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A knowledge-based method for the automatic

determination of hydrological model structures

Jingchao Jiang, A-Xing Zhu, Cheng-Zhi Qin and Junzhi Liu
ABSTRACT
To determine a suitable hydrological model structure for a specific application context using integrated

modelling frameworks, modellers usually need to manually select the required hydrological processes,

identify the appropriate algorithm for each process, and couple the algorithms’ software components.

However, these modelling steps are difficult and require corresponding knowledge. It is not easy for

modellers to master all of the required knowledge. To alleviate this problem, a knowledge-based

method is proposed to automatically determine hydrological model structures. First, modelling

knowledge for process selection, algorithm identification, and component coupling is formalized in the

formats of the Rule Markup Language (RuleML) and Resource Description Framework (RDF). Second,

the formalized knowledge is applied to an inference engine to determine model structures. The

method is applied to three hypothetical experiments and a real experiment. These experiments show

how the knowledge-based method could support modellers in determining suitable model structures.

The proposed method has the potential to reduce the knowledge burden on modellers and would be

conducive to the promotion of integrated modelling frameworks.
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INTRODUCTION
It is widely recognized that there is no universal hydrologi-

cal model that can be applied in all application contexts

(WMO , ). To better understand the natural and

human influences on watersheds, users usually need to

determine a model structure that is suitable for the

specific application context (Rigon et al. ; Baymani-

Nezhad & Han ; Furusho et al. ; Lai et al.

; Vo & Gourbesville ). Integrated modelling

frameworks are designed to support model construction

through the dynamic coupling of fine-grained components.

Examples of such frameworks include the Open Modelling
Interface (OpenMI) (Moore & Tindall ), the Commu-

nity Modelling Systems (CMS) (Lu & Piasecki ), the

Object Modelling System (OMS) (David et al. ),

the Community Surface Dynamics Modelling System

(CSDMS) (Peckham et al. ), the Spatially Explicit Inte-

grated Modelling System (SEIMS) (Liu et al. ), and the

HydroInformatic Modelling System (HIMS) (Wang et al.

).

To determine a suitable model structure, modellers

usually need to manually select the required processes,

identify the appropriate algorithm for each process, and

couple the software components of the algorithms. How-

ever, these modelling steps are difficult and always require

corresponding knowledge (Elag & Goodall ; Peckham

et al. ). It is not easy for modellers to master all of the

required modelling knowledge.
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Knowledge-based methods can be used to reduce the

knowledge burden for hydrological modelling (Liu et al.

; Ward et al. ). Recently, knowledge-based methods,

which incorporate modelling knowledge into integrated

modelling frameworks, have been proposed to make com-

ponent coupling or model selection easier.

To make component coupling easier, Islam & Piasecki

() proposed an ontology for the metadata of numerical

models based on the Web Ontology Language (OWL),

which can support the coupling of different components.

Elag & Goodall () presented an ontology for describing

the core concepts and relationships for hydrological model-

ling, which could be further used for component selection

and coupling. For automatic coupling of alternative algor-

ithms for watershed modelling, Škerjanec et al. ()

developed a knowledge library that described hydrological

processes, calculation formulas, and their input/output vari-

ables using a domain-specific language. Peckham ()

proposed a smart modelling framework for component

coupling by a standardized model interface and correspond-

ing metadata. Harpham & Danovaro () sought to

design standard metadata to describe environmental numeri-

cal models and their interfaces to other models. The standard

metadata could be used for model coupling. Morsy et al.

() designed a model metadata framework, in which meta-

data elements were expressed as Resource Description

Framework (RDF) triples, to support the sharing and reuse

of hydrological models. Jiang et al. () developed a ser-

vice-oriented modelling framework to couple models based

on the Basic Model Interface (BMI) (Peckham et al. ).

To make model selection easier, Chau () proposed

an ontology-based knowledge management system to assist
Figure 1 | Framework of the knowledge-based method for the automatic determination of hy

om http://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf

4

users with the selection of the appropriate models for flow

and water quality modelling. Qiu et al. () proposed an

ontology-based approach to describe environmental

models and disaster-related data through semantics. Based

on the ontology-based approach, the flood management

system could recommend suitable models for users to

apply when constructing a workflow.

The previous work mainly emphasized the usage of

component-coupling knowledge or model-selection knowl-

edge, whereas little attention has been paid to the usage of

process-selection and algorithm-identification knowledge.

It is still difficult for modellers to select appropriate pro-

cesses and algorithms. Moreover, if modellers do not

master the relevant knowledge, unsuitable models might

be built (Voinov & Shugart ).

To alleviate this problem, this paper proposes a knowl-

edge-based method to automatically determine hydrological

model structures. Note that this study focuses on the determi-

nation of hydrological model structures. Although data

preprocessing and parameter calculation are necessary after

the hydrological model structure is determined, these topics

are outside the scope of this study.
METHODS

Design of the knowledge-based method

To determine hydrological model structures automatically, a

knowledge-based method is proposed (Figure 1). The frame-

work of this method consists of three steps. First, process-

selection and algorithm-identification knowledge are obtained
drological model structures.
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from experts and literature, while component-coupling knowl-

edge is extracted from the metadata of specific modelling

frameworks. Second, the obtained knowledge is formally

encoded using the Rule Markup Language (RuleML) (Boley

et al. ) and RDF (Cyganiak et al. ), which can be

used by an inference engine. Third, an inference engine is

designed and implemented according to the typical pro-

cedures of model structure determination, and it is used to

generate model structures. Each of the three steps will

be discussed in detail in the following subsections.

Preparation of hydrological modelling knowledge

Knowledge of hydrological process selection

A hydrological model consists of multiple hydrological

processes such as infiltration/surface runoff, depression,

subsurface flow, snowmelt, and groundwater processes.

Whether a hydrological process should be involved depends

on the simulation purpose (i.e. expected model output),

climatic and underlying surface conditions, geological con-

ditions, and hydrological conditions of the region, as well as

spatial and temporal scales. For example, when simulating a

short periodic rainfall-runoff event in an arid region, where

the aeration zone is not easily saturated, subsurface flow and

groundwater processes can be omitted. To simulate the water

balances in alpine regions where snowmelt might be a source

of the discharge peak and a major cause of flooding, the

snowmelt process should be involved. If special hydrological

or geological conditions such as frozen soil or glaciers exist

in awatershed, correspondingprocesses should be considered.

Information regarding which processes are needed for certain

application contexts can be listed. This type of knowledge

can be obtained from hydrologists and literature.

Knowledge of algorithm identification

There are multiple algorithms that can be used to simulate one

hydrological process, and each algorithm has specific appli-

cation conditions. Algorithm selection depends on watershed

physiographic conditions, temporal scale, and data availability.

Watershed physiographic conditions. Every algorithm has

assumptions andcanbeusedonly under specific physiographic

conditions. For example, regarding the infiltration/surface
://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
runoff process, the infiltration excess algorithm should be

selected for arid watersheds, whereas the saturation excess

algorithm should be selected for humid watersheds.

Temporal scale. The temporal scale should be considered in

time-based physical algorithms. For example, the Soil and

Water Assessment Tool (SWAT) contains two methods for

simulating the surface runoff process, i.e. the Soil Conserva-

tion Service Curve Number (SCS-CN) method and the

Green–Ampt method. The SCS-CN method is suitable for

simulations at a daily scale, while the Green–Ampt

method is suitable for simulations at an hourly scale or

finer time steps (Grimaldi et al. ).

Data availability. Data availability limits the applicability of

an algorithm. In real applications, due to the lack of data, it

is common to replace an algorithm that can simulate a pro-

cess accurately using detailed data with an algorithm that

has fewer input data requirements. For example, among

the methods for simulating the potential evapotranspiration

(PET) process, the Penman–Monteith method requires the

mean daily temperature, relative humidity, solar radiation,

and wind speed as input (Allen et al. ); the method pro-

posed by Hargreaves and Samani requires daily or monthly

maximum and minimum temperatures as input (Hargreaves

& Samani ), while Thornthwaite’s method takes only

the mean monthly temperature as input (Thornthwaite

). If only data for the mean monthly temperature are

available, Thornthwaite’s method can be applied.
Knowledge of component coupling

One hydrological modelling component is the software com-

ponent of a hydrological algorithm in a specific modelling

framework. There may exist slight differences in the input/

output interfaces for different components of the same algor-

ithm. After identifying the appropriate algorithm for each

process, it is necessary to check whether the components

of these algorithms are compatible and could be used to

assemble a complete composite model (i.e. whether every

component can obtain its input from the existing input

data or other components’ output) (Peckham ). For

each component, the corresponding algorithm and its

input and output should be clearly stated.
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Encoding hydrological modelling knowledge

For the unified description and reuse of modelling knowledge,

a standard-name library was built (accessible on https://github.

com/lreis2415/SEIMS/tree/master/knowledge/rdfBase/vari-

able). The library includes the names of processes, algorithms,

variables, and keywords of application context descriptions.

These standard names are used to encode hydrological model-

ling knowledge. Process-selection and algorithm-identification

knowledge can be naturally expressed as conditional sentences

in the form of ‘if…, then…’. Knowledge of this type is called

procedural knowledge or a production rule (Anderson ).

Component-coupling knowledge can be expressed as a
Figure 2 | Example of encoding the subsurface flow process-selection knowledge in RuleML.

Figure 3 | Example of encoding the frozen soil process-selection knowledge in RuleML.
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statement called declarative knowledge (Anderson ). The

encoding form for each type of hydrological modelling knowl-

edge is described below.
Encoding process-selection knowledge and algorithm-
identification knowledge

Both process-selection knowledge and algorithm-identifi-

cation knowledge are types of procedural knowledge, and

they can be encoded using RuleML, which is a markup

language designed for the interchange of web rules in an

XML format. The language is uniform across various rule

languages and platforms (Boley et al. ). Figures 2 and 3

https://github.com/lreis2415/SEIMS/tree/master/knowledge/rdfBase/variable
https://github.com/lreis2415/SEIMS/tree/master/knowledge/rdfBase/variable
https://github.com/lreis2415/SEIMS/tree/master/knowledge/rdfBase/variable
https://github.com/lreis2415/SEIMS/tree/master/knowledge/rdfBase/variable
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show two examples of encoding process-selection knowledge

in RuleML. Figure 4 provides an example of encoding the

algorithm-identification knowledge for the surface runoff

process. For a more detailed description of RuleML, please

refer to Boley et al. ().

Encoding component-coupling knowledge

Hydrological component-coupling knowledge is declarative;

thus, the knowledge can be treated as a statement and for-

malized as an object-attribute-value triple. The triple can
Figure 5 | Example of encoding the component-coupling knowledge for a component of the S

Figure 4 | Example of encoding the algorithm-identification knowledge for the surface runoff

://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
be encoded using RDF, a W3C standard for describing

identifiable resources (Cyganiak et al. ). For example,

the component ‘SCS-CN_Com’ has NEPR (i.e. net precipi-

tation), DEPST (i.e. depression storage), and SOTE (i.e.

soil temperature) as input variable names, it has EXCP

(i.e. excess precipitation), SOMO (i.e. average soil moisture),

and INFIL (i.e. infiltration) as output variable names, and its

algorithm name is SCS-CN. Figure 5 gives an example of

encoding the component ‘SCS-CN_Com’ in RDF. For a

more detailed description of RDF, please refer to Cyganiak

et al. ().
CS-CN algorithm in RDF.

process in RuleML.
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Inference engine

There are three main steps for the inference engine to deter-

mine hydrological model structures (Figure 6).

The first step is to select m required hydrological

processes through the RuleML-based inference method

according to the application purpose, spatial and temporal
Figure 6 | Procedure for the inference engine to determine hydrological model structures.
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scales, and watershed physiographic conditions. The collec-

tion of selected processes can be considered to be an

abstract conceptual model. The second step is to identify

ni (i¼ 1, 2,…, m; ni� 1) appropriate algorithms for each

process through the RuleML-based inference method

according to the watershed physiographic conditions, data

availability, and time step. The collections of these selected
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algorithms can be considered to be specific conceptual

models. This study assumes that each algorithm corresponds

to only one component in the specific modelling framework.

Therefore, there are a total of
Qm

i¼1
ni component combi-

nations. The third step is to check whether all the inputs

for every component in a component combination are avail-

able. If so, the component combination will be selected as

an alternative one. If not, the component combination

cannot be executed and will be excluded. If there are mul-

tiple alternative combinations, the inference engine will

select one of them as the optimal one. Then, the components

of this optimal component combination are sequenced into an

optimal workflow. The source code of the inference engine is

available on GitHub (https://github.com/lreis2415/SEIMS/

tree/master/knowledge/inference_code). The detailed designs

of the RuleML-based and RDF-based inference methods are

as follows.
RuleML-based inference method for process selection and
algorithm identification

The RuleML-based inference method is designed to be for-

ward chaining. Taking process selection as an example to

illustrate the steps of the RuleML-based inference method,

the first step is to load the process-selection knowledge

from the knowledge base and store each rule in a ‘ruleml’

class object. The fields of the ‘ruleml’ class include the

name of the rule, the ‘if’ part and the ‘then’ part. The ‘if’

and ‘then’ parts are object instances of the ‘atom’ class. The

fields of the ‘atom’ class include ‘var’ (variables), ‘rel’ (predi-

cates), and ‘ind’ (constants). The second step is to initialize

the application context and to store it in a HashMap

<context keyword, context value> map_c. The third step is

to determine for each ‘ruleml’ object whether the ‘if’ part

can be triggered by the application context. This step aims

to determine whether the ‘var’ value obtained by map_c

can match the ‘rel’ value of the ‘if’ part. If the ‘if’ part is trig-

gered, then the ‘then’ part is used to determine whether the

corresponding hydrological process is selected. That is,

according to the semantic description of ‘rel’, it is determined

whether the hydrological process described by the ‘ind’ in

‘then’ parts is selected. For example, by using the RuleML-

based inference method to the process-selection knowledge
://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
(Figure 2), the subsurface flow process will be selected if

the climate type value in the application contexts is ‘humid’.

RDF-based inference method for component coupling

The RDF-based inference method is used to determine

whether the components of the selected algorithms are com-

patible and can be used to assemble a complete composite

model. The RDF-based inference method consists of three

steps. The first step is to load the RDF knowledge of all com-

ponents from the knowledge base and store the RDF

knowledge in a HashMap <algorithm name, ‘rdf’ class

object> map_a. The fields of the ‘rdf’ class include com-

ponent name, algorithm name, input variable names, and

output variable names. The second step is to obtain the

‘rdf’ object set according to map_a for a given algorithm

name set. The third step is to determine whether each

input variable of the object can be satisfied (i.e. whether

the data required for each input variable can be obtained

from the existing data or the output of other components)

for each ‘rdf’ object. Specifically, for each input variable, if

the name of the input variable is included in the existing

data names or the output variable names of other ‘rdf’

objects, the input variable can be satisfied; otherwise, the

input variable cannot be satisfied. If all the input variables

of each ‘rdf’ object can be satisfied, the corresponding com-

ponent set can be coupled into a workflow; otherwise, the

corresponding component set will be excluded.

The components are sorted by the dataflow among com-

ponents. The dataflow can be abstracted as a directed graph.

For a dataflow without loops, a directed acyclic graph

(DAG) is used to describe the dataflow. Each component

is treated as a vertex of the DAG, and the input–output

relationship of the variables between two components is

treated as a unidirectional edge of the DAG. The topological

sorting method is used to determine the linear ordering of

the DAG’s vertices (i.e. the execution sequence of the com-

ponents). For a dataflow with loops, which can be described

by a directed cyclic graph (DCG), each loop needs to be

broken to convert the DCG into a DAG.

Figure 7 shows an example of the cyclic dependency in

coupling SUR_EXCESS (i.e. runoff yield under the excess

infiltration component) with DEP_FS (i.e. depression com-

ponent). SUR_EXCESS needs DPST (i.e. distribution of

https://github.com/lreis2415/SEIMS/tree/master/knowledge/inference_code
https://github.com/lreis2415/SEIMS/tree/master/knowledge/inference_code
https://github.com/lreis2415/SEIMS/tree/master/knowledge/inference_code
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depression storage) as an input, which is the output of the

DEP_FS. Meanwhile, DEP_FS needs EXCP (i.e. excess

precipitation) as an input, which is the output of

SUR_EXCESS. Due to this loop between SUR_EXCESS

and DEP_FS, the sequence between these two components

is undecidable. Note that hydrologists usually assume that

SUR_EXCESS happens before DEP_FS. Therefore, the

loop between these two components can be broken by

removing the ‘DPST’ edge from the current temporal step

of the simulation. Thus, the DCG can be converted into a

DAG, whose sequence can be determined by the topological

sorting method. According to the DAG, the SUR_EXCESS

and DEP_FS components will be executed sequentially

within the current temporal step of the simulation. The

output of DEP_FS, DPST, will be the input to SUR_EXCESS

in the next temporal step of the simulation.

Applying the method to a specific modelling framework

In the proposed method, knowledge of process selection

and algorithm identification is framework-independent (or

generic knowledge), while metadata of components is

framework-specific (or local knowledge). The metadata

descriptions of the components in a specific modelling

framework could be different from the ontological descrip-

tions of the generic knowledge. To apply the proposed

method to a specific modelling framework, the metadata

descriptions of the local knowledge should be mapped to

the ontological description of the generic knowledge.

Specifically, the metadata information of each component,
om http://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
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including the algorithm to which this component belongs

and its input/output variables, is first extracted from the

modelling framework. Second, the variable names and

the algorithm names of the components are described

using standard names, if they are inconsistent with the

ones in the standard-names library. Then, the metadata of

components is formalized as component-coupling knowl-

edge and stored in the RDF knowledge base. Thus, the

proposed method can be applied to a specific modelling

framework.
RESULTS

Integrated modelling framework and modelling

knowledge

To evaluate the applicability of the proposed knowledge-

based method, we applied the method in a hydrological inte-

grated modelling framework (i.e. SEIMS). SEIMS consists

of a parallel hydrological module library, a runtime environ-

ment (including model initialization, model execution, and

model calibration), auxiliary functions (such as preproces-

sing, postprocessing, and data management), and a

hydrological database. The hydrological module library of

SEIMS contains over 30 modules for the main hydrological

processes covering hydrological, crop growth, and nutrient

migration/transformation processes (Qin et al. ). Each

module includes one or several components. These com-

ponents can be coupled to build models. The source code
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of SEIMS is available on GitHub (https://github.com/

lreis2415/SEIMS).

Currently, there are a total of 47 rules and 208 RDF tri-

ples in the knowledge base (available at https://github.com/

lreis2415/SEIMS/tree/master/knowledge).

Software prototype of the knowledge-based method

A software prototype called the Intelligent Hydrological

Modelling Customizing System (IHMCS) has been devel-

oped as the shell of the knowledge-based method to assist

modellers in the generation of hydrological model struc-

tures. IHMCS is a browser-based system (Figure 8), and it

can be accessed on the URL (http://114.215.153.178:8080/

IHMCS/main.jsp). This interface consists of a list of radio

boxes and check boxes. These boxes represent the appli-

cation context and are linked to the knowledge base. After

users fill in the application context through the interface,

the inference engine will be invoked to generate suitable

model structures. The names of the selected hydrological

processes, algorithms, and components are displayed in a

grid form. The model structure can be saved in a configur-

ation file in a format that SEIMS can utilize. It should be

noted that the browser-side user interface is loosely coupled

with the server-side inference engine. Different user inter-

faces can be designed to meet the needs of different users.
Figure 8 | Interface of IHMCS, and the application context and model structure of the first hy

://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
Experiments

Three hypothetical experiments and a real experiment are

used to illustrate the capability of the knowledge-based

method in the automatic determination of hydrological

model structures.

Hypothetical experiments

Three different hypothetical experiments are designed. Each

hypothetical experiment has an application context consist-

ing of the application purpose, spatial and temporal scales,

watershed conditions, data availability, and particular pro-

cesses (Table 1).

As an example, the modelling context and model struc-

ture for the first hypothetical experiment are shown in

Figure 8. The model structures for the three hypothetical

experiments are listed in Tables 2–4, respectively.

During this model building procedure by IHMCS, the

complicated professional details (i.e. selecting the processes,

identifying the algorithms, and checking the compatibilities

of the components) are transparent to the modellers. The

modellers can easily obtain model structures. In addition,

the model structures determined by IHMCS show that the

proposed method can generate different model structures

for different modelling contexts.
pothetical experiment.

https://github.com/lreis2415/SEIMS
https://github.com/lreis2415/SEIMS
https://github.com/lreis2415/SEIMS
https://github.com/lreis2415/SEIMS/tree/master/knowledge
https://github.com/lreis2415/SEIMS/tree/master/knowledge
https://github.com/lreis2415/SEIMS/tree/master/knowledge
http://114.215.153.178:8080/IHMCS/main.jsp
http://114.215.153.178:8080/IHMCS/main.jsp
http://114.215.153.178:8080/IHMCS/main.jsp


Table 1 | Hypothetical experiments

Experiment Purpose Time scale/step Spatial scale
Watershed
conditions Data availability

Particular
processes

Experiment 1 Rainfall-runoff Event/hourly Small-sized Humid, rural
region

Precipitation

Experiment 2 Evapotranspiration Continuous/daily Medium-sized Humid, rural
region

Precipitation, minimum temperature,
maximum temperature

Snow

Experiment 3 Soil erosion Event/hourly Small-sized Semi-humid,
rural region

Precipitation

Table 2 | List of hydrological processes, algorithms, and components in the first

hypothetical experiment

Process Algorithm Component ID

Interception Hourly interception
algorithm in WetSpa

PI_STORM

Infiltration Green–Ampt method SUR_SGA

Percolation Darcy method PERCO_DARCY

Ground
water

Linear reservoir
method

GWATER_RESERVOIR

Depression Fill and Spill method DEP_FS

Subsurface
flow

Kinematic wave
method

INTERFLOW_IKW

Overland
flow

One-dimension kinetic
wave formula

IKW_OL

Channel flow Hourly Muskingum
method

CH_MSK

Table 4 | List of hydrological processes, algorithms, and components in the third

hypothetical experiment

Process Algorithm Component ID

Interception Hourly interception
algorithm in WetSpa

PI_STORM

Infiltration Green–Ampt method SUR_SGA

Percolation Darcy method PERCO_DARCY

Ground water Linear reservoir
method

GWATER_RESERVOIR

Depression Fill and Spill method DEP_FS

Subsurface flow Kinematic wave
method

INTERFLOW_IKW

Overland flow One-dimension kinetic
wave formula

IKW_OL

Splash erosion Park equation SplashEro_Park

Overland erosion Erosion–Govers
method

KinWavSed_OL

Channel flow Hourly Muskingum
method

CH_MSK

Channel erosion Srinivasan Galvao
function

KinWavSed_CH

Table 3 | List of hydrological processes, algorithms, and components in the second

hypothetical experiment

Process Algorithm Component ID

PET Hargreaves method PET_H

Interception Daily interception algorithm
in WetSpa

PI_MSM

Snow melt Degree-day method SNO_DD

Soil temperature Finn and Plauborg method STP_FP

Infiltration SCS-CN method SUR_CN

Percolation Brooks and Corey formula PER_PI

Subsurface flow Darcy formula SSR_DA

Depression Linsley method DEP_LINSLEY

Soil evaporation Evaporation method in
WetSpa

SET_LM
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Real experiment

Application context. This real experiment aims to simulate

the daily rainfall-runoff in the Meichuan River watershed

in Jiangxi Province, China (Figure 9). The watershed has a

drainage area of approximately 6,366 km2, with an elevation

ranging from 151 to 1,425 m. The climate is humid and sub-

tropical, with an average annual precipitation of 1,706 mm

and a mean annual temperature of 17 �C. The lowest air

temperature in the watershed is below 0 �C. The available

spatial dataset includes a gridded digital elevation map,

land-use map, and soil-type map. The dataset has a spatial



Figure 9 | Map of the Meichuan River watershed.
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resolution of 90 m. The available time series dataset includes

the precipitation, minimum temperature, maximum temp-

erature, and discharge data at a daily time step from 1

January 2002 to 31 December 2005 and from 1 January

2007 to 31 December 2010. There was a lack of observation

data in 2006.

Model structure. The modelling context and model struc-

ture for the real application context are shown in

Figure 10. The processes, algorithms, and components of

the model structure are listed in Table 5.

The related knowledge and application contexts for

hydrological process selection and algorithm identification

are shown in Tables 6 and 7, respectively. The RDF-based

reasoning method confirms that the components of these

selected algorithms can be assembled as a complete

workflow.

Simulation results. The model parameters are prepared

using the preprocessing tools in SEIMS. The model is
://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
calibrated using the discharge data from 2002 to 2005 and

validated using the data from 2007 to 2010. Overall, it is

found that the estimations agreed well with the obser-

vations, although the simulations in some certain high

water periods are a little imprecise. The Nash–Sutcliffe effi-

ciency (NSE) is used to evaluate the simulation accuracy.

The NSE of the resulting hydrological model for the cali-

bration period is 0.90 (Figure 11), and the NSE of the

validation period is 0.88 (Figure 12). The simulation accu-

racy is acceptable.
DISCUSSION

The above results show how the proposed knowledge-based

method could support modellers in the automatic determi-

nation of hydrological model structures for different

application contexts. To further illustrate the adaptability

of the proposed method, we changed some conditions in

the real experiment and obtained different model structures



Figure 10 | Application context and model structure for the real experiment by IHMCS.

Table 5 | List of hydrological processes, algorithms, and components in the real

experiment

Process Algorithm Component ID

PET Hargreaves method PET_H

Interception Daily interception algorithm
in WetSpa

PI_MSM

Snow melt Degree-day method SNO_DD

Soil temperature Finn and Plauborg method STP_FP

Infiltration SCS-CN method SUR_CN

Percolation Brooks and Corey formula PER_PI

Subsurface flow Darcy formula SSR_DA

Depression Linsley method DEP_LINSLEY

Soil evaporation Evaporation method in
WetSpa

SET_LM

Ground water Linear reservoir method GWA_RE

Water balance Soil water balance method SOL_WB

Overland flow Nash unit hydrograph
formula

IUH_OL

Channel flow Muskingum method MUSK_CH
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accordingly. The conditions and corresponding changes of

model structures are as follows:

(a) If the study area size is assumed to be small-sized rather

than medium-sized and the climate type is assumed to be
om http://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
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arid rather than humid, the subsurface flow, percolation,

and ground water processes are not selected by the pro-

posed method.

(b) If the modelling purpose is assumed to be soil erosion

simulation rather than rainfall-runoff simulation, the

sediment yield process is added to the model structure.

(c) If the modeller assigns the maximum temperature, mini-

mum temperature, relative humidity, and solar radiation

as the meteorological data input, the Priestley–Taylor

algorithm rather than the Hargreaves algorithm is

selected for the PET process.

The contrast of the model structures in the different situ-

ations is shown in Table 8.

Using this proposed method, modellers do not need to

master all of the modelling knowledge, and it is easy for

modellers to determine suitable models using integrated

modelling frameworks. This method can reduce the model-

ling knowledge requirement of modellers and enable more

users, especially when hydrology is not the core area of

their expertise, to make use of hydrological modelling to

serve their own work. With the intelligent modelling inter-

face, modellers can use integrated modelling frameworks

in a simpler and higher-level way. Users who are not familiar

with modelling frameworks or components can also



Table 6 | Related knowledge and application context for process selection in the real experiment

Related knowledge Application context Selected processes

Process rule 1: If the purpose is rainfall-runoff
simulation and the time step is daily, then
infiltration/surface runoff, depression, soil
evaporation, potential evapotranspiration, overland
flow, channel flow, water balance, and soil
temperature are selected

Purpose: rainfall-runoff
simulation; Time step:
daily

Infiltration/surface runoff, depression, soil
evaporation, potential evapotranspiration,
overland flow, channel flow, water balance, and
soil temperature

Process rule 2: If the spatial scale is medium-sized and
the application purpose is rainfall-runoff simulation,
then percolation and ground water are selected

Spatial scale: medium-
sized; Purpose: rainfall-
runoff simulation

Percolation and ground water

Process rule 3: If the particular process is snow, then
snowmelt is selected

Particular process: snow Snowmelt

Process rule 4: If the underlying surface type is rural,
then interception is selected

Underlying surface type:
rural

Interception

Process rule 5: If the climate type is humid, then the
subsurface flow is selected

Climate type: humid Subsurface flow

Table 7 | Related knowledge and application context for algorithm identification in the real experiment

Related knowledge Application context Identified algorithms

Algorithm rule for the interception process: If the time step is daily,
then the maximum storage method is selected

Time step: daily Daily interception
algorithm in WetSpa

Algorithm rule for the snowmelt process: If the time step is daily, then
the degree-day method is selected

Time step: daily Degree-day method

Algorithm rule for the soil temperature process: If the time step is
daily, then the Finn and Plauborg method is selected

Time step: daily Finn and Plauborg
method

Algorithm rule for the infiltration process: If the time step is daily,
then the SCS-CN method is selected

Time step: daily SCS-CN method

Algorithm rule for the depression process: If the time step is daily,
then the Linsley method is selected

Time step: daily Linsley method

Algorithm rule for the potential evapotranspiration process: If the
climate inputs are maximum temperature and minimum
temperature, then the Hargreaves method is selected

Climate input: maximum temperature
and minimum temperature

Hargreaves method

Algorithm rule for the percolation process: If the time step is daily,
then the Brooks and Corey formula is selected

Time step: daily Brooks and Corey
formula

Algorithm rule for the soil evaporation process: If the time step is
daily, then the Thornthwaite and Mather formula is selected

Time step: daily Thornthwaite and
Mather formula

Algorithm rule for the subsurface flow process: If the time step is daily
or hourly, then the Darcy formula is selected

Time step: daily Darcy formula

Algorithm rule for the overland flow process: If the time step is daily
or hourly, then the Nash unit hydrograph formula is selected

Time step: daily Nash unit hydrograph
formula

Algorithm rule for the ground water process: If the time step is daily,
then the linear reservoir method is selected

Time step: daily Linear reservoir method

Algorithm rule for the water balance process: If the time step is daily,
then the soil water balance method is selected

Time step: daily Soil water balance
method

Algorithm rule for the channel flow process: If the time step is daily or
hourly, then the Muskingum method is selected

Time step: daily Muskingum method
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Figure 11 | Model calibration results (the Nash–Sutcliffe efficiency is 0.90).

Figure 12 | Model validation results (the Nash–Sutcliffe efficiency is 0.88).

Table 8 | Contrast of the model structures in the different situations

Process
Situation of a
real experiment Situation a Situation b Situation c

PET √ √ √ √ (→)PET

Interception √ √ √ √

Snow melt √ √ √ √

Soil temperature √ √ √ √

Infiltration √ √ √ √

Percolation √ ○ √ √

Subsurface flow √ ○ √ √

Depression √ √ √ √

Sediment yield ○ ○ √ ○

Soil evaporation √ √ √ √

Ground water √ ○ √ √

Water balance √ √ √ √

Overland flow √ √ √ √

Channel flow √ √ √ √

√: the corresponding process is selected.

○: the corresponding process is unselected.

(→)PET: the Priestley–Taylor algorithm rather than the Hargreaves algorithm is selected for

the PET process simulation.
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participate in modelling. The latter would be conducive to

the promotion of integrated modelling frameworks. It can

also help experts save the time required for modelling by

providing primitive solutions for them.

Actually, the rationality of model structures depends on

the quality and quantity of the knowledge base. In this study,

algorithm selection is mainly constrained by time step and

data availability, but other limiting factors for algorithm

selection should also be considered in the future. The incom-

pleteness of the knowledge base may cause the infeasibility

of our proposed method in relatively complex environments.

In addition, regional difference knowledge is very impor-

tant, and it should also be included in the knowledge base.
om http://iwa.silverchair.com/jh/article-pdf/21/6/1163/623411/jh0211163.pdf
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The knowledge base on GitHub needs to be constantly

improved and expanded. Contributions to the knowledge

base from the community are welcomed.

It should be noted that certain basic knowledge on

hydrological modelling is always needed for hydrological

modellers. For example, modellers should understand the

general knowledge of hydrology (e.g. watershed conditions,

how to discover and preprocess data, how to prepare par-

ameters, and how to calibrate model parameters). Without

the basic knowledge, it is still difficult to build hydrological

models and interpret the simulation results properly.
CONCLUSIONS AND FUTURE WORK

In this paper, a knowledge-based method is proposed to

automatically determine hydrological model structures.

Specifically, the knowledge on process selection and algor-

ithm identification is formalized in RuleML, and the

knowledge on the component coupling is formalized in

RDF. Then, an inference engine is implemented to generate

suitable model structures according to the formalized
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knowledge. Three hypothetical experiments and a real exper-

iment are used to demonstrate how the proposed knowledge-

based method can assist modellers in the determination of

model structures for different application contexts. This

method has the potential to reduce the modelling knowledge

burden on modellers and would be conducive to the pro-

motion of integrated modelling frameworks.

The construction of the knowledge base is a long-term

project. In the future, we will continue to expand the knowl-

edge base to enhance the feasibility of the proposed

knowledge-based method in complex environments. We

will attempt to develop a knowledge management platform

for modellers to use to share their hydrological modelling

knowledge and experience. In addition, future work

should utilize other types of knowledge, such as case-

based knowledge, to make hydrological modelling smarter

and more robust.
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