameters from the source to the

extremities of the network. The heuristic is applied to a sol-

ution through the mutation operator where the probability

of the heuristic being applied is defined by a pre-

set algorithm parameter, in this case, 50% probability of

use (random pipe mutation otherwise). It is the aim of the

heuristic to direct the algorithm’s search to the engineering

feasible solution space to locate smoother WDN designs

while maintaining the performance of a standard MOGA.
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Experimental setup

This section provides details of the experimental setup

including benchmark WDN selection, problem formulation

and performance evaluation.
Benchmark networks

The following WDN design problems were selected from

the literature to assess the performance of the algorithms

presented in this work. The problems range in size and

complexity froma single source networkwith 34 decision vari-

ables to a multi-reservoir, quad source network with 317

decision variables. Also included in this set of benchmark pro-

blems is one large real-world network, Network B, with 1,277

decision variables. All the following benchmark networks are

least-cost WDN design problems where the goal is to reduce

network cost through the selection of pipe diameters while

satisfying the hydraulic constraints set by the problem. The

selection of a range of different network types was important

to enable the evaluation of the hybrid algorithms.

Figure 5 shows the network layout diagrams for the

WDN problems on test. The Hanoi problem (Fujiwara &

Khang ) is a representation of a single source network

consisting of 3 loops, 34 decision pipes and 6 available

pipe diameters with a resultant search space of 2.86 × 1026.

Based upon the trunk main layout for the city of Hanoi,

Vietnam, the problem requires that a minimum fixed head

of 30 m is reached at all nodes in the network. In this

implementation of the problem, there are no pipe flow
Figure 5 | Layout diagrams of the (a) Hanoi, (b) Modena and (c) Network B networks.
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velocity constraints imposed. The Modena WDN (Bragalli

et al. ) is a representation of the water supply system

of the city of Modena, Italy. The network consists of

4 sources and 317 decision pipes with 13 available pipe

diameters to choose from resulting in a search space of

3.63 × 10352. The formulation of this problem includes both

junction minimum head requirements and pipe flow velocity

constraints. Network B (Keedwell & Khu ) is a real-life

industrial WDN consisting of a single source reservoir with

1,277 decision pipes and 26 available pipe diameters with a

search space of 1.42 × 101806. The problem has fixed mini-

mum head requirements at all junctions in the network but

does not have any restrictions on the velocity of pipe flow.
Measuring performance

To enable the comparison of MOALCO-GA, MOPS-GA and

NSGA-II, the hypervolume indicator (Zitzler & Thiele ;

Bader et al. ) was employed. The hypervolume indicator

allows the observation of algorithm convergence and pro-

vides a measurement of population diversity. Note that the

hypervolume values are scaled from 0 to 1 using the theor-

etical best (utopia) and worst (nadir) points in the solution

space. Each of the three algorithms was run 50 times

(10 times for Network B due to problem complexity and

resultant runtime). The hypervolume results were averaged

to allow a fair performance comparison to be carried out.

In addition, the population hypervolume values produced

by each algorithm were compared for statistical significance

using the Mann–Whitney U-test.



Table 2 | Best and average hypervolume results for the Hanoi problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.7282 0.7201

MOALCO-GA 0.7306 0.7248

MOPS-GA 0.7441 0.7395
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RESULTS AND DISCUSSION

Two formulations of the multi-objective WDN design

problem are presented, including a novel formulation

which involves the use of a network smoothing objective.

To assess the performance of the engineering inspired heur-

istics in the multi-objective domain, the newly presented

algorithms are directly compared with the standard formu-

lation of NSGA-II on all benchmark problems. The first

experiment presented in this section is the dual-objective for-

mulation of the WDN design problem which uses the first

two objectives stated above, total network cost and total

head deficit. The final experiment in this section involves

the addition of the pipe smoothing violations objective.

Dual-objective experiments

This section presents the results for the dual-objective

experimentation conducted on NSGA-II, MOALCO-GA

and MOPS-GA. As stated previously, the two objectives

are the minimisation of network cost and the minimisation

of the hydraulic deficit. To ensure a fair comparison between

the three algorithms, the parameters of NSGA-II were tuned

to each problem and the same parameter set was utilised by

each algorithm. Table 1 gives details of these parameters for

each problem.

Hanoi

The following set of results is from the dual-objective Hanoi

problem. Table 2 presents the best achieved hypervolume

and mean hypervolume from the 50 individual runs. These

results show that both MOALCO-GA and MOPS-GA

achieve a better best hypervolume and average hypervolume

than NSGA-II. It is also clear that out of the two newly

proposed algorithms, MOPS-GA produces superior results.
Table 1 | Experimental parameters for problems on test

Problem Runs Evaluations Pop size
Tournament
size

Pipe mutation
probability

Hanoi 50 100,000 100 4 0.147

Modena 50 100,000 100 5 0.132

Network B 10 100,000 100 8 0.0023
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Utilising the Mann–Whitney U-test, it was found that each

algorithm, in this case, produced statistically different

populations (p< 0.05) when compared with the other.

Figure 6 shows the average hypervolume from all

50 runs for the three algorithms for the Hanoi problem.

It can be seen that MOALCO-GA outperforms NSGA-II

in the first ∼5,000 evaluations; however, at this point,

MOALCO-GA starts to converge and produces similar

quality results to NSGA-II, while MOPS-GA goes on to sub-

stantially outperform the other two algorithms until the

termination of the runs. It is only after 20,000 evaluations

that MOALCO-GA starts to achieve better results than

NSGA-II. This behaviour is thought to be caused by the

change in heuristic application strength; increasing the

probability that standard mutation would be utilised instead

of the deficit/excess heuristic. It would seem that this shift

enabled the algorithm to explore the solution space in the

later stages of the search more effectively than NSGA-II.

Figure 7 presents the best (highest hypervolume) popu-

lations for the three algorithms. It can be observed that

the solutions produced by both MOALCO-GA and MOPS-

GA mostly dominate the solutions found by NSGA-II,

especially at lower network costs. It is not surprising that

MOPS-GA achieves more dominant solutions at lower

network costs as the pipe smoothing heuristic naturally

restricts the selection of larger pipe diameters; hence, the

algorithm promotes lower cost solutions.

Modena

The best and mean hypervolume results for the Modena pro-

blem are presented in Table 3. This shows that MOPS-GA

attains a much higher hypervolume value than the other

two algorithms, which both achieve similar quality sol-

utions. In the case of these results, statistical testing

reveals no significant difference in the population of results

between NSGA-II and MOALCO-GA; however, MOPS-GA



Figure 6 | Mean best hypervolume for the Hanoi problem – NSGA-II, MOALCO-GA and MOPS-GA comparison – 100,000 evaluations (left) and 5,000 evaluations (right).

Figure 7 | Pareto front for the Hanoi problem – NSGA-II, MOALCO-GA and MOPS-GA comparison – entire front (left) and zoomed front (right).

Table 3 | Best and average hypervolume results for the Modena problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.7691 0.7268

MOALCO-GA 0.7664 0.7194

MOPS-GA 0.8414 0.8051
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does produce a population of results which are statistically

different from the other two algorithms.
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The performance difference between MOPS-GA and the

other two algorithms is illustrated in Figure 8. MOPS-GA

outperforms the other two algorithms significantly through-

out the entire search, ultimately achieving a much higher

average hypervolume than NSGA-II and MOALCO-GA.

MOALCO-GA does display better perform than NSGA-II

up until around 80,000 evaluations.

Figure 9 shows the best performing populations for the

three algorithms for the Modena problem. It is clear from

these results that MOPS-GA achieves much lower network



Figure 8 | Mean best hypervolume for the Modena problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.

Figure 9 | Pareto front for the Modena problem – NSGA-II, MOALCO-GA and MOPS-GA comparison – entire front (left) and zoomed front (right).
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cost solutions at zero hydraulic deficits compared with the

other competing algorithms.

These results suggest that the pipe smoothing heuristic

employed by MOPS-GA is very effective when applied to

a multi-source (reservoir) configuration such as that of the

Modena problem. The nature of the pipe smoothing heuris-

tic encourages lower cost solutions, and this can sometimes

result in a pipe close to the source being mutated to a small

diameter, introducing hydraulic deficit downstream. In the
://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
case of a single source network, introducing a bottleneck

close to the source can have an undesirable effect on

hydraulic performance, while a multi-source network is

more resilient. Interestingly, the majority of solutions

(>95%) has zero hydraulic deficit, with only a small

number of solutions with a hydraulic deficit. The hydraulic

requirements of the Modena problem are very easy to

meet and are shown to have a high probability of being

satisfied with a randomly generated solution.



Table 4 | Best and average hypervolume results for the Network B problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.9121 0.9050

MOALCO-GA 0.9032 0.8981

MOPS-GA 0.9180 0.9113
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Network B

Table 4 shows the best and average hypervolume values

achieved from the 10 runs of each algorithm for the Network

B problem. MOPS-GA achieves the best solution quality,

followed by NSGA-II and finally MOALCO-GA. Each

algorithm, in this case, produced statistically different popu-

lations of hypervolume results when compared with each

other.

The mean best hypervolume of the three algorithms

for the Network B problem is presented in Figure 10.

MOALCO-GA displays better performance in the early

stages of the search compared with the other competing

algorithms. However, at around 15,000 evaluations, the

progression of the adaptive algorithm slows and the other

two algorithms overtake. It is also at this point where

MOPS-GA splits from NSGA-II and starts to outperform

the standard algorithm going on to achieve a better overall

average hypervolume value.
Figure 10 | Mean best hypervolume for the Network B problem – NSGA-II, MOALCO-GA and M
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The best final populations generated by the three algor-

ithms for the Network B problem are shown in Figure 11. It

can be observed that both MOPS-GA and NSGA-II achieve

a relatively comparable spread of results apart from at lower

network costs where the spread of solutions produced by

MOPS-GA is somewhat superior to NSGA-II.

It is also visible that the solutions produced by MOPS-

GA dominate those of NSGA-II and MOALCO-GA,

especially by the lower network cost solutions. MOALCO-

GA produces a large number of solutions with much

higher network costs than the other two algorithms, and

in the case of this, the most complex problem from the

benchmarks tested, this behaviour is more pronounced.
Tri-objective experiments

The following set of experiments involves the addition of the

pipe smoothing violations objective as stated in the Methods

section. The inclusion of pipe smoothing violations as an

additional objective is intended to aid the algorithm to

produce high quality solutions which are not only competi-

tive but are also more feasible from the perspective of a

water systems engineer. As with the dual-objective exper-

iments, NSGA-II was tuned to each problem and the same

parameter values were used by each algorithm to ensure a

fair comparison.
OPS-GA comparison.



Figure 11 | Pareto front for the Network B problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.
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Hanoi

Table 5 presents the hypervolume results of the three algor-

ithms for the tri-objective Hanoi problem. It can be seen that
Table 5 | Best and average hypervolume results for the Hanoi problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.6861 0.6674

MOALCO-GA 0.6970 0.6734

MOPS-GA 0.7108 0.6886

Figure 12 | Mean best hypervolume for the Hanoi problem – NSGA-II, MOALCO-GA and MOPS
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MOPS-GA obtains the highest best and average hypervo-

lume values, followed by MOALCO-GA which achieves

better results than NSGA-II. Each algorithm, in this case,

produced statistically different populations of hypervolume

results when compared with each other.

Figure 12 displays the average hypervolume value of the

50 individual runs for each of the three algorithms. It can be

observed that both of the engineering heuristic-based algor-

ithms display increased performance over NSGA-II in the

initial stages of the search. Following the preliminary expan-

sion into the search space, both MOALCO-GA and NSGA-II
-GA comparison.



Figure 13 | Pareto front for the Hanoi problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.
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begin convergence at a faster rate to that of MOPS-GA. This

results in MOPS-GA achieving a superior average hypervo-

lume value compared with that of the other two algorithms.

Figure 13 presents the best final population from each

of the algorithms for the Hanoi problem. Due to the tri-

objective nature of the problem, the solutions are presented

utilising four plots to increase clarity; three 2D figures

display each side of the three-dimensional (3D) search

space and one 3D plot of the same data. It can be observed

that the solutions produced by MOPS-GA tend to dominate
om http://iwa.silverchair.com/jh/article-pdf/22/2/402/666274/jh0220402.pdf
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those produced by the other algorithms at low network costs

and high hydraulic deficit values. However, MOALCO-GA

does appear to achieve dominant solutions at low hydraulic

deficit values. Looking at the second plot, it is clear that the

solutions produced by MOPS-GA dominate those from the

other algorithms in terms of pipe smoothing violations and

network cost, and this behaviour is somewhat expected

due to the complimentary heuristic employed by the algor-

ithm. Interestingly, MOPS-GA produces the solutions with

the joint highest number of pipe smoothing violations,
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although these have a lower cost than solutions generated by

NSGA-II, which have the same number of violations. The

third plot presents the solutions in terms of hydraulic deficit

and pipe smoothing violations. As previously observed, the

solutions found by MOPS-GA are mainly located at low

pipe smoothing violations; however, this is at the cost of

higher hydraulic deficit values. It can also be observed

that the majority of MOPS-GA solutions with zero hydraulic

deficits has a relatively high number of smoothing viola-

tions. Interestingly, it is MOALCO-GA and NSGA-II that

achieve solutions with the lowest hydraulic deficit at zero

pipe smoothing violations, mostly dominating the compet-

ing solutions found by MOPS-GA.
Modena

Table 6 presents the best and average hypervolume results

for NSGA-II, MOALCO-GA and MOPS-GA for the tri-
Table 6 | Best and average hypervolume results for the Modena problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.6000 0.5795

MOALCO-GA 0.6117 0.5812

MOPS-GA 0.6720 0.6463

Figure 14 | Mean best hypervolume for the Modena problem – NSGA-II, MOALCO-GA and MO
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objective Modena problem. It is apparent from these results

that MOPS-GA is able to generate populations with signifi-

cantly higher hypervolume values than the other two

algorithms. No statistically significant difference in results

was found between NSGA-II and MOALCO-GA, although

MOPS-GA produced statistically different results when com-

pared with the other two algorithms.

The mean best hypervolume results for the three algor-

ithms for the Modena problem are presented in Figure 14.

It is observed that MOPS-GA drastically outperforms the

other two algorithms throughout the entire search of the

algorithms. While MOALCO-GA does achieve better hyper-

volume results in the early stages of the search compared

with NSGA-II, the difference in performance between the

two algorithms diminishes in the later stages of the search.

It should be noted that it takes under 20,000 evaluations

for MOPS-GA to achieve the highest average hypervolume

achieved by both MOALCO-GA and NSGA-II.

Figure 15 displays the best final population of solutions

generated by the three algorithms for the Modena pro-

blem. It is apparent from the first plot that MOPS-GA is

able to find the lowest cost solutions, followed by the

other two algorithms, although this is done at the cost of

an increased hydraulic deficit. The second plot shows the

ability of MOPS-GA to find a good number of smoother,
PS-GA comparison.



Figure 15 | Pareto front for the Modena problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.

Table 7 | Best and average hypervolume results for the Network B problem – NSGA-II,

MOALCO-GA and MOPS-GA comparison

Algorithm Best hypervolume Average hypervolume

NSGA-II 0.5847 0.5687

MOALCO-GA 0.5852 0.5673

MOPS-GA 0.5895 0.5771
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low cost solutions compared with the other two

algorithms. It can also be observed that although

MOALCO-GA and NSGA-II do achieve solutions with

similar network smoothness, they are mainly located at

much higher network costs. Being a larger network, it is

more difficult to find solutions with very smooth pipe

diameter transitions, hence why the lowest number of

pipe smoothing violations generated by a solution is 60.

Looking at the third figure, it is apparent that although

MOPS-GA achieves the most solutions with the least

number of pipe smoothing violations, the majority of

these solutions has relatively high hydraulic deficit.
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Network B

Table 7 presents the best and average hypervolume results

from the three algorithms for the Network B problem. It is



Figure 16 | Mean hypervolume for the Network B problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.
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apparent that both NSGA-II and MOALCO-GA achieve

a similar average population of solutions, reaching compar-

able hypervolume values. MOPS-GA displays the highest

average performance, obtaining the best hypervolume values

of all the algorithms. No statistical significance in the final

population of results was found between NSGA-II and

MOALCO-GA; however, MOPS-GA produced statistically sig-

nificant results when compared with the other two algorithms.

Figure 16 shows the average hypervolume of the three

algorithms for the Network B problem. Interestingly, it is

MOALCO-GA that exhibits the best performance in

the early stages of the search, only being surpassed by

MOPS-GA at 20,000 and NSGA-II at the end of the

search. NSGA-II and MOPS-GA display comparable perform-

ance during the first 10,000 evaluations; however, following

this stage, MOPS-GA produces higher quality solutions than

the standard algorithm for the remainder of the search.

Figure 17 shows the best population produced by each

of the three algorithms for the Network B problem. It

can be observed that the majority of solutions found by

MOPS-GA dominates those produced by the other two

algorithms in terms of network cost and hydraulic deficit,

especially at lower network costs; although NSGA-II does

produce some dominant solutions with large pressure defi-

cit. It is also apparent that MOALCO-GA tends to find the

highest cost solutions, generally located at zero hydraulic

deficits. As network cost is decreased, the number of pipe
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smoothing violations tends to increase. It is also apparent

that most solutions produced by MOPS-GA dominate

those found by the other two algorithms in terms of pipe

smoothing violations and network cost. The third plot in

the figure shows that MOPS-GA is good at finding the

solutions with lower pipe smoothing violations at relatively

low deficit values, often dominating those produced by the

competing algorithms. Interestingly, it is NSGA-II that

finds a number of solutions with lower pipe smoothing

violations but at the cost of a high hydraulic deficit value.
CONCLUSIONS

MOALCO-GA and MOPS-GA have been developed and

assessed on a number of well-known benchmarks from

the literature and one real-world network. Utilising two

different heuristics, both MOALCO-GA and MOPS-GA

encode engineering knowledge into the NSGA-II with the

view to improving the performance of the algorithm utilising

the mutation operator.

MOALCO-GA has been shown to perform relatively

well from the experiments presented in this paper when

compared with NSGA-II. Regarding the dual-objective

experiment set, MOALCO-GA performed well often achiev-

ing solutions of equal or higher quality than NSGA-II. The

exception to this is in the case of the large-scale problem,



Figure 17 | Pareto front for the Network B problem – NSGA-II, MOALCO-GA and MOPS-GA comparison.
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Network B, although it outperformed both NSGA-II and

MOPS-GA in the first stages of the search. In terms of the

tri-objective experimentations, MOALCO-GA was again

shown to often outperform NSGA-II in a number of cases

and never produced statistically worse results than the

standard algorithm.

The pipe smoothing mutation operator of MOPS-GA has

been shown to outperform the standard configuration of

NSGA-II on all benchmark problems tested in this

paper. For the majority of problems tested in this paper,

MOPS-GA exhibited faster convergence than NSGA-II and

achieved a better set of final solutions. The results also

suggest that MOPS-GA performs very well when tackling

WDN design problem that involves multiple water sources.
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The introduction of a pipe smoothing component into the

multi-objective formulation improves performance in both

dual- and tri-objective formulations. While the modified

algorithm might be expected to perform well in the tri-objec-

tive case where one of the objectives reflects the heuristic, it is

highly interesting that it should perform so much better on

the dual-objective problem. This is a key finding as it provides

some of the first evidence that incorporating engineering

expertise into an algorithm enables it to improve mathemat-

ical optimality in multiple objectives.

The results presented in this paper have demonstrated

that knowledge-guided mutation aids an EA to more

efficiently solve the multi-objective formulation of the

WDN design problem. The performance gains from these
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knowledge-guided approaches have been shown to be

effective over a range of network scales and complexities.

Out of the two heuristic-based mutation operators, the

pipe smoothing method displays the most promise, consist-

ently outperforming the bottleneck reduction process in all

problems and networks. The primary cause is thought to

be the ability to apply the pipe smoothing heuristic through-

out the entire search, whereas the nature of the bottleneck

reducing heuristic limits when it can be applied for positive

effect, normally in the early stages of the search. Each

heuristic has its strengths, although the stage at which appli-

cation occurs is a key. With this in mind, the combination

of these heuristics into one hybrid algorithm would be the

logical next step in this research path. Another possible

direction for future research is employing a modified version

of the pipe smoothing heuristic as a post-process action

following optimisation. In its current form, the heuristic

would most likely have a detrimental impact on the hydrau-

lic performance of the network; however, enforcing the

smoothing violation rule could be viable. If a pipe has a

larger diameter to that of its upstream counterpart(s),

change the diameter to match. This should mostly sustain

the hydraulic performance of the network while smoothing

the pipe diameter transitions.

In conclusion, both engineering heuristic-based multi-

objective algorithms presented in this paper were found to

outperform a tuned version of NSGA-II in the vast majority

of cases, with MOPS-GA generally achieving the best

solutions out of all of the algorithms on a test. This paper

has gone some way in demonstrating that the incorporation

of water systems knowledge to an EA not only leads to

improvements in computational efficiency and mathemat-

ical optimality but also to the generation of solutions

industry engineers would find more intuitive.
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