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Cellular time series: a data structure for spatio-temporal

analysis and management of geoscience information

Sina Nabaei and Bahram Saghafian
ABSTRACT
Geoscientists are continuously confronted by difficulties involved in handling varieties of data

formats. Configuration of data only in time or space domains leads to the use of multiple stand-alone

software in the spatio-temporal analysis which is a time-consuming approach. In this paper, the

concept of cellular time series (CTS) and three types of meta data are introduced to improve

the handling of CTS in the spatio-temporal analysis. The data structure was designed via Python

programming language; however, the structure could also be implemented by other languages

(e.g., R and MATLAB). We used this concept in the hydro-meteorological discipline. In our application,

CTS of monthly precipitation was generated by employing data of 102 stations across Iran. The non-

parametric Mann–Kendall trend test and change point detection techniques, including Pettitt’s test,

standard normal homogeneity test, and the Buishand range test were applied on the generated CTS.

Results revealed a negative annual trend in the eastern parts, as well as being sporadically spread

over the southern and western parts of the country. Furthermore, the year 1998 was detected as a

significant change year in the eastern and southern regions of Iran. The proposed structure may be

used by geoscientists and data providers for straightforward simultaneous spatio-temporal analysis.
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INTRODUCTION
The field of big data has dramatically expanded in the field

of information and communications technology (ICT)

since 2010; it has evolved in early stages in water and

climate sciences (Chen & Han ). The term ‘big data’

appears simple, but its technical meaning is somewhat

ambiguous. It is commonly used to refer to massive datasets,

as well as to complexity beyond the capacity of conventional

computing tools (Snijder et al. ).

The big data characteristics include ‘high volume’ (e.g.,

data volume, collection, retention), ‘high velocity’ dealing

with speed of data collection and processing (e.g., data

caches, point-to-point data routing), and ‘high variety’

dealing with categories (e.g., data formats and meta data)

(Laney ). Discovery of knowledge from a high volume

dataset is a challenging systematic issue (e.g., utilizing
the existing hardware, data formats, models, and methods)

(National Research Council ).

Some disciplines, such as environmental and earth

sciences, natural resources, meteorology and hydrome-

teorology involve dynamic variables (e.g., Simonovic

; Abuzied & Mansour ; Nodoushan &

Shakibaeinia ). In this regard, the spatio-temporal

analysis of well-structured data remains a challenging

issue (Harpham & Danovaro ). Furthermore, large

volumes of hydrometeorologic data have been recorded

and released (e.g., data from sensors, remote sensing

(RS), Earth observation, and internet of things) in recent

decades and push the water and climate sectors into the

inevitable big data field. Accordingly, for analysis of big

data, there is need for a structure that, in addition to
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handling the time dimension, can accommodate the space

dimension (Liu et al. ).

In recent years, global RS data have been stored by

a number of structured data models, such as advanced

self-describing network Common Data Form (netCDF),

Hierarchical Data Format (HDF), and Gridded Binary

(GRIB) that handle time and space dimensions (Chen &

Han ). Recent generations of these data models

(e.g., netCDF-4 and HDF5) can store more complex datasets

(high volume and different variety) (Rew et al. ).

netCDF and HDF are commonly used for storing big

gridded data (GD), but to extract the values of variables,

there is the need for additional time-consuming processing

(decoding). In addition, the main problem (in data handling)

arises when the spatio-temporal analysis of geoscience data

is commonly performed by the end-users who are not

trained ICT scientists (Ward et al. ).
Figure 1 | (a) Varieties of data formats and challenges in data analysis. (b) Unstructured tradit
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RS data assessment leads to a new generation of

challenges. Data providers publish modern geoscience

datasets (e.g., satellite products) in high-compressed

formats (e.g., HDF). For the RS product assessment

(e.g., precipitation), there is a need to compare them

with ground-based measures. On the other hand, historical

ground-based data have been recorded and published since

much earlier times and are usually accessible in traditional

formats (e.g., txt, CSV, xls, and xlsx). Thus, there is a

big gap (in terms of published formats) between structured

data (e.g., RS and global reanalyzed datasets shared in

netCDForHDF formats) and ground-based data (Figure 1(a)).

Consequently, synchronization and sorting of multiple data

formats has become a crucial and inevitable time-consuming

step in the process of RS data assessment. Hence, there is a

need for a common flexible solution which covers the variety

of traditional and modern data formats.
ional procedure for simultaneous space and time analysis.
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Figure 1(b) addresses another issue. Traditional spatio-

temporal approaches (combining the stand-alone software)

and transferring the results among them are not sufficient for

huge data analysis with speed and accuracy. Geographic infor-

mation systems (GIS) software (e.g., ArcGIS) are mainly based

on the space domain (GD structure). Also, time series (TS)

analysis software (e.g., SPSS) assists researchers to investigate

the dynamic of data along the time dimension. Nevertheless,

there is not a clear concept/guideline for how to combine

the bunch of software due to spatio-temporal analysis

(Figure 1(b)). To improve the procedure of spatio-temporal

analysis, a new structure may be required. One of the main

objectives of this paper is to provide a data structure/concept

to improve the speed of spatio-temporal analysis. In this study,

we focus on the ground-based data.

Different studies have been conducted in the field of

data structure. Kruger et al. () studied the utility of

meta data in the query of NEXRAD data. They showed

this is an efficient approach for selecting data subsets in

time series. It is based on the Hydro-NEXRAD system,

which contains a vast archive of online radar-centric data.

However, their study was limited to a specific online dataset

and not customizable by end-users independently. Liu et al.

() proposed the SciDB server-based data query structure.

SciDB was developed for the NetCDF-4 format. It is

implemented on the online platform and assists data query

procedure. SciDB is a server-based structure and not devel-

oped for offline data sources (and does not cover traditional

formats). Seo et al. () studied NEXRAD dataset and

introduced a pilot infrastructure for data management. It

is based on meta data query and facilitates searching/

converting procedures in precipitation datasets. This is a

specified study on NEXRAD data and not developed for

all types of geo-datasets (e.g., offline and user-defined).

The analysis of climatic and meteorological fluctuations

are being conducted across different regions around the

world (e.g., Yao et al. ; Pascale et al. ; Shirvani

; Abidi et al. ; Gundogdu ; Aminyavari et al.

; Kolachian & Saghafian ). As climatic variables

fluctuate over time and in space, numerous studies have

been reported to explore the spatio-temporal nature of

climate (e.g., Toros ; Sen Roy & Rouault ; Delavau

et al. ; Luković et al. ). In addition, climate variables

affect hydrology and water resources. With the development
://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
of better computer-based algorithms and methods (such

as machine learning, data mining, and artificial intelligence),

many studies have been performed to simulate and forecast

hydro-climatic phenomena (e.g., Chuntian & Chau ;

Wu & Chau ; Chau ; Ali Ghorbani et al. ;

Moazenzadeh et al. ; Nabaei et al. ; Yaseen et al. ).

Trend and change point tests are common temporal TS

analysis, prevalently conducted on point data (e.g., Shi et al.

; Khalili et al. ). However, the study of trend and

change point across space enhances our understanding of

how TS behave spatially. At a glance, spatio-temporal cli-

mate data studies could be categorized into four groups

based on the type of input data and results representation.

The first group, with a huge number of reported studies,

deals with in-situ (point) data. Inputs are typically provided

by meteorological stations (e.g., Duhan & Pandey ;

Santos & Fragoso ; de Luis et al. ; Goyal ;

Hosseinzadeh Talaee et al. ; Shi et al. ; Singh

et al. ; Ghasemi ; Li et al. ; Longobardi &

Mautone ; Powell & Keim ; Javari ; Roushangar

et al. ). The results of such studies lack spatial dimension

and are specific to a certain location.

In the second study group, station-based TS analysis is

transposed into a spatially continuous domain. This is

usually carried out via interpolation techniques applied on

output statistics (e.g., Dinpashoh ; Fathian et al. ;

Hosseinzadeh Talaee et al. ; Abolverdi et al. ;

Javari ; Minaei & Irannezhad ). The third type

regionalizes a study area by inputting main (e.g., precipi-

tation) or auxiliary (e.g., outputs of statistical analysis)

variables via application of different classification tech-

niques such as clustering (e.g., Dinpashoh et al. ;

Modarres ; Raziei et al. ; Modarres & Sarhadi

; Fazel et al. ). The last study group deploys RS

(e.g., radar and imagary; Khodadoust Siuki et al. ;

Sharifi et al. ) or GD for spatio-temporal analysis (e.g.,

Sarmadi & Shokoohi ; Fallah et al. ). This procedure

is more recent and outcome is presented in GD forms.

Efficient management of geoscience data is one of the

major concerns of data scientists. As mentioned previously,

most of the studies were limited to a particular format (e.g.,

NetCDF) or developed based on a specific platform (e.g.,

Hydro-NEXRAD or online services). It can be hindered

in achieving a common data structure to the vast range
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of applications and multi-formats. To overcome these

obstacles/solidity, a new data concept with the following

specifications could be advantageous: (1) simple enough

and applicable by a wide range of researchers; (2) flexible

enough to cover the multi-format datasets (i.e., filling the

gap between in-situ and RS data); (3) customizable (i.e.,

extendable) structure for generating and managing dataset;

(4) could be implemented in a single platform due to

integrating all the procedures of spatio-temporal analysis

(not rely on multiple stand-alone software).

In this study, we used Python 2.7 which is compatible

with the GNU General Public License (GPL). Python is

one of the high-level languages and is well-suited for

geoscience disciplines. Other languages (e.g., R, MATLAB,

Java, and Scala) could also be used to generate and apply

this concept. To cover the desired goals, we introduce the

structure/concept of cellular time series (CTS), spatial meta

data (SMD), temporal meta data (TMD), and meta CTS

(mCTS) in this paper. Herein, CTS is defined as a set of con-

nected cells over space, each of which carry a time series.
METHODS

At first, the generation procedure of CTS is outlined.

Next, three types of meta data are proposed for managing

(query) of CTS information. Also, some well-known statisti-

cal analysis is reviewed which we applied in this paper

across Iran. The details of Mann–Kendall (MK) trend test

are described, followed by three different change point

detection methods including Pettitt’s test, standard normal

homogeneity test (SNHT), and the Buishand range test.

Generation of CTS

This paper proposes a conceptual structure for spatio-

temporal applications where one needs to convert in-situ

time series into CTS. Figure 2(c) shows three dimensions of

the CTS that include X (longitude), Y (latitude), and T

(time). Numerous data generation/prediction methods (e.g.,

IDW, Bayesian kriging, co-kriging, spline, and also numerical

weather generation models) could be implied to create spatial

(X-Y) layouts (Figure 2(a)). Finally, two-dimensional (2D)

matrices in space were merged to form a three-dimensional

(3D) CTS (Figure 2(b) and 2(c)). In this study, however,
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ground-based data were the basis for CTS as such data are pre-

sumed as a reference data source to assess/bias correct other

global datasets (e.g., RS and reanalyzed data). Similarly, RS

and reanalyzed data (usually with NetCDF, GRIB, and HDF

formats) could also be used to generate CTS.

Spatial meta data

This is a 2D matrix in space dimension (X and Y). In this case,

the SMD values are constant over time and attributed to all the

temporal slices involved in the CTS. For example, digital

elevation model, coordinates (longitude and latitude), the

surface of a region (e.g., states, catchments, and climate

zones), and land use can be categorized as SMD. SMD can

help to perform spatial analysis on the CTS, for example, the

query of the CTS values in a particular area. Afterwards, any

spatial calculations (e.g., sum, average, standard deviation,

and entropy) can be performed via SMD (Figure 2(d) and 2(g)).

Temporal meta data

This is a vector (along the time dimension). The TMD values

are constant over the space and attributed to all the spatial

slices involved in the CTS. For example, year, month, day,

hour, minute, seasons, and different calendars (e.g., solar,

Julian, and lunar) may be categorized as TMD. TMD can

help to perform temporal analysis on the CTS. For example,

extracting the values of specific days and converting daily

precipitation to monthly could be performed via TMD

(Figure 2(e) and 2(g)).

Meta CTS

This is a 3D matrix (X, Y, and T) and could contain SMD

and TMD features. The mCTS values can vary in both

time and space. Any dynamic (in time and space) variable

which could be used in the query of CTS information is

assumed as mCTS. Different variables (e.g., temperature

and humidity) and drought indices (e.g., SPI, SPEI,

Palmer) may be inferred as mCTS. For example, the query

of drought events (based on a specific index threshold)

could be performed by mCTS (Figure 2(f) and 2(g)).

Figure 2(g) illustrates the general procedure (inter-

actions) of CTS and meta data application. The procedure



Figure 2 | (a) In-situ data in time layers, (b) spatially gridded maps in time, and (c) assembled 3D CTS, (d) spatial meta data, (e) temporal meta data, (f) meta CTS, and (g) a general procedure

of using CTS and meta data query for spatio-temporal analysis.
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may be applied in most of the programming language. It is

based on the meta data queries, extracting a new CTS, and

applying functions (Fn) along the desired dimension.
MK trend test

MK trend test (Mann ; Kendall ) is a rank-based

non-parametric test, developed to recognize monotonic

increasing or decreasing trend. MK statistics could be used

in a hypothesis test to determine significant trend. There

are two main statistics in the MK. The first is S and
://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
calculated by inputting xi and xj as a sequence of TS

values as follows:

S ¼
Xn�1

i¼1

Xn
j¼iþ1

sgn(xj � xi) (1)

sgn(xj � xi) ¼
þ1 if xj � xi > 0
0 if xj � xi ¼ 0
�1 if xj � xi < 0

8<
: (2)

Sgn is the sign function and returns conditional values.

The second statistic is Z which refers to the standard
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normal deviate and is calculated as:

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p for S> 0

0 for S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p for S< 0

8>>>>><
>>>>>:

(3)

Var(S) is the variance of S and is determined as follows:

Var(S) ¼ n(n� 1)(2nþ 5)�Pg
i¼1 ti(ti � 1)(2ti þ 5)

18
(4)

In the above equation, n, g, and ti are the number of

samples, number of tied groups, and number of data

values in the ith group, respectively (see Hirsch et al. ).

Two tail test with null H0 (no trend) and alternative HA

(rejected H0) hypothesis is then applied. The standard

normal cumulative values are determined for α¼ 5% and

10% significant levels. Owing to the two tail test, if the Z is

greater or smaller than critical values (Z1�α/2 and �Z1�α/2,

respectively), the H0 is rejected and trend is significant.

Pettitt’s test

Pettitt () proposed a non-parametric test to detect a

single change point which is commonly applied on climate

and hydrologic TS. The null hypothesis is H0 (no change)

while the alternative is defined as HA (rejected H0). The

change point occurs at t. The statistic KT refers to the

detected change point.

KT ¼ maxjUt,T j (5)

Ut,T ¼
Xt

i¼1

XT
j¼tþ1

sgn(xi � xj) (6)

T is number of total samples in the series. The variable t

divides the series into two subseries and the set of Ut,T is

determined.

p ≃ 2exp
�6K2

T

T3 þ T2

� �
(7)

If p is smaller than confidence level, Kt is significant and

the corresponding t is detected as a change point. In this
om http://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
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study, the 5% confidence level is selected for two tail

hypothesis test.

SNHT

SNHT, proposed by Alexandersson (), detects a single

change point. Statistics are computed as:

Tk ¼ kZ2
1 þ (n� k)Z2

2 (1 � k � n) (8)

Z1 ¼ 1
k

Xk
i¼1

xi � �x
σ

(9)

Z2 ¼ 1
n� k

Xn
i¼kþ1

xi � �x
σ

(10)

The variable k refers to the change point and n is the

total sample size. Maximum value of Tk is a candidate of

significant change point and should be checked by hypoth-

esis test. �x and σ are mean and standard deviation of series.

Buishand’s range test

Buishand () used cumulative deviation from mean (�x)

to detect change point (k). Adjusted partial sum (Sk) is

calculated as follows:

SK ¼
Xk
i¼1

(xi � �x) (1 � i � n) (11)

R ¼ Max(Sk)�Min(Sk)
σ

(12)

The change point was evaluated by comparing R=
ffiffiffi
n

p

with the critical value at the significant level.
APPLICATION OF CTS

Iran is a country in western Asia between 44�000E–63�250E

longitude and 25�000N–38�400N latitude with an area of

about 1,648,000 km2. The Caspian Sea in the north and

the Persian Gulf in the south border some 2,000 km of coast-

line in total (Figure 3). Zagros and Alborz are the two main



Figure 3 | Topographic map and location of selected synoptic stations in Iran.
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mountain ranges in the country. Also, two vast central

deserts are known as the Dasht-e Lut and the Dasht-e

Kavir. The climate varies greatly across the country, depend-

ing on topography among other things.

Monthly precipitation of some 102 synoptic stations

were obtained from the Iranian Meteorological Organiz-

ation. The location of the stations is shown in Figure 3.

The study period covers 1987–2014 as the common period

of quality precipitation data. In order to provide a basis for

seasonal analysis, December is set as the first month and

so on; accordingly, the seasons are set as follows: winter¼
DJF (Dec, Jan, and Feb), spring¼MAM (Mar, Apr, and

May), summer¼ JJA (Jun, Jul, and Aug), and autumn¼
SON (Sep, Oct, and Nov). The CTS precipitation was gener-

ated using 336 monthly precipitation layers at 0.5� × 0.5�

spatial resolution. Precipitation maps were generated via

inverse distance weighted (IDW) interpolation method with

exponent 2. CTS is not limited to IDW interpolation and

could be loaded with many other techniques, even optimiz-

ation tools. Afterward, the spatio-temporal trend and

change point analyses were performed on the generated CTS.
RESULTS AND DISCUSSION

In this section, trend and change point analyses were

applied on the CTS at different time scales. Results,
://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
extracted in cellular form, are illustrated at different signifi-

cant levels.
Precipitation distribution

Spatial distribution of annual and seasonal average

precipitation are shown in Figure 4. Similarly, monthly

precipitation maps were also generated and are summarized

in Table 1.

As shown in the maps, northern and western Iran

(along Alborz and Zagros mountain chains) receive the

highest precipitation depths (Figure 4). The average annual

precipitation varies from 20 mm (in Dasht-e Lut desert) to

1,410 mm (along the northern coastline). The overall

average values closely match those reported by previous

studies (e.g., Dinpashoh et al. ; Modarres & Sarhadi

; Raziei et al. ).

Summer rain mainly occurs along the Caspian Sea in

the north where over 80% of the total summer precipitation

in Iran is received (Figure 4). Average annual precipitation is

242.9 mm over the study period, 75% of which occurs

in winter and spring (Table 1). Total precipitation from

November to April constitutes about 83% of annual precipi-

tation (Figure 5). Clearly, central and southeastern regions

receive the lowest precipitation (Figure 4) and are classified

as arid and semi-arid climates (Modarres & Sarhadi ).



Figure 4 | Spatial distribution of long-term average precipitation over Iran at different time scales: (a) annual, (b) winter, (c) spring, (d) summer, and (e) autumn.

Table 1 | Characteristics of average annual, seasonal, and monthly precipitation in Iran

Annual

Seasonal Monthly

Precipitation (mm) Season Precipitation (mm) Contribution (%) Month Precipitation (mm) Contribution per season (%) Contribution per year (%)

242.9 Winter 109.5 45.1 Dec 37.4 34.1 15.4
Jan 38.1 34.8 15.7
Feb 34.0 31.1 14.0
Sum 109.5 100.0 –

Spring 78.9 32.5 Mar 40.6 51.4 16.7
Apr 25.7 32.6 10.6
May 12.6 16.0 5.2
Sum 78.9 100.0 _

Summer 10.4 4.3 Jun 4.2 40.4 1.7
Jul 3.0 28.8 1.2
Aug 3.2 30.8 1.3
Sum 10.4 100.0 _

Autumn 44.1 18.1 Sep 5.3 12.0 2.2
Oct 13.3 30.1 5.5
Nov 25.5 57.9 10.5
Sum 44.1 100.0 –

Figure 5 | Spatially averaged precipitation at seasonal and monthly time scales.
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Figure 6 | Spatial distribution of precipitation trend at 5% and 10% significant levels based on the MK test at different time scales: (a) annual, (b) winter, (c) spring, (d) summer, and (e)

autumn.
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Significant trend

Hypothesis tests were applied to detect significant trend at

5% and 10% levels. Two tail standard normal cumulative

values are Z0.975 and Z0.95, respectively. The Z values were

applied as a threshold for the P-values of MK statistic to

detect cells with significant trend. Spatial distribution of

significant trend in annual and seasonal time scales are

shown in Figure 6. Also, the MK test was applied at monthly

time scale as shown in Figure 7.

Annual precipitation trend decreases in the east, and

in small portions of the west and south (Figure 6(a)).

Decomposition of annual trend revealed that winter and

spring fluctuations are the main sources of downward

trend (Figure 6(b) and 6(c)), while the insignificant contri-

bution of summer precipitation (about 4%) and upward

incremental trend in autumn precipitation, appearing in

the central and sporadic regions in eastern and southern

regions (Figure 6(e)), balance the overall annual trend.

The monthly precipitation trend maps (Figure 7) shows

that downward winter trend occurred in December (mostly

in the southeast) and February (mostly in the west).

Moreover, spring is affected by a downward March precipi-

tation trend. More detailed analysis on March precipitation

revealed that areas with 5% significant trend are concen-

trated in the west of Iran. Also, there are areas in the

north, centre, and east with decreasing trend. The increasing

autumn trend is mainly affected by November precipitation
://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
(Figure 7). Trends are observed in most regions at 5% signifi-

cance level, except in parts of the northwest and southeast.

Figure 8 summarizes the trend analysis, in terms of the

percentage of the country affected, at 5% and 10% signifi-

cant levels. About 22.4% of areas have negative annual

trend, out of which 7.9% is significant at 5% level. Areas sub-

ject to winter, spring, summer, and autumn precipitation trend

cover 26.7% (decreasing), 23.7% (decreasing), nearly zero, and

23.4% (increasing) of the total study area, respectively. The

downward precipitation trend in March covers 49.3% of

Iran, out of which 27.7% of area is affected by 5% significant

level. The dominant increasing trend occurs in November and

covers 66.8% of Iran (Figure 8). These two observations are in

light of the fact that March and November receive 16.7% and

10.5% of total annual precipitation (Table 1).

Other researchers have also analyzed the precipitation

trend in Iran. Talaee () studied trend in precipitation

of seven rain gauges in Hamedan (a western province in

Iran) and found that monthly trend analysis (from 1969 to

2009) via the MK test revealed decreasing and increasing

trend in March and November, respectively (conforms

with Figure 7 in Hamedan province). However, in February,

the positive MK statistics found in Hamedan are in contrast

with our results shown in Figure 7 (western regions). The

main reason for this inconsistency is due to the difference

between the length of the study periods. In other words,

incorporation of more recent data in our study resulted in

a downward trend in February.



Figure 7 | Spatial distribution of monthly precipitation trend at 5% and 10% significant levels based on the MK test.
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Some’e et al. () analyzed in-situ precipitation data in

Iran. They applied the MK test on 28 synoptic stations in

the period of 1967–2006. Three northwest stations (Khoy,

Urmia, and Tabriz) were found to have significant negative
om http://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
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trend at annual scale. Seasonal trend analysis revealed down-

ward spring trend in three of the studied stations (in central,

eastern, and southeast regions) and upward summer trend in

the northeast. No significant trend was found in autumn



Figure 8 | Percentage of area with increasing/decreasing precipitation trend at 5% and 10% significant levels at various time scales.
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while negative winter trend was detected in the northwest

and along the coasts of the Caspian Sea and in one station

in the southeast region. Comparison of their results with

our study indicates some similarity in spring (eastern) and

winter (northwest) trends. The incompatibility of the trend

in some areas could be due to differences in the study

period as well as different spatial scales.

Tabari et al. () investigated annual precipitation

trend in 13 stations over the 1966–2005 period along the

Zagros mountain chain, stretching in western Iran towards

the southeast. Results showed a significant decreasing

trend (at 95% level) in one southern and two western

stations. This is in general agreement with this study

although the study periods were not quite the same and

that study focused on point analysis.

In another study, Modarres & Sarhadi () investi-

gated annual precipitation trend in eight regions of Iran

(Figure 9). They showed increasing and decreasing annual
Figure 9 | Precipitation regions (Modarres 2006).

://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
precipitation trend, respectively, in G2 and G8 regions for

the 1951–2000 study period. In our study, MK statistic (Z)

and P-value were calculated for all precipitation classes

(Table 2) over the 1987–2014 period. However, no signifi-

cant trend was detected in annual precipitation (second

column) in G2 and G8 regions. Statistics were also studied

at seasonal scale that indicated significant downward

trend in winter in G5 and G7 regions (Table 2). The contrast

in some of our results with those of Modarres & Sarhadi

() stems from the difference in the duration of the

study periods such that more recent data could have been

affected by climate change. Our study added 14 years of

recent years in comparison with Modarres & Sarhadi’s

() study.
Significant change point

The change point was detected by Pettitt, SNHT, and Buis-

hand tests with two tail hypothesis at 5% significant level

(Figure 10). The year 1998 was detected as the predominant

change point in the east and south of Iran by almost all tests.

Results showed higher sensitivity of Pettitt’s test in compari-

son with SNHT and Buishand test. Pettitt’s test revealed a

broad range of change years (1997–2005) although the

year 1998 was the predominant change point in areas

where detection was positive. Interestingly, a similar spatial

pattern in detection of decreasing trend in annual precipi-

tation (Figure 6(a)) and the change point tests (Figure 10)

could be observed.



Table 2 | MK statistic (Z ) and P-values over precipitation regions of Iran

Precipitation region

Annual Winter Spring Summer Autumn

Z P-value Z P-value Z P-value Z P-value Z P-value

G1 �1.05 0.35 �1.04 0.36 �1.28 0.27 �0.32 0.61 1.28 0.26

G2 �0.71 0.50 �1.57 0.15 �0.86 0.42 0.46 0.58 1.29 0.23

G3 �0.18 0.55 �1.24 0.30 0.11 0.59 0.28 0.64 0.40 0.69

G4 �1.41 0.20 �1.55 0.13 �1.16 0.30 0.46 0.52 1.43 0.17

G5 �1.40 0.21 �2.14 0.06* �1.49 0.16 0.41 0.62 0.90 0.38

G6 �0.34 0.75 �0.08 0.70 �1.47 0.17 �0.39 0.68 0.08 0.70

G7 �1.44 0.21 �1.90 0.09* �1.55 0.14 1.04 0.35 1.34 0.20

G8 �0.30 0.74 �1.08 0.33 �0.14 0.66 �0.31 0.77 0.14 0.73

*Significant at α¼ 10%.

Figure 10 | Significant change point in precipitation detected by: (a) Pettitt’s test, (b) SNHT, and (c) Buishand test.
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CONCLUSIONS

The traditional TS structure focuses only on the time

dimension. On the other hand, ‘GD’, which is increasingly

heard of after launching satellite sensors in the RS era,

deals with regular spatial data (mesh) in a snapshot. In the

current paper, the concepts of CTS, SMD, TMD and,

mCTS are introduced. We believe that CTS can bridge the

traditional geo-datasets (especially ground-based data; e.g.,

binary, txt, ascii, csv, excel) to the real-world dimensions

(time and space) in order to facilitate data processes (in

scripting environments) for geoscientists.

In this study, we applied trend and change point

detection methods on the CTS, which is a well-suited

data structure to perform any time series analysis and prob-

ability-based analysis (e.g., copula) or any other methods
om http://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
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applicable to in-situ TS (e.g., wavelet). Furthermore, the

CTS is perfectly adaptable for spatial analysis (e.g., entropy

and homogeneity) or different machine learning approaches

(e.g., principal component analysis, clustering, bagging, and

boosting). We chose the trend and change point methods

because they are well-practiced and provide pre-requisite

information for climate change studies.

Numerous studies have focused on trend and change

point occurrence within precipitation gauge-based data

series. However, due to the lack of explicit spatial dimension

in such studies, spatial inferences of the results are not

straightforward. Accordingly, this study focused on the

spatial distribution of precipitation trend and change point

in Iran in the context of CTS database. The precipitation

data of some 102 synoptic stations were employed to gener-

ate 25 CTS-based maps at annual, seasonal, and monthly
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scales via Python programming. Moreover, temporally

averaged precipitation maps at different time scales were

constructed across Iran as the basis for further analysis.

Trend analyses were applied on the CTS at various

time scales. The MK test revealed significant trend at 5%

and 10% levels. Downward trend was identified in annual,

winter and spring seasonal maps while upward trend in

autumn precipitation was detected. Furthermore, monthly

precipitation maps showed negative and positive trends,

respectively, in March and November precipitation.

Comparison of the cellular trend results with other similar

studies at point scale were mostly in agreement except

when the duration of the data were different.

Change point analysis conducted by Pettitt’s test, SNHT,

and the Buishand test revealed that the year 1998 was a

significant change point in precipitation. This entirely

coincides with the annual downward precipitation trend in

the east and south of Iran.

All in all, the proposed integrated CTS, SMD, TMD, and

mCTS concept is well-suited to load in a matrix-based

programming language (e.g., Python, R, MATLAB). Thus,

there is good potential to define and use different numerical

and statistical functions (in this study: MK, Pettitt, SNHT,

and Buishand) in the scripting environments. CTS enhances

the functionality of these languages due to spatio-temporal

analysis in a single environment. This concept could be

put in use to link time series with geographic data and

enable managers to support spatial decision-making.
Suggestions and future directions

Different hydro-climatologic variables (e.g., temperature,

solar radiation, humidity, and wind speed) could be pro-

duced in the CTS format. Also, different interpolation

methods (e.g., kriging, co-kriging, and spline) could be

studied and implemented. CTS and meta data are flexible

joint structures that facilitate scripting for spatio-temporal

analysis. Different cell size (i.e., resampling) could be gener-

ated by spatial quarry (via SMD). The 3D analysis could be

applied to CTS (time and space simultaneously) to investi-

gate the dynamic of climatic variables. Data providers

could serve more online options including CTS in publish-

ing in-situ, RS, and reanalyzed data.
://iwa.silverchair.com/jh/article-pdf/21/6/999/623002/jh0210999.pdf
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