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Ensemble of constraint-handling techniques for solving

reservoir scheduling problems

Tengfei Hu, Yong Shi, Zhenyu Luan, Yifan Xu and Jingqiao Mao
ABSTRACT
Reservoir scheduling based on evolutionary algorithms needs to handle potentially stringent physical

and operational constraints. Both generic and reservoir scheduling problem-specific constraint-

handling techniques (CHTs) have their own merits and limitations. No CHT currently available can

yield better solutions than the others consistently. To ensure good reservoir operation schedules, we

develop an ensemble of CHTs (ECHT) that can utilize the advantages of different individual CHTs.

In the ensemble, each CHT has its own population. In every generation, the different offspring

populations are mixed together and evaluated. Each CHT then assigns fitness to all individuals and

selects some of them to form its new parent population. The ECHT has been tested against long-term

hydropower scheduling of two large-scale reservoir systems in China. Results show that the ECHT

outperforms the state-of-the-art CHTs, and its probability of returning feasible solutions is much

higher. The reservoir levels optimized with the ECHT are well suited for hydropower generation,

which also reduce the chance of reservoir spilling.
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INTRODUCTION
Efficient reservoir management is necessary to obtain more

economic, social and environmental benefits (Banos et al.

). Reservoir scheduling involves the optimization of

a problem with one or more objectives, which is often

dynamic, high-dimensional, multi-stage, nonlinear and non-

convex (Labadie ). The optimization is subject to a

range of physical and operational constraints, such as limit-

ations on reservoir storage, water release and power output,

as well as the conservation of mass. For a multi-reservoir

system, the hydraulic connection between adjacent reser-

voirs and the water transport delay further complicate the

problem. A variety of optimization techniques has been

applied to reservoir scheduling (Yeh ). Among the

commonly used techniques, evolutionary algorithms (EAs)

have gained increasing attention mainly due to their general
applicability (Schardong & Simonovic ). For instance,

the problems to be optimized do not have to be temporally

separable, linear or differentiable (Labadie ). Even

though EAs cannot guarantee to find the global optima,

they, in most cases, can yield encouraging optimization

results. In order to tackle constraints of reservoir scheduling

problems, EAs have to work with constraint-handling

techniques (CHTs), and some of the EAs have built-in

CHTs (e.g., Poláková ; Trivedi et al. ; Zamuda ).

CHTs used with EAs for single-objective constrained

optimization problems can be broadly classified into four

categories: (1) penalty function techniques, (2) techniques pre-

ferring feasible individuals, (3) multi-objective optimization

techniques and (4) techniques handling feasible and infeasible

individuals separately (Coello ; Mezura-Montes & Coello
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). In general, the penalty function techniques add an

additional term to the original objective function to penalize

infeasible individuals for violating any constraint. Although

canonical penalty functions are easy to implement, tedious

parameter tuning is necessary to obtain reasonable

penalty coefficients (Runarsson & Yao ). By contrast,

parameter-less adaptive penalties adjust themselves based

on the information exploited from the population. For the

second category, feasible individuals are simply preferred

over infeasible ones. In some cases, constraint violation

below a certain threshold is ignored at the beginning of

the search and the threshold gradually decreases to zero in

the search process. These CHTs have essentially no free

parameter to adjust. Nevertheless, an additional mechanism

for maintaining population diversity is required to avoid

local optima (Coello ). The third category treats con-

straint satisfaction as an independent objective and uses

multi-objective optimization concepts to tackle the problem.

These techniques avoid parameter tuning and achieve a

balance between objective optimization and constraint satis-

faction. They can, however, be computationally inefficient

(Runarsson & Yao ). CHTs in the fourth category

handle feasible and infeasible individuals differently,

mainly because comparing individuals of the same kind is

relatively straightforward. The separately evaluated individ-

uals are then merged by considering the search stage and

population composition. Such techniques can incorporate

various strategies for fitness assignment conveniently.

In the field of reservoir scheduling, different types of

CHTs have been successfully applied (Nicklow et al. ).

Penalty functions are most frequently used due to their sim-

plicity (e.g., Haddad et al. ; Zhang et al. ; Afshar &

Hajiabadi ), followed by repair methods that modify

infeasible individuals into feasible ones (e.g., Niu et al.

; Wang et al. ) and methods that avoid exploring

the infeasible space completely (e.g., Afshar & Moeini

; Moeini & Babaei ). However, penalty functions

involve multiple free parameters to adjust; the other two

types are useful only when the constraints are simple

so that feasible individuals can be easily obtained or infeas-

ible space can be easily separated from feasible space. More

recently, a CHT adopting new adaptive strategies for fitness

assignment was developed by the authors for solving

reservoir scheduling problems (Hu et al. b). This CHT
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
(described later) showed encouraging performance com-

pared with the existing ones. However, it cannot guarantee

a feasible solution under extremely dry conditions, meaning

that there is still room for improvement in the strategy of

locating feasible space.

It is obvious that different CHTs have their respective

merits and limitations. No CHT can outperform all others

on problems of different types, and some can be more

effective at certain stages of the search. In this context, an

ensemble of CHTs (ECHT) was proposed to utilize the

advantages of different techniques (Mallipeddi & Suganthan

). In this approach, each CHT in the ensemble main-

tains its own population and the different populations

are merged and rebuilt in every generation (Mallipeddi &

Suganthan ). The different CHTs assign fitness to

the merged population separately, meaning promising indi-

viduals carrying key information to guide the search

direction can be better recognized. In addition, the pro-

cesses of locating feasible space and approaching global

optima would accelerate. The ECHT has been reported

to have better performance than the individual CHTs

from the ensemble (Mallipeddi & Suganthan ). Apart

from CHTs, the ensemble strategy has also been used to

improve the performance of evolutionary operators and

EAs (Mallipeddi et al. ; Naeini et al. ).

To the best of our knowledge, the method of CHT

ensemble has not been reported in the field of water

resources management. This study, inspired by the work of

Mallipeddi & Suganthan (), develops a new ECHT to

tackle the potentially stringent constraints in reservoir

scheduling problems. The ECHT takes advantage of differ-

ent individual CHTs’ merits so that it can better guide the

search direction and help make better reservoir operation

schedules, especially under dry conditions. Multiple test

cases for ECHT evaluation are designed based on different

reservoir systems and inflow conditions. Four individual

CHTs are also applied for performance comparison.
PROBLEM FORMULATION

This study adopts the long-term hydropower scheduling as

an example to demonstrate the applicability of the proposed

ECHT in solving reservoir scheduling problems.
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The scheduling of a reservoir system can be considered

as a two-step process. The long-term scheduling on a

monthly basis is conducted in the first place. Its results are

then used as the boundary for more detailed scheduling

(e.g., daily or weekly) (Labadie ). The start time of

long-term scheduling can change every month with

reservoir system status and inflow data updated. Future

reservoir inflow over a long time span can be obtained

based on long-term runoff forecast.

Long-term hydropower scheduling of a multi-reservoir

system is a constrained optimization problem. It attempts to

optimize water releases over time to boost hydroelectricity

(HE) generation. Meanwhile, various constraints on reservoir

operation must be satisfied. For a general hydropower

scheduling problem, box constraints on reservoir forebay

elevation, outflow discharge and power output are inevitable.

However, other types of constraints can be eliminated by

choosing proper decision variables. Long-term hydropower

scheduling in this study is formulated as follows.

Objective function

The objective of maximizing HE is described as:

Max:HE ¼
XM
i¼1

XT
t¼1

Ni
tΔt (1)

where M is the number of reservoirs being considered, T is

the number of scheduling periods, Ni
t is the power output

of reservoir i in period t, and Δt is the time step. Reservoir

i is located upstream of reservoir iþ 1.

Ni
t ¼Ki

tQeit(FE
i
t � TEi

t �HL
i
t) i¼ 1, 2, . . . ,M, t¼ 1, 2, . . . , T

(2)

where Ki
t is the conversion factor of reservoir i in period t,

Qeit is the discharge through the turbines of reservoir i for

electricity generation in period t and FE
i
t, TE

i
t and HL

i
t are

the average forebay elevation, tailwater elevation and

average head loss, respectively, of reservoir i in period t.

FE
i
t ¼ (FEi

t þ FEi
tþ1)=2, where FEi

t is the forebay elevation

of reservoir i at the beginning of period t.

The decision vector consists of forebay elevations

of M reservoirs at the beginning of T periods:
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x ¼ (FEi
tji ¼ 1, 2, . . .M, t ¼ 1, 2, . . . , T). The outflow dis-

charges are obtained based on the water balance equation:

RSitþ1 ¼ RSit þ (Qini
t �Qoutit �Quseit �Qslit)Δt, (3)

Qoutit ¼ Qeit þQsdi
t i ¼ 1, 2, . . . , M, t ¼ 1, 2, . . . , T (4)

where RSit is the storage of reservoir i at the beginning of

period t and Qini
t, Qoutit, Quseit, Qslit and Qsdi

t are the

inflow discharge, outflow discharge, flow discharge taken

out for agricultural and industrial uses, discharge of reservoir

storage loss (e.g., evaporation and seepage) and spilled dis-

charge, respectively, of reservoir i in period t. The spilled

discharge is part of the outflow that exceeds the maximum dis-

charge through reservoir turbines. As can be seen, the water

balance equation no longer needs to be tackled as an indepen-

dent equality constraint owing to decision variable selection.

In a multi-reservoir system, the inflow of a reservoir is

usually composed of the outflow of its upstream reservoir

and the lateral inflow from the local catchment. In the

case of a large time step (e.g., 10 days or a month),

the water transport time can often be ignored. If this is the

case, the reservoir inflow takes the following form:

Qini
t ¼ Qouti�1

t þQliit i ¼ 2, 3, . . . , M, t ¼ 1, 2, . . . , T (5)

where Qliit is the lateral inflow discharge into reservoir i in

period t.
Constraints

Reservoir operation is subject to multiple constraints. The

most common ones are listed as follows.

(1) Forebay elevation constraint:

Elit � FEi
t � Eui

t i ¼ 1, 2, . . . , M, t ¼ 1, 2, . . . , T (6)

where Elit and Eui
t are the lower and upper bounds,

respectively, on the forebay elevation of reservoir i at

the beginning of period t.

(2) Outflow discharge constraint:

Qlit �Qoutit �Qui
t i¼ 1, 2, . . . ,M, t¼ 1, 2, . . . , T (7)
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where Qlit is the lower bound on the outflow discharge

of reservoir i in period t that meets the demands of

downstream navigation, water supply, irrigation, water

quality control, etc. Qui
t is the corresponding upper

bound, which is limited by both reservoir discharge

capacity and downstream flood control requirements.

(3) Power output constraint:

Nli � Ni
t � Nui i ¼ 1, 2, . . . , M, t ¼ 1, 2, . . . , T (8)

where Nli and Nui are the firm output and installed

capacity of reservoir i, respectively.

Figure 1 shows the calculation procedure of the key

variables mentioned above. With forebay elevation FEi
t,

reservoir storage RSit is estimated based on the forebay

elevation–reservoir storage relationship. Then outflow dis-

charge Qoutit is calculated based on water balance

equation (Equations (3) and (4)). By information of the

maximum turbine flow rate, discharge for electricity gener-

ation Qeit and spilled discharge Qsdi
t are determined. With

forebay elevation FEi
t, average forebay elevation FE

i
t is

clear. With outflow discharge Qoutit, tailwater elevation

TEi
t is calculated based on outflow discharge–tailwater

elevation relationship. With FE
i
t, TEi

t and Qeit, power

output Ni
t and HE are obtained (Equations (1) and (2)).
Figure 1 | Function evaluation procedure of a hydropower scheduling problem.

://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
According to Equations (6)–(8), violation amount of each

constraint is then calculated.
METHODS FOR CONSTRAINT HANDLING

In this section, we first introduce the realization of the

ECHT and then describe four state-of-the-art CHTs briefly,

namely, the nondomination rank-based adaptive method

(NRAM) devised by Hu et al. (b), the balanced ranking

method (BRM) by Rodrigues et al. (), the stochastic

ranking (SR) by Runarsson & Yao () and the adaptive

penalty function (APF) by Tessema & Yen ().

The four individual CHTs involve different ideas of how

to tackle the constraints of an optimization problem.

The NRAM evaluates feasible and infeasible individuals

differently and involves non-dominated sorting in infeasible

individual evaluation. It thus belongs to the third and fourth

categories of CHTs at the same time. The BRM ranks differ-

ent types of individuals separately and it falls into the fourth

category. The idea of SR is so unique that it does not

resemble any pre-defined CHT category. As for the APF, it

clearly falls into the first CHT category.

The NRAM is a newly devised CHT for solving reser-

voir scheduling problems. The technique is free of
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parameter tuning and independent of the problem being

optimized and the EA being used. The NRAM shows

encouraging performance compared with existing CHTs,

yet its computational efficiency is relatively low (Hu

et al. b). The BRM is a relatively new CHT, which is

also parameter-less and independent of any particular

EA. This technique is easy to use and able to provide

satisfactory optimization results (de Paula Garcia et al.

). The SR is straightforward to implement and highly

competitive with more sophisticated CHTs. This tech-

nique requires parameter tuning and its performance is

sensitive to parameter value selection (Rodrigues et al.

). The APF is parameter-free, simple to implement

and applicable to problems with very small feasible

space. In some cases, however, the APF can penalize

infeasible individuals insufficiently so that feasible indi-

viduals may not survive into the next generation (Hu

et al. b).

Ensemble of CHTs (ECHT)

Similar to an individual CHT, the ECHT initially proposed

by Mallipeddi & Suganthan () assigns fitness to the

population based on objective function values and con-

straint violations. This approach works at both stages of
Figure 2 | Flowchart of population evolution with the ECHT. PAR, parent population, OFF, offs

om http://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf

4

the search process, namely (1) the stage of locating feasible

space and (2) the stage of converging to global optima. If

all CHTs composing the ensemble assign fitness to the

population as a whole, the ECHT can be coupled with

EAs evaluating the population together, rather than those

focusing on pair-wise comparisons.

Figure 2 presents the procedure of population evolution

when an EA is coupled with the ECHT. An individual CHT in

the ensemble (i.e., NRAM, BRM or SR as shown in Figure 2)

has its own population. In every generation, offspring popu-

lations corresponding to the different CHTs are generated

by applying evolutionary operators (e.g., selection, mutation

and crossover) to the parent populations. Then, the offspring

populations are mixed together and evaluated in terms of

objective function value and constraint violations (see

Equations (1)–(8)). Finally, each CHT assigns fitness values

to all the individuals in the mixed population and selects

the best third of them to make up a new population. In the

next generation, the new populations of the different CHTs

turn parent populations and the procedure described above

runs again. The whole evolution process stops when the

maximum number of generations is reached.

In order to fulfill the potential of the ECHT, CHTs

composing the ensemble should have different theoretical

foundations to achieve methodological diversity (Mallipeddi
pring population.
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& Suganthan ). In addition, the CHTs need to have good

performance in terms of the optimization results and the

chance of returning feasible solutions. Three CHTs, i.e.,

NRAM, BRM and SR, are selected to compose the ensemble

in this study. The APF, however, is ignored due to its relatively

poor performance in our previous study (Hu et al. b).

To conveniently describe the CHTs concerned, the gen-

eral concepts of constrained optimization are presented

first. Without loss of generality, the minimization problem

is considered here:

Min: f(x) x ¼ (x1, x2, . . . , xn)

s:t: gj(x) � 0 j ¼ 1, 2, . . . , q;

hj(x) ¼ 0 j ¼ qþ 1, qþ 2, . . . , m:

(9)

The goal of Equation (9) is to find the optimal x that

minimizes the objective function f(x) and satisfies q

inequality constraints gj(x) � 0 and m–q equality constraints

hj(x) ¼ 0:

For the infeasible individual, the violation amount of the

jth constraint cj(x) is

cj(x)¼ max{0, gj(x)} j¼1, 2, . . . , q;
max{0, jhj(x)j�δ} j¼ qþ1, qþ2, . . . ,m

�
(10)

where δ is the tolerance value (e.g., 0.001 or 0.0001).

The overall constraint violation c
∼ (x) is defined as

c
∼
(x) ¼ 1

m

Xm
j¼1

cj(x)
cmax j

, (11)

cmax j ¼ Max:
x

cj(x): (12)
Nondomination rank-based adaptive method

Given that the constraints of reservoir scheduling problems

are potentially stringent and the global optima often lie on

the boundary between feasible and infeasible spaces, the

NRAM emphasizes exploiting information from infeasible

individuals and preserving them throughout the search.

In addition, the population composition is dynamically

adjusted to facilitate exploration and exploitation at the

beginning and end of the search, respectively.
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
The NRAM evaluates feasible individuals in the popu-

lation according to the normalized objective function value:

F(x) ¼ ~f(x) (13)

~f(x) ¼ f(x)� fmin

fmax � fmin
(14)

where F(x) is the fitness, ~f(x) is the normalized objective

function value, fmin and fmax are the minimum and maxi-

mum objective function values, respectively, of feasible

individuals in the current population.

When infeasible space is explored, objective optimization

and constraint satisfaction are deemed as bi-objective

optimization with the objective vector f(x) ¼ f
∼
(x), c∼ (x)

� �
,

where f
∼
(x) is the normalized objective function value of the

infeasible individual defined in a similar way as in Equation

(14). In the NRAM, infeasible individuals are compared

mainly according to the nondomination rank r(x) obtained

based on f(x).

For infeasible individuals in the same nondomination

front, those with low constraint violations and favorable

objective function values are preferred in the case of

small and large feasibility ratios, respectively. The modified

nondomination rank r0(x) is defined as:

r0(x) ¼
r(x)þ (1� φ) × c

∼ (x)þ φ × f
∼
(x)

rmax þ 1
(15)

where φ is the feasibility ratio of the current population, rmax

is the maximum nondomination rank of infeasible individ-

uals in the current population.

At this point, a feasible (infeasible) individual in the

population can be compared with other feasible (infeasible)

individuals based on ~f(x) (r0(x)). When the two types of

individuals are mixed together, the feasibility ratio φ is

used to avoid abandoning infeasible individuals completely

and to protect feasible individuals when they are rare.

In addition, the iteration rate of the search (denoted η) is

introduced to facilitate exploration or exploitation by adjust-

ing the population composition. The fitness of the infeasible

individual is finally formulated as:

F(x) ¼ r0(x) × e1þη�φ (16)
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Balanced ranking method

The BRM assigns fitness by ranking the population. This tech-

nique involves a separate ranking of feasible and infeasible

individuals and merging of all ranked individuals afterward.

In the BRM, feasible individuals are ranked according

to their objective function values, while infeasible individuals

are ranked based on their penalty function values. For the

infeasible individual, penalty function p(x) is defined as:

p(x) ¼
Xm
j¼1

(cj(x))
2þσρ(x) (17)

σ ¼ Ĉ
m ×Npop

 !2

(18)

ρ(x) ¼ rank( f(x), IP)
count(IP)

(19)

where Ĉ is the number of constraints not violated by the

current population, Npop is the population size, IP is

the infeasible part of the current population, rank( f(x), IP)

is the rank of x among IP according to f(x), count(IP) is the

number of infeasible individuals in the current population.

According to Equations (17)–(19), if the current popu-

lation violates most of the constraints (σ has a small value),

objective function value does not have much influence over

the penalty value of an infeasible individual. However, when

a majority of the individuals are feasible (σ has a large

value), infeasible individuals with favorable objective function

values will gain an edge in penalty function evaluation.

After feasible and infeasible individuals are ranked separ-

ately, the infeasible queue is merged into the feasible queue.

The fitness in the BRM is defined as:

F(x) ¼ rank( f(x), FP) if x is feasible;
rank(p(x), IP)þ ΔþΨ otherwise

�
(20)

Δ ¼ count(FP)
count(IP)
Npop

(21)

Ψ¼
0 if μ<0;

μ

count(IP)�1
(rank(p(x), IP)�1) otherwise

8<
: (22)

μ ¼ count(FP)� (count(IP)þ Δ) (23)
om http://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
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where FP is the feasible part of the current population. The

coefficient Δ is introduced to push the infeasible queue

toward the end of the merged queue, which gives priority to

the best feasible individuals. The coefficient Ψ is responsible

for expanding the infeasible queue within the merged queue.

Stochastic ranking

The SR assigns fitness by sorting the population as in the

BRM. This technique was proposed to balance the domi-

nance of objective function value and degree of constraint

violation in the comparison of individuals. The SR sorts

the current population using a bubble-sort-like procedure.

The probability of comparing two adjacent individuals

according to objective function value is 1 if both individuals

are feasible; otherwise, a user-defined probability Pf.

Adaptive penalty function

The APF is a two-phase CHT that adopts different strategies to

assign fitness at different stages of the search process. Gener-

ally, in the first search stage, all individuals in the population

are infeasible. The first priority of the search is to locate a feas-

ible space. Fitness F(x) at this stage is thus defined as:

F(x) ¼ c
∼
(x) (24)

Once feasible space is located (i.e., the second search

stage), the fitness of the feasible individual equals the nor-

malized objective function value ~f(x):

F(x) ¼ ~f(x) (25)

~f(x) ¼ f(x)� f0min

f0max � f0min
(26)

where f0min and f0max are the minimum and maximum objec-

tive function values, respectively, of the current population.

For the infeasible individual, the fitness is formulated as:

F(x) ¼ n(x)þ p(x) (27)

n(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f(x)2 þ c

∼
(x)2

r
(28)

p(x) ¼ (1� φ) × c
∼
(x)þ φ × ~f(x): (29)
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n(x) and p(x) are two terms used to penalize infeasible
individuals for constraint violation. p(x) gives priority to

infeasible individuals having low constraint violations

(favorable objective function values) when the current

population has a small (large) feasibility ratio.
CASE STUDY

We applied the ECHT to the hydropower scheduling of two

large-scale reservoir systems in China: the Three Gorges

Reservoir-Gezhouba Reservoir (TGR-GR) system and

the Shuibuya Reservoir-Geheyan Reservoir (SBYR-GHYR)

system. Multiple test cases were designed based on the

two reservoir systems under different inflow conditions.

Study area

The aforementioned four reservoirs are located on the

Yangtze River or its tributary, the Qing River (Figure 3).

The Yangtze River is the largest river in China and the

third largest in the world. It has a main channel of

6,300 km and a drainage area of 1.8 × 106 km2 (Mao et al.

). Among the Yangtze River’s tributaries located down-

stream of the TGR, the Qing River is one of the largest,

which reaches a length of 423 km and drains an area of

1.76 × 104 km2 (Zhou et al. ).
Figure 3 | Map of the study area.

://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
TGR is one of the world’s largest water resources projects

(Hu et al. a). With a drainage area of 1.0 × 106 km2, the

TGR has a mean annual runoff of 4.51 × 1011 m3 at the

dam site (Li & Qiu ). Table 1 summarizes the main

characteristics of the TGR and the other three reservoirs.

The normal pool level of the TGR is 175 m, corresponding

to a storage capacity of 3.93 × 1010 m3. The TGR’s

forebay elevation is kept at the flood control water level

(145 m) throughout the flood season, thereby vacating a

room of 2.22 × 1010 m3 to store the floodwater temporarily.

The installed capacity and firm output of the TGR hydro-

power system are 2.25 × 107 kW and 4.99 × 106 kW,

respectively. The Gezhouba Dam, located 38 km down-

stream from the Three Gorges Dam, is a run-of-the-river

dam. The GR has a storage capacity of 7.11 × 108 m3 and a

normal pool level of 66 m. However, in order to smooth

the TGR outflow, the GR forebay elevation is allowed to

fluctuate between 63.0 m and 66.5 m within a day (Li

et al. ).

The Shuibuya Dam and Geheyan Dam on the Qing

River have a distance of 92 km between each other. The

SBYR has a contributing area of 1.09 × 104 km2 and a

mean annual inflow of 296 m3/s. The reservoir has a storage

capacity of 4.31 × 109 m3 at the normal pool level (400 m),

capable of multi-year regulation. The firm output of

the SBYR hydropower plant is 3.11 × 105 kW. For the

GHYR, the drainage area and mean annual inflow are



Table 1 | Summary of main characteristics of the TGR, GR, SBYR and GHYR

Parameter TGR GR SBYR GHYR

Location Yangtze River Yangtze River Qing River Qing River

Gross storage (m3) 3.93 × 1010 7.11 × 108 4.31 × 109 3.12 × 109

Flood control storage (m3) 2.22 × 1010 - 5.00 × 108 5.00 × 108

Crest elevation of the dam (m) 185 70 409 206

Normal pool level (m) 175 66 400 200

Flood control water level (m) 145 - 391.8 192.2

Installed capacity (kW) 2.25 × 107 2.74 × 106 1.84 × 106 1.21 × 106

Firm output (kW) 4.99 × 106 1.04 × 106 3.11 × 105 1.87 × 105
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1.44 × 104 km2 and 403 m3/s, respectively. Its normal

pool level is 200 m, corresponding to a gross storage of

3.12 × 109 m3. GHYR’s hydropower system has a firm

output of 1.87 × 105 kW. The flood control storage is

5.00 × 108 m3 for both the SBYR and GHYR.

For both reservoir systems, the scheduling horizon was a

year and the time step was one-third of a month. The lateral

inflow to the GR was ignored due to the short distance

between the Three Gorges Dam and Gezhouba Dam. For

each reservoir, the final forebay elevation at the end of the

scheduling was assumed to equal the initial forebay

elevation. Such an assumption is somewhat unrealistic.

However, it should not influence the evaluation of the

ECHT in terms of the ability to locate feasible space and

approach global optima.

Test case design

Only reservoir inflows in dry conditions were used in the

design of test cases. For a multi-reservoir system, it is

difficult to allocate over time the limited water resources

(current reservoir storage and future inflows) in dry years

with all the constraints satisfied (Labadie ). Such a

problem can challenge the effectiveness of a CHT in terms

of whether the search can locate feasible space and then

approach global optima as rapidly as possible.

Inflow data from 1901 to 2000 for TGR-GR system and

data from 1975 to 1987 for SBYR-GHYR system were

collected. For each reservoir system, historical inflow data

in the five driest years were identified as five inflow scen-

arios. Note that each inflow scenario allowed at least one
om http://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
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of the constraint-handling methods to find a feasible sol-

ution. Figure 4 presents the different TGR inflow scenarios

(QT1–QT5), SBYR inflow scenarios (QS1–QS5) and the cor-

responding lateral inflows to the GHYR. Based on these

inflow scenarios, 10 test cases (T1 to T5 and S1 to S5) for

ECHT evaluation were designed and listed in Table 2.

For each test case, the feasible space accounts for a very

small part of the search space; none of the 1 × 108 randomly

generated solutions satisfies all the constraints. The designed

test cases can thus provide a testbed for the different

methods for constraint handling.

Experiment setup

Evolutionary operators of EA and CHTs both contribute to

the optimization process. EA operators (e.g., mutation and

crossover) generate new individuals in each generation,

while the CHT assigns fitness to these individuals. Since

this study focused on CHTs, a genetic algorithm (GA)

with elementary evolutionary operators (Houck et al. )

was adopted as the search engine. This should, ideally,

accentuate the differences between the ECHT and the

individual CHTs.

In this study, GA population size and maximum number

of generations both had large values so that the search could

converge. The population size of GA was 210 when coupled

with an individual CHT. As for the ECHT, GA population

size was 210 as well (70 for each of the three CHTs in

the ensemble). For TGR-GR test cases, the maximum

number of generations was 1,500, while the corresponding

value for SBYR-GHYR test cases was 10,000 as feasible



Figure 4 | Different scenarios of (a) the TGR inflow, (b) the SBYR inflow and (c) the corresponding lateral inflow to the GHYR.

Table 2 | Test cases designed for ECHT evaluation

Test case Reservoir system Inflow scenario

T1 TGR-GR QT1

T2 TGR-GR QT2

T3 TGR-GR QT3

T4 TGR-GR QT4

T5 TGR-GR QT5

S1 SBYR-GHYR QS1

S2 SBYR-GHYR QS2

S3 SBYR-GHYR QS3

S4 SBYR-GHYR QS4

S5 SBYR-GHYR QS5
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space became much more difficult to find. The other

GA parameter values were from our previous research

(Hu et al. b). In addition, the elitist strategy was used

to preserve the best feasible individual found in the search

process. For each constraint-handling method, 25 runs

with random seeds were performed on every test case,

which was useful for alleviating the uncertainty in optimiz-

ation results.

The SR is the only CHT considered in this study that has

a free parameter. For the present application, SR parameter

Pf was set to 0.45, which lay within the range recommended

by Runarsson & Yao ().

Methods’ performance comparison

To characterize the performance of a constraint-handling

method, the maximum, mean and minimum values of the
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
25 optimization results on each test case were calculated.

In addition, the ratio of runs that returned feasible solutions

to all runs (i.e., feasible rate) and the number of generations

capturing the first feasible individual were also considered.

The last two indicators were used to reflect the probability

and efficiency of a method to locate feasible space. They

are of great importance especially in real-world applications,

which require the search algorithm to yield satisfactory

feasible solutions within a limited number of runs.

Table 3 summarizes the ECHT results on all designed

test cases. According to the maximum, mean and minimum

results, the ECHT outperforms all the individual CHTs

on 10, nine and eight test cases, respectively. In addition,

the optimization results of the ECHT are highly stable.

The relative difference between the best and worst results

is less than 0.15% among TGR-GR cases and 0.90%

among SBYR-GHYR cases. On nine test cases out of 10,

the mean result is greater than the average of the maximum

and minimum results, indicating that the results of the

ECHT tend to be distributed near the best result rather

than the worst.

The differences in optimized HE between the ECHT

and the individual CHTs are shown in Figure 5. The

ECHT appears to have a noticeable advantage over the

other methods. The NRAM produces relatively good results

among the four individual CHTs. For the BRM and SR,

the former performs better in terms of the maximum

result; the two CHTs become close when compared against

the mean and minimum results. The APF yields feasible

solutions on only two test cases and its results are shown

to be far less competitive than the others. In terms of



Table 3 | Summary of the ECHT results

Test case Maximum (1011 kW·h) Mean (1011 kW·h) Minimum (1011 kW·h) Test case Maximum (109 kW·h) Mean (109 kW·h) Minimum (109 kW·h)

T1 1.016720a 1.016646a 1.016371a S1 9.400428a 9.392829a 9.383760a

T2 1.043562a 1.043315a 1.042801a S2 11.057987a 11.043160a 10.989475

T3 1.019856a 1.019674a 1.019500a S3 11.772772a 11.747224a 11.672634a

T4 1.068335a 1.067998a 1.067205a S4 7.876145a 7.858966a 7.828219a

T5 1.032983a 1.032760a 1.031664a S5 7.894330a 7.876874 7.841687

a indicates that the ECHT outperforms all the individual CHTs.
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the best optimization result, the differences between the

ECHT and the individual CHTs generally lie between

5.0 × 106 kW h and 5.0 × 108 kW h.

Figure 6 compares the feasible rates of the different

methods for constraint handling. The average feasible rates

of the ECHT, NRAM, BRM, SR and APF are 0.83, 0.72,

0.21, 0.27 and 0.05, respectively. On average, the ECHT

has an advantage of 0.10, 0.62, 0.56 and 0.78 over the

NRAM, BRM, SR and APF, respectively. The ECHT has a

feasible rate of 1.00 on five test cases; the NRAM, second

only to the ECHT, has a feasible rate of 1.00 on three. It is

worth noting that the ECHT and NRAM are the only two

methods that manage to return a feasible solution on every

test case; the BRM, SR and APF fail on five, three and

eight test cases, respectively. Figure 7 depicts generation

numbers that return the first feasible individual across
Figure 5 | Optimized hydroelectricity of ECHT minus that of an individual CHT in terms of (a) max

on S5 in (b) and S2 and S5 in (c) are not shown. If a CHT does not return any feasib
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25 runs of each method on every test case. The generation

numbers of the ECHT are relatively small on most of the

test cases, meaning this method can locate feasible space

more efficiently. The SR and APF generally have the largest

generation numbers among the five methods.

Scheduled reservoir levels

The TGR and GR water levels corresponding to the greatest

HE obtained with the ECHT are shown in Figure 8. The

TGR levels rise rapidly from the flood control water level

(i.e., 145 m) since mid-September and reach the normal

pool level (i.e., 175 m) by the end of October. Generally,

the reservoir levels remain unchanged until the next Janu-

ary. In the following periods, the TGR levels gradually

decline in response to the decreased inflows. The reservoir
imum result, (b) mean result and (c) minimum result in 25 runs. The better results of NRAM

le solution in all runs, there is nothing to be shown.



Figure 6 | Bar plots of feasible rates of the different methods.

Figure 7 | Box plots of numbers of generations capturing the first feasible individual across 25 runs on (a) TGR-GR cases and (b) SBYR-GHYR cases.
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levels would rise in late March and April due to the

increased inflows. Afterward, they gradually fall back to

145 m by the end of early June. The TGR levels rise to or

stay at the maximum water levels whenever possible and

fall only when releasing the inflow cannot satisfy all the
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
constraints. Such an operation strategy leads to large water

heads that facilitate the TGR hydropower generation.

As shown in Figure 8(b), the GR levels lie on the upper

bound throughout the scheduling horizon, in order to maxi-

mize the water heads. Releasing the GR inflows (identical



Figure 8 | Scheduled (a) TGR levels and (b) GR levels obtained with the ECHT.
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to the TGR outflows in this study) is sufficient to satisfy all

the underlying constraints. The GR has such a small gross

storage that lowering the reservoir level goes against increas-

ing hydropower generation, even though the corresponding

outflow would increase slightly.

The SBYR and GHYR water levels corresponding to the

greatest HE obtained with the ECHT are presented in

Figure 9. According to Figure 9(a), the SBYR levels

gradually decline to guarantee the firm output in the dry

season (November to the next March). Then the water

levels show rising trends in April due to the increased

inflows. In the following periods, peak discharges will

occur under several inflow scenarios. To avoid reservoir

spilling, the SBYR levels decline first and then rise during

peak discharges. By the end of July, the SBYR levels reach

the upper bound (i.e., 391.8 m). Afterward, the water levels

increase slowly or even decrease sometimes to release

more water and raise the GHYR levels. When the SBYR

levels reach the normal pool level (i.e., 400 m), they gener-

ally remain unchanged to maintain the water heads for a

period of time and then decline gradually due to the

decreased inflows.

Figure 9(b) shows that the GHYR water levels lie

predominantly on the upper bound for large water heads,

which is similar to the GR. In some cases, the GHYR

lowers its forebay elevation before peak discharges to

avoid reservoir spilling.
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DISCUSSION

The results from this study show that the developed ECHT

outperforms four representative individual CHTs: the

NRAM, BRM, SR and APF. The ensemble method is

found to be capable of producing highly competitive

solutions to hydropower scheduling problems with stringent

constraints. More importantly, the ECHT has a much higher

probability of returning feasible solutions than the simple

CHTs, which is of great value in real-world applications.

The better performance of the ECHT can be explained

in two aspects. First, promising individuals in the population

play a more important role in the search process with

the ECHT than with an individual CHT. In the ensemble

method, after all offspring individuals are merged and eval-

uated, each CHT in the ensemble selects some individuals it

prefers for the next generation. Promising individuals that

carry key information for guiding the search direction can

be better recognized, while the worst individuals are unli-

kely to survive into the next generation. Second, the

ECHT exploits the advantages of different CHTs effectively.

Under certain circumstances, each CHT can be more

effective in terms of the probability and efficiency of locating

feasible space, the ability to converge to global optima, etc.

The CHTs in the ensemble assign fitness to the merged

population separately, meaning they jointly contribute to

the adjustments of the search direction.



Figure 9 | Scheduled (a) SBYR levels and (b) GHYR levels obtained with the ECHT.
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It is also important to note that the advantages of the

ECHT come at the cost of longer computational time

since it spends more time assigning fitness to the population

in each generation. However, GA coupled with the ECHT

requires less computational time than the total time of

GA coupled with each CHT in the ensemble since every

function evaluation is effectively used in the ECHT.

This study used a large GA population size and a large

maximum number of generations to fulfill the potential

of the ECHT and individual CHTs. To further verify the

better performance of the ECHT, we also adopted another

set of parameter values, i.e., multiplying the original popu-

lation size by 0.5 and the original maximum number of

generations by 0.7. As a result, the number of function

evaluations (NFE) became 65% smaller.

Figure 10 shows the feasible rates of different methods

under a smaller NFE. The ECHT fails in returning any

feasible solution on two test cases, while the NRAM, BRM,

SR and APF fail on four, four, six and eight test cases, respect-

ively. Compared with Figure 6, the decline in feasible rates of

the ECHT, NRAM and SR most likely results from the smaller

NFE. The average feasible rates of BRM and APF, however, do

not change much. All the methods fail on S4 and S5 and the

ECHT is the only method that returns feasible solutions on S1

and S3. On the rest of the test cases, the ECHT has a larger or

equal feasible rate than the four individual CHTs. Figure 11

presents the differences in optimized HE between the ECHT
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
and the individual CHTs under a smaller NFE. Without con-

sidering S4 and S5, the ECHT outperforms all the individual

CHTs on seven out of eight test cases. The differences in

maximum HE between the ECHT and the individual CHTs

lie within the range of 6.5 × 105 and 6.0 × 108 kW h. Compared

with Figure 5, the advantage of the ECHT in terms of

the maximum result becomes larger especially over NRAM,

SR and APF. The above results demonstrate the better

performance of the ECHT under a smaller NFE.

In this study, the ECHT shows the best performance in

terms of returning feasible solutions. The NRAM comes

second, followed by the BRM and SR. The APF has

the smallest feasible rate. The different individual CHTs

adopt different strategies for infeasible individual evaluation

before locating feasible space. The NRAM, BRM and SR use

both objective function value and constraint violation, while

the APF merely uses the latter information for fitness assign-

ment. Even though the APF’s strategy appears to be the most

efficient, this study demonstrates that using objective func-

tion value in infeasible individual evaluation can facilitate

the finding of feasible space. It can be attributed to the

fact that constraint satisfaction does not conflict with objec-

tive function optimization, which results from the problem

formulation in this study.

Figure 12 presents the relationships between objective

function value and constraint violation from 2,000 randomly

generated infeasible individuals for each test case. Objective



Figure 10 | Bar plots of feasible rates of the different methods (under a smaller NFE).

Figure 11 | Optimized hydroelectricity of ECHT minus that of an individual CHT in terms of (a) maximum result, (b) mean result and (c) minimum result in 25 runs (under a smaller NFE). The

better results of NRAM and SR on S2 in (c) are not shown. If a CHT does not return any feasible solution in all runs, there is nothing to be shown.
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function value shows an overall increasing trend when con-

straint violation decreases. It suggests that information of

objective function value can help locate feasible space.

NRAM, BRM and SR use such information in different

ways. Objective function value and constraint violation are

almost equally important in the NRAM. The only difference

between them is that, for infeasible individuals with

identical nondomination rank, those with lower constraint

violations are preferred. The BRM and SR rank infeasible
om http://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
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individuals with both types of information considered

but constraint violation is more important. In summary,

objective function value plays a more important role in the

NRAM than in the BRM and SR, which may explain the

larger feasible rate of the NRAM.

The development of the ECHT in this study considers

both methodological diversity and including a CHT well

suited for reservoir scheduling problems (i.e., the NRAM).

Given the extremely small feasible space of the designed



Figure 12 | Scatter plots of objective function values and constraint violations for the designed test cases.
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test cases, the NRAM should be included to improve the

chance of returning feasible solutions, even though its

computational time is longer than some other methods.

On the other hand, when applied to simpler problems

with shorter scheduling horizon or wetter hydrological scen-

ario, the ECHT should highlight methodological diversity

and avoid time-consuming CHTs so that reservoir operation

schedules can be made in a shorter period of time.

This study clearly demonstrates that the ECHT can be

used in place of an individual CHT to improve the optimiz-

ation results of an EA. However, it should be noted that

some other factors (e.g., optimization problem formulation,

search algorithm selection and parametrization) may affect

EA results as well (Clarkin et al. ). More research efforts

can be put on the evaluation and comparison of contri-

butions of the different factors.
CONCLUSIONS

This study developed an ECHT to deal with the potentially

stringent constraints of reservoir scheduling problems. The

ECHT was tested against the long-term hydropower
://iwa.silverchair.com/jh/article-pdf/21/6/962/623225/jh0210962.pdf
scheduling of two large-scale reservoir systems in China.

Four state-of-the-art individual CHTs, i.e., the NRAM,

BRM, SR and APF, were also applied for performance

comparison. Based on the results and discussion, the follow-

ing conclusions can be drawn: The ECHT outperforms

the individual CHTs when applied to highly constrained

reservoir scheduling problems. The ensemble method

has a better chance of returning highly competitive feasible

solutions, which is of great importance in real-world appli-

cations. In addition, GA coupled with the ECHT requires

less computational time than the total time of GA coupled

with each CHT in the ensemble. The reservoir levels

optimized with the ECHT are well suited for hydropower

generation and the probability of reservoir spilling is

reduced.
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