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Estimation of scour depth around submerged weirs using

self-adaptive extreme learning machine

M. Rashki Ghaleh Nou, M. Azhdary Moghaddam, M. Shafai Bajestan and

H. Md. Azamathulla
ABSTRACT
In this study, the equilibrium scour depth downstream of the weir (ds-a), the maximum scour depth

downstream of the weir (ds-max), the equilibrium scour depth upstream of the weir (dus-a) and the

maximum scour depth upstream of the weir (dus-max) were simulated around the submerged weirs

using the self-adaptive extreme learning machine (SAELM) model. In other words, the SAELM was

utilized for the simulation of the scour depths around submerged weirs for the first time. In addition,

Monte Carlo simulations (MCSs) were used to increase the accuracy of the artificial intelligence

model. The results of modeling were validated using k-fold cross validation. At first, all effective

parameters on the scour depth were determined and five distinct SAELM models were defined.

Then, the optimal activation function of the SAELM model was obtained. By analyzing the results of

modeling, the best models were identified to estimate ds-a/ht, ds-max/ht, dus-a/ht, and dus-max/ht, and

the ratio of the average inflow velocity to the critical velocity (U0/Uc) was determined as the most

effective input parameter. In the following, the results of superior models were compared with the

artificial neural network (ANN) and support vector machine (SVM). The results showed that SAELM

models were more accurate. The uncertainty analysis was performed for these models, some of

them were overestimated and others were underestimated. In addition, some equations were

presented for equilibrium models for calculation of scour depth around the submerged weirs, which

are used by environmental and hydraulic engineers without previous knowledge about the artificial

intelligence models. Finally, a partial derivative sensitivity analysis (PDSA) was performed for all input

parameters of the superior models.
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INTRODUCTION
In general, submerged weirs are widely used to raise the

upstream water levels, determine the water depth for

navigation, and prevent the erosion of the channel and

river beds. In addition, the flow structure may cause the for-

mation of sedimentary deposits or local scouring around

the submerged weirs. Due to the importance of these

hydraulic structures, numerous experimental, analytical
and numerical studies have been carried out on the scouring

pattern around the submerged weirs.

For example, Odgaard & Kennedy () were among

the first researchers to evaluate the flow pattern and scour-

ing around the submerged weirs. By analyzing the results,

they obtained a relationship to calculate the distance

between submerged vanes. Subsequently, Odgaard &
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Spoljaric () investigated the effect of the submerged

vanes on the flow pattern and bed topography in a labora-

tory rectangular flume. In addition, Odgaard & Wang

() presented an analytical method for design of sub-

merged vanes in open channel flows. They verified their

model results with a laboratory model and showed that

the analytical model had an appropriate accuracy. Marelius

& Sinha () experimentally studied the effect of differ-

ent inclination angles of submerged vanes on the flow

pattern. They obtained the optimum angle of the sub-

merged vanes. Gaudio et al. () examined the long-

term scouring around bed sills in different experimental

conditions. By analyzing the results, they proposed many

relationships for calculating the depth and length of the

scour hole. Tan et al. () studied the scouring pattern

around the submerged vanes on a straight channel. They

showed that the efficiency of submerged vanes depends

on the impact angle of the flow to the plate, height, and

length of the plates. They concluded that the optimum

impact angle of the flow to the plates is 30 degrees and

an optimum height of the submerged vanes is two to

three times the height of the bed form. In addition,

Ouyang () evaluated the effects of the shape and size

of submerged vanes on the scouring pattern in a rectangu-

lar channel. They provided an analytical model for

calculating the changes in sedimentary beds and verified

this model with experimental data. Bajestan & Azizi

() conducted a series of laboratory measurements on

the scour depth around the submerged vanes. The analysis

of the experimental results showed that cutting the leading

edge of the submerged vanes reduced the amount of scour-

ing around the submerged vanes. Guan et al. ()

conducted an experimental study on the turbulence flow

structure and shear stress in the submerged waters under

clear water conditions. The experimental results showed

that a large circulation and reattachment zone are

formed downstream of the submerged weir. Guan et al.

() measured the scour values in upstream and down-

stream submerged weirs under live-bed conditions in a

laboratory study. Using dimensional analysis and exper-

imental results, they proposed the relationships for

estimating scouring around the submerged weirs. Guan

et al. () evaluated experimentally the effect of sediment

size, depth, flow rate and weir height on the scouring
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
pattern around the submerged weirs. They provided several

relationships to calculate the scour hole dimensions. Wang

et al. (a) measured the local scouring between the

circular bridge pier and submerged weir and concluded

that with the application of the submerged weir down-

stream of the bridge pier, the scour depth is significantly

reduced. Wang et al. (b) investigated the scour process

around sloping submerged weirs in a laboratory study for

two coarse-grained and fine-grained sediments. By analyz-

ing the experimental results, a design approach was

proposed for this structure. Wang et al. (c) investigated

experimentally the effect of the slope of the submerged

weir on the scouring pattern of coarse-grained and fine-

grained sediments. They proposed a relationship as a func-

tion of medium and maximum scour.

In recent years, artificial intelligence and soft comput-

ing models have been widely used for modelling various

phenomena. For example, Babovic (), Yu et al.

(), Babovic (). Also, Bateni et al. () estimated

the time-dependent scour depth around the circular bridge

piers using a neural network model. The results of their

study showed that the most effective parameter on scour

depth is the bridge pier diameter. In addition, Firat &

Gungor () estimated the scour around the bridge

piers using GRNN and FFNN neural network algorithms.

They showed that the GRNN model predicted the scour

values more accurately. Zounemat-Kermani et al. ()

modeled the scouring pattern around the bridge piers by

the adaptive neuro-fuzzy inference system and the neural

network. They showed that the FFBP-NN neural network

model estimates the scour depth with great accuracy.

Based on the results of sensitivity analysis, the dimension-

less parameter of the bridge pier diameter and the ratio of

the pier distance to the bridge pier diameter were the most

effective parameters on the scouring pattern. Goel & Pal

() showed the potential of support vector machines

in predicting the maximum scour depth on grade-control

structures, from the available laboratory and field data.

They compared the results of their study with some empiri-

cal relation and a feed forward back propagation neural

network model. The outcome from the support vector

machines-based modeling approach suggested a better per-

formance in comparison to both the empirical relation and

back propagation neural network approach with the
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laboratory data. Muzzammil () simulated the depth of

the scour hole downstream of the abutments using adap-

tive neuro-fuzzy inference system (ANFIS) and neural

network models. He found that the ANFIS model pre-

dicted the scour depth with more accuracy than neural

network model. Najafzadeh et al. () estimated the

scour depth around the abutments using group method of

data handling (GMDH) and support vector machines for

clear-water conditions and lived-bed conditions. The results

of the analysis showed that the GMDH model was more

accurate than support vector machines. Etemad-Shahidi

et al. () simulated the scour depth around the bridges

using an M5 model tree. They compared the results of

the numerical model with empirical relationships, and

found that the accuracy of the M5 model tree is great.

Additionally, Sharafi et al. () modeled the local scour-

ing around the bridge bases using a support vector

machine. Azimi et al. (a) estimated the scour around

the bridge pile group with the combination of differential

evolutionary algorithms and ANFIS. They presented ten

combined models to identify the superior model and the

most effective parameter for simulating scouring around

the bridge pile group.

It should be noted that estimation of scouring around

submerged weirs has not been simulated through artificial

intelligence (AI) techniques yet. Additionally, classical AI

models such as artificial neural networks (ANNs), ANFIS,

support vector machine (SVM), gene expression program-

ming (GEP) and GMDH have some disadvantages which

a novel algorithm like extreme learning machine (ELM)

overcomes. The ELM has one hidden layer and compu-

tational time is much less than other methods. Moreover,

the approach provides a practical matrix to estimate the

target function.

Therefore, for the first time, the scour depth upstream

and downstream of the submerged weirs was simulated by

the modern method of self-adaptive extreme learning

machine in the present study. In order to achieve this goal,

Monte Carlo simulations were used to increase the ability

of the artificial intelligence model and the k-fold cross vali-

dation method to validate the results of the modeling.

Initially, the parameters were determined and the optimal

activation function was then introduced. After that, by ana-

lyzing the results of simulations, the best models and the
om http://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
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most effective input parameters were identified. In addition,

the results of SAELM models were compared with ANN

and SVM models and uncertainty analysis was performed

for these superior models. In the following, several

equations were proposed for superior SAELM models and

partial derivative sensitivity analysis (PDSA) for all input

parameters.
MATERIALS AND METHODS

In this study, the self-adaptive extreme learning machine

(SAELM) is employed to estimate scour depth around sub-

merged weirs. The SAELM is a combination of ELM and

a self-adaptive differential evolution algorithm (SADE) to

improve the capability of the ELM in function approxi-

mation. Indeed, the SADE is combined with ELM to

calculate the bias of hidden layer and input weight analyti-

cally that randomly assigned in convectional ELM. An

overview of ELM, SADE and finally SAELM is presented

in sections 2.1, 2.2 and 2.3, respectively.

Extreme learning machine (ELM)

Recently, a learning algorithm has been proposed for

a single-layer feed-forward neural network (SLFFNN),

known as the extreme learning machine (Huang et al.

). In this model, hidden node parameters (input

weights, hidden neurons) are randomly selected and

output weights are analytically determined using Moore-

Penrose generalized inverse (MPGI) (Lei et al. ). The

ELM method avoids many problems, such as stopping cri-

teria, learning rates and learning courses based on

learning methods.

Suppose that there are N arbitrary samples in the train-

ing phase as (xi, yi) ε Rn ×Rm (i¼ 1, 2, …, n) with L hidden

nodes. Therefore, the SLFFNN model with the transfer

function of f(x) can be expressed as follows (Aghbashlo

et al. ; Ding et al. ; Liu et al. ):

XL
i¼1

βifi(xj) ¼
XL
i¼1

βif(ai � bi � x), j ¼ 1, 2, . . . , N (1)

in which, ai¼ [ai1, ai2,…, ain]
T is the input weight vector con-

nected to the hidden layer node, bi is the bias of the hidden
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layer nodes, βi¼ [βi1, βi2, …, βim]
T is the output weight vector

connected to the hidden layer node.

The above equation can be rewritten as follows:

XL
i¼1

βifi(xj) ¼ Hβ (2)

H ¼
f(a1 � x1 � b1) � � � f(aL � x1 � bL)

..

. . .
. ..

.

f(a1 � xN � b1) � � � f(aL � xN � bL)

2
64

3
75 (3)

β ¼
βT1

..

.

βTL

2
64

3
75
L×m

(4)

T ¼
yT1
..
.

yTL

2
64

3
75
N×m

(5)

in which, H is the output matrix of the hidden layer, β is the

output weight matrix, and T is called the label matrix.

The first step in this model is to determine the random

values of input weights (α) and the bias of the hidden layer

node (b) at the training phase. After determining these

weights and biases, the output matrix of the hidden layer

can be obtained from the input samples. Therefore, the

SLFFNN training is converted into a least squared solution.

After determining the input weights and the hidden layer

biases, the output matrix of the hidden layer can be obtained

from the training samples. Thus, SLFFNN training turns

into the least square solution. By introducing the regulariz-

ation theory for the ELM model, the objective function is

expressed as follows:

min LELM ¼ 1
2

βk k2þ c
2

T �Hβk k2 (6)

The least square solution of the above-mentioned

equation is as follows:

V � cHT (T �Hβ) ¼ 0 (7)

When the number of samples in the training phase are

greater than the number of nodes in the hidden layer, one
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
can write:

β ¼ 1
c
þHTH

� ��1

HT (8)

When the number of samples in the training phase are

less than the number of nodes in the pins, we have:

β ¼ HT 1
c
þHHT

� ��1

T (9)

In the present study, the ELM non-linear activation

functions include sigmoid (sig), sine (sin), hardlim, radial

base (radbas) and triangular base (tribe).
Differential evolution (DE)

The differential evolution optimization algorithm (DE) is

one of the most effective search-based methods (Price

et al. ). For other evolutionary algorithms, this algor-

ithm starts by creating an initial population. Then, by

applying different operators, the newborn generation is

formed and in the next stage (called the selection stage),

the newborn generation with the parent generation is com-

pared to evaluate the merit that is measured by the

objective function. Then, the best members will enter as

the next generation into the next step. This will continue

to reach the desired results. In this section, the operation

steps of this algorithm are respectively expressed, as follows:
Initial population

The number of variables in the problem is shown in Bot D

algorithm. Each variable has one upper limit and one

lower limit. An initial population of NP is randomly

formed in D, as follows:

Xio ¼ Ximinþ round(δi � (Ximax�Ximin)) i ¼ 1, 2, . . . , NP

(10)

where, δi is a random number ranged between 0 and 1,

Xi min and Xi max are respectively low and high limits of

the variables in the problem and NP of the number of

members.
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Mutation and crossover

In this algorithm, five strategies can be used for the synthesis

and production of nitrates (four strategies for mutations and

one for crossover) defined as (Price et al. ):

Zi,G ¼ Xri1,G
þ F:(Xri2,G

�Xri3,G
) (11)

Zi,G ¼ Xri1,G
þ F:(Xbest,G �Xri1,G

)þ F:(Xri2,G
�Xri3,G

)

þ F:(Xri4,G
�Xri5,G

) (12)

Zi,G ¼ Xri1,G
þ F:(Xri2,G

�Xri3,G
)þ F:(Xri4,G

�Xri5,G
) (13)

Zi,G ¼ Xi,G þ F:(Xri1,G
�Xi,G)þ F:(Xri2,G

�Xri3,G
) (14)

where, rk
i are the integers attained randomly within the

interval [1, 2, …, NP], F is the mutation factor, and Xbest is

the best member of the current population. Additionally,

the crossover is defined as follows:

if u � CR or j ¼ k then Zi,j

¼ Xr1,j þ CR(Xr3,j �Xr2,j) else Zi,j ¼ Xi,j (15)

where, j is the number of each variable from ith member of the

population and CR is a constant ranging between 0 and 1.
Selection

At this stage, the infants and parents are valued according to

the objective function, and if the infant has a higher value

than the parent, the parent will be replaced by an infant.

Otherwise, the parent goes to the next stage along with

the next generation.

Zi,gþ1 ¼ argmax (f(Zi, g), f(Zi, gþ 1)) (16)

in which, the index g represents a generation, Zi,gþ1 is the

population of the new generation (infants) and Zi,g of the

previous generation population (parents). The function f is

also the objective function.
Iteration

The sections 2.2.2 and 2.2.3 continue to reach the maximum

iteration or convergence of the entire population.
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Self-adaptive extreme learning machine (SAELM)

The method of the self-adaptive extreme learning machine is

a hybrid method that uses the self-adaptive differential evol-

ution algorithm (SADE) to increase the accuracy of ELM

modeling (Cao et al. ). The SADE algorithm is used to

estimate input weights and hidden node biases, and the

output layer weights are determined according to the classi-

cal ELM method. First, an initial population vector, NP, is

created using the SADE algorithm randomly in the first

generation.

θk,G ¼ [aT1,(k,G), � � � , aTL,(k,G), b1,(k,G), � � � , bL,(k,G)] (17)

The output weight matrix is calculated using the follow-

ing equation:

βk,G ¼ H�1
k,GT (18)

where, H�1
k,G is the generalized inverse of Hk,G. The Hk,G is

defined as follows:

Hk,G ¼
g(a1,(k,G), b1,(k,G), x1) � � � g(aL,(k,G), bL,(k,G), x1)

..

. . .
. ..

.

g(a1,(k,G), b1,(k,G), xN) � � � g(aL,(k,G), bL,(k,G), xN)

2
64

3
75

(19)

The root mean squared error (RMSE) for each individ-

ual is calculated using the following equation:

RMSEk,G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PL
j¼1

βjg(a j,(k,G), b j,(k,G), xi)� ti

�����
�����

m ×N

vuuuut
(20)

The population vector is maintained with the best value

for RMSE in the first generation. In later generations, vec-

tors of the parameters are evaluated as follows:

θk,Gþ1¼
uk,Gþ1 ifRMSEθk,G �RMSEθk,Gþ1 > ε:RMSEθk,G

uk,Gþ1

if jRMSEθk,G �RMSEθk,Gþ1 j< ε:RMSEθk,G

and jβuk,Gþ1
j< jβθk, j

θk,G else

8>>><
>>>:

(21)

In the SADE algorithm used in the SAELM method, the

trial vector for each objective vector is generated using the
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strategies defined for the mutation. The selection of strategy

for each generation is generated according to the probable

process Pl,G. The parameter Pl,G is the probability of the

selection of lth strategy in the Gth generation. In the devel-

oped model, the value of l can be in the range of 1 to

4. The parameter Pl,G is updated when G is less than or

equal to P (P is the number of vectors generated per popu-

lation). Otherwise, if G is greater than P, Pl,G is calculated

from the following equation:

Pl,G¼

PG�1
g¼G�Pnsl,gPG�1

g¼G�Pnsl,gþ
PG�1

g¼G�Pnfl,g
þε

P4
l¼1Sl,G

(22)

where, nfl,g is the number of trial vectors generated using lth

in the gth generation that has successfully entered the next

generation, nsl,g is the number of trial vectors generated

using lth in the gth generation that is removed from the

next generation, ε is a constant and positive number. The

values of F and CR are randomly chosen for each objective

vector using the normal distribution function. The pro-

duction of trial vectors for future generations is

determined by θk,Gþ1 (Equation (20)). The evolutionary pro-

cess continues until reaching the required amount of merit.
Artificial neural network

An artificial neural network is an idea for processing the

information that is inspired by the biological nervous

system and deals with information processing like the

brain. This system has come from a large number of extra-

ordinary processing elements, called neurons, working

together to solve a problem (Vafakhah ). Artificial

neural networks have the ability to learn, call, and general-

ize data learning patterns. These networks can be trained

for a particular action by adjusting the element weights.

The neural networks are usually trained to convert a particu-

lar input into a specific output (Riad et al. ). In order to

select the optimal structure of the artificial neural network,

the number of neurons in the intermediate layer is chosen

with trial and error, so much of this number may lead to

overfitting, and the low number of neurons may reduce

the model accuracy for the data which have not been used
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
in the training phase. For modelling, feedforward neural

network with the backpropagation algorithm with the

hyperbolic tangent function were used as a transfer function

(Emiroglu et al. ).

tansig (x) ¼ 2
1þ e�2x � 1 (23)

Support vector machine (SVM)

The support vector machine (SVM) has been presented by

Vapnik (). In a SVM regression model, it is necessary

to estimate the functional dependency of the dependent vari-

able of y on a set of independent variables of x. It is assumed

that, as in other regression problems, the relation between

dependent and independent variables is determined by a

certain function, f, plus an additional amount of noise:

y ¼ f(x)þ noise (24)

Therefore, the main issue is to find the form of the func-

tion f, which can correctly predict the new cases that SVM

has not experienced so far. This function is accessible by

training the SVM model on a dataset (called a training

set), which includes a process for the continuous optimiz-

ation of the error function. Based on the definition of this

error function, two examples of SVM models are: (1)

regression models of the type 1, known as v-SVM models

and type II regression models, known as ε-SVM. In this

study, the ε-SVM model is used for its wide application in

the regression problems in recent years. For this model,

the error function is defined as:

E ¼ 1
2
WTW þ C

XN
i¼1

ζ i þ C
XN
i¼1

ζ�i (25)

The error function is to be minimized according to the

following constraints:

WTϕ(x)þ b� yi � εþ ζ�i

yi �WTϕ(x)� b � εþ ζ i
ζ i, ζ

�
i � 0 i ¼ 1, 2, . . . , N

(26)

where, C is the capacity constant, W is the coefficient vector,

WT is the transpose of the W, ζi and ζi
* are slack variables, b
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is a constant, N is the training samples, and φ is a kernel

function. The radial basis function (RBF) kernel is one of

the best kernel functions in most of the regression problems

in hydropower and hydrology sciences (Dibike et al. ;

Noori et al. a, b). The RBF kernel function is

defined as follows:

K(xi, x) ¼ exp (� γjxi � xj2) (27)

According to the above-mentioned relations, the par-

ameters C, ε, and γ must be defined before the start of

modeling. The values of these parameters are calculated

using trial and error.
EXPERIMENTAL MODEL

In this study, the experimental data measured by Guan et al.

(, ); Wang et al. (a, b) were used for the ver-

ification of the results of a numerical model. Their

experimental model includes a flume with length of 12 m,

a depth of 0.38 m and a width of 0.44 m. They measured

the parameters of the equilibrium scour depth downstream

of the weir (ds-a), the maximum scour depth downstream

of the weir (ds-max), the equilibrium scour depth

upstream of the weir (dus-a) and the maximum scour depth

upstream of the weir (dus-max). A schematic view of the

experimental model and the scour process around the

submerged weirs are depicted in Figure 1. The scour

depth upstream and downstream of the submerged weirs
Figure 1 | Schematic view of the experimental model and scour process around the sloping s

om http://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
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(dus and ds) can be observed in this figure. In addition, the

range of experimental data is presented in Table 1.
SCOUR AROUND THE SUBMERGED WEIRS

Wang et al. (b) considered the scour depth around the

sloping submerged weirs (ds) based on the sediment density

(ρs), water density (ρw), kinematic viscosity of the fluid (ν),

gravity acceleration (g), average inflow depth (h0), tail-

water depth (ht), average flow velocity (Uo), average critical

velocity of the inflow (Uc), average diameter of the sediment

particles (d50), the standard deviation of the particle sizes

(σs), the width of the weir (b), the height of the weir (z)

and the upstream slope of the weir (α).

ds ¼ f(ρs, ρ, ν, g, h0, ht, U0, Uc, d50, σs, b, z, α) (28)

They also considered a fixed value for the geometric

characteristics of the experimental model and defined four

dimensionless groups of the parameter. Equation (1) is

re-written as follows:

ds=ht ¼ f
U0

Uc
,

z
ht

,
d50

ht
,
2α
π

� �
(29)

Therefore, in the present study, the effects of dimension-

less parameters of Equation (2) are considered as input

parameters for the artificial intelligence models. Figure 2

shows the combination of input parameters for numerical

models.
ubmerged weir.



Figure 2 | The combination of input parameters for artificial intelligence models.

Table 1 | The range of experimental data used in this study

Parameter Max Min Ave

Uo/Uc 3.696 0.722 2.209

z/ht 0.333 0.133 0.215

d50/ht 0.007 0.002 0.005

2α/π 1 0.167 0.835

ds-a/ht 1.507 0.113 0.620

ds-max/ht 1.673 0.120 0.773

dus-a/ht 0.740 0 0.354

dus-max/ht 1.333 0 1.333
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In this study, Monte Carlo simulations are used to assess

the ability of extreme learning machine models. Monte

Carlo simulations are a widespread classification of compu-

tational algorithms that use random sampling to calculate

numerical results. In addition, the k-fold cross validation is

used to evaluate the performance of these models. In a

k-fold cross validation method, the main sample is randomly

divided into k sub-samples of equal size. Among k sub-

samples, one sub-sample is used for validation and the

remaining are used to test this model. The k-fold cross vali-

dation process then repeats k times (equal to the number of

layers), and each k sub-sample is exactly used one time as

the validation data. The results obtained from the k-fold
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
are averaged and presented as an estimate. The advantage

of this method is the random repetition of sub-samples in

the testing and training processes for all observations, and

each observation is used exactly one time for the validation.

In this study, the value of k is assumed to be equal to 4. In

addition, the schematic view of the k-fold cross validation

method and how to deal with the testing and training data

are shown in Figure 3.
PERFORMANCE EVALUATION CRITERIA

In order to evaluate the accuracy of numerical models, the

statistical indices of R2, RMSE, MARE, (VAF) and scatter

index (SI) was used as follows:

R2 ¼

n
Pn

i¼1 R(Predicted)iR(Observed)i

�Pn
i¼1 R(Predicted)i

Pn
i¼1 R(Observed)i

 !2

n
Pn

i¼1 (R(Predicted)i)
2Pn

i¼1 (R(Predicted)i)
2

� �
n
Pn

i¼1 (R(Observed)i)
2 �Pn

i¼1 (R(Observed)i)
2

� �
(30)

VAF ¼ 1� var(Fi �Oi)
var(Fi)

� �
× 100 (31)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
(R(Predicted)i � R(Observed)i)

2
r

(32)

SI ¼ RMSE
(R)(Observed)

(33)

MAE ¼
Pn

i¼1 jR(Predicted)i � R(Observed)ij
n

(34)

MARE ¼ 100 ×
1
n

Xn
i¼1

jR(Predicted)i � R(Observed)ij
R(Predicted)i

� �
(35)

in which, (R)(observed)i, (R)(predicted)i, (�R
_
)(observed)i, and n are,

respectively, experimental values, predicted results by

numerical models, average experimental values, and the

number of experimental data. The closeness of the MARE,

RMSE, MAE, and SI to zero indicates the high accuracy

of the numerical model. In addition, the closeness of the

R2 index to 1 reveals high correlation of the numerical

model. In general, the superior model has a larger VAF

than other numerical models.



Figure 3 | Schematic view of the k-fold cross validation method and how to deal with testing and training data.
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In this study, first, the optimal activation function is

selected for all scouring values of ds-a/ht, ds-max/ht, dus-a/ht,

and dus-max/ht. Then, the results of simulation by all

SAELM models are evaluated. The modeling results are

then compared with the artificial neural networks and the

support vector machine models. In the next section, uncer-

tainty analysis is performed on superior models. In

addition, partial derivative sensitivity analysis is performed

for superior models. Finally, for each superior model, an

equation for estimation of ds-a/ht, ds-max/ht, dus-a/ht, and

dus-max/ht is developed.
RESULTS AND DISCUSSION

Activation function selection

In this section, an optimal activation function for simulating

scouring around submerged weirs is investigated. As pre-

viously mentioned, the extreme learning machine has five

activation functions entitled sigmoid, sin, hardlimit, tribas,

and radbas. The comparison of experimental and simulated

data along with scatter charts for these activation functions

is shown in Figure 4. For example, for estimation of ds-a, the

activation function of sigmoid was selected as the most accu-

rate function. The values of R2, RMSE, and MAE for this

activation function were calculated to be equal to 0.878,

0.095 and 0.068. In addition, the VAF and SI indices for esti-

mation of ds-a by the activation function of sigmoid were

87.826 and 0.154, respectively. Also, to simulate the par-

ameter ds-max, the sigmoid function was more accurate

than the other activation functions. For this activation func-

tion, the values of R2 and SI were estimated to be equal to
om http://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
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0.862 and 0.136, respectively. It should be noted that for

both parameters of dus-a/ht and dus-max/ht, the sigmoid acti-

vation function was selected as the optimum activation

function. For the parameter dus-a/ht, the RMSE and MARE

indices of the sigmoid activation function were calculated

to be 0.052 and 0.263, respectively. In addition, the values

of VAF, SI and MAE for simulation of dus-max/ht by sigmoid

activation function were respectively 90.788, 0.175 and

0.083.

Therefore, on the basis of the results of all activation

functions, the sigmoid activation function was identified as

the optimal function, and this function is used to estimate

the scouring values. The comparison of experimental and

simulated data along with scatter charts for the activation

function is shown in Figure 4.
Input combination selection

In this section, all SAELM models are evaluated in predict-

ing the scour values around the submerged weirs. The most

effective input parameter is also introduced. As mentioned

in the previous sections, five distinct artificial intelligence

models have been developed in this study. Comparison of

the results of the statistical indices for various self-adaptive

extreme training models can be seen in Figure 5. For

example, for simulation of ds-a/ht, the SAELM1model calcu-

lated the R2 and the SI equal to 0.878 and 0.154,

respectively. For this model, the VAF, MARE, and RMSE

indices were estimated as 87.826, 0.122 and 0.095, respect-

ively. This model calculates the scour values for all input

parameters of (Uo/Uc, z/ht, d50/ht, 2α/π). In this study, in

order to identify the most effective input parameter, four

SAELM models were introduced with three input



Figure 4 | Comparison of experimental scouring values with simulated values and scatter charts for various activation functions.
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Figure 5 | Comparison of different statistical indices for SAELM models.
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parameters, so that by removing each input parameter, the

results of the model were extracted and error values were

calculated. For example, for the SAELM2 model, the effect

of the parameter 2α/π is neglected. In other words, the

model has simulated the scour values in terms of Uo/Uc,

z/ht, and d50/ht. Among all numerical models, the

SAELM2 model has the highest accuracy in simulating

scouring downstream of the submerged weirs. For this

model, the values of SI and R2 are equal to 0.130 and

0.913, respectively. In addition, the RMSE and MARE indi-

ces were 0.081 and 0.114, respectively. The SAELM3 model

was a function of Uo/Uc, z/ht, and 2α/π. For this model, the

effect of the dimensionless parameter of d50/ht was removed

and the values of R2, RMSE, and VAF were calculated as

0.861, 0.081, and 91.286. For the SAELM3 model, the SI
om http://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
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and MARE indices were equal to 0.164 and 0.132. The

effect of parameter z/ht was also ignored for the SAELM4

model. This means that the model was a function of Uo/Uc,

d50/ht, and 2α/π. For the SAELM4 model, the R2 was esti-

mated equal to 0.519. For this model, the statistical indices

of RMSE and VAF were also calculated to be 0.189 and

51.907, respectively. Additionally, the SAELM5 model esti-

mates the values of the objective function in terms of z/ht,

d50/ht, and 2α/π. In other words, the effect of Uo/Uc has

been eliminated for the simulation of scouring downstream

of the submerged weirs. According to the results of modeling

of the values of the objective function by artificial intelli-

gence models, the SAELM5 model had the highest error

value. For example, the values of VAF, MARE, and SI for

this model were 30.487, 0.359, and 0.367, respectively.
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Additionally, the SAELM2 model was introduced as the

superior model for estimation of ds-max/ht. For this model,

the values of R2, VAF and SI were calculated equal to

0.901, 90.115, and 0.115, respectively. Also, for simulation

of dus-a/ht and dus-max/ht, the SAELM1 model was identified

as the superior model. The MAE was calculated for model-

ing of dus-a/ht and dus-max/ht by the SAELM1 model,

respectively equal to 0.040 and 0.083.

It should be noted that for all objective functions includ-

ing ds-a/ht, ds-max/ht, dus-a/ht and dus-max/ht, with removing

the parameter Uo/Uc, the accuracy of the modeling was sig-

nificantly decreased. Therefore, the ratio of Uo/Uc was

identified as the most effective input parameter.

The comparison of observed and simulated values of

scouring along with the scatter diagram for the superior

SAELM models are shown in Figure 6.

Comparison of superior models with ANN and SVM

In the following, the results of the superior models for esti-

mation of ds-a/ht, ds-max/ht, dus-a/ht and dus-max/ht are

compared with the results of ANN and SVM models

(Figure 7). Based on the results of modeling, for modeling

all objective functions, SAELM models were identified as

superior models. For example, the values of R2 and SI

were calculated for modeling the parameter of ds-a/ht by

ANN model as 0.863 and 0.163, respectively. In addition,

the values of MARE and RMSE for estimation of ds-a/ht by

SVM model were respectively 0.114 and 0.089. In contrast,

for estimation of ds-max/ht by the ANN and SVMmodels, the

value of VAF was calculated as 83.006 and 83.890, respect-

ively. However, the R2 index for modeling dus-a/ht using

ANN and SVM models was calculated to be 0.861 and

0.898, respectively. For modeling of dus-max/ht by ANN

model, the SI and MARE indices were respectively 0.246

and 0.341. Additionally, for modelling dus-max/ht by the

SVM model, the values of VAF, MAE, and RMSE were esti-

mated to be 84.523, 0.113, and 0.141, respectively.

Uncertainty analysis

In this section, the uncertainty analysis of superior models is

implemented. The uncertainty analysis is used to estimate

the predicted error by numerical models in which the
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
predicted error by the numerical model (ej) is calculated

as the difference between the predicted (Pj) and observed

(Tj) values (ej¼ Pj–Tj). In addition, the average value of the

predicted error is also obtained as:

�e ¼
Xn

j¼1
ej (36)

Additionally, the standard deviation of the predicted

error is defined as:

Se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
(ej � �e)2=n� 1

r
(37)

The negative values of e represent the underestimated

function of the numerical model. In contrast, positive

values reveal the overestimated function of the numerical

model. It should be noted that using the parameters e and

Se a confidence band is produced around the predicted

errors by the Wilson score method without continuity cor-

rection. In the following, using ±1.64Se may lead to a

confidence band of 95%. Based on the results of uncertainty

analysis, the SAELM2 model, which was used to estimate

the parameters ds-a and ds-max, had an overestimated func-

tion. On the other hand, the SAELM1 model, which was

used for the prediction of dus-a and dus-max was underesti-

mated. Also, the width of the uncertainty band used to

estimate the parameters of ds-a and ds-max by the SAELM2

model was �0.014 and �0.015, respectively. Additionally,

the 95% prediction error interval of the SAELM2 model

for simulations of dus-max was between �0.024 and 0.013.

Table 2 shows the results of uncertainty analysis for the

superior SAELM models.

According to the results of numerical models, the

SAELM2, SAELM2, SAELM2 and SAELM2 models

respectively estimated the values of ds-a, ds-max, dus-a, and

dus-max with higher accuracy than the other models. There-

fore, an equation is developed for each model.

The development of SAELM-based equations for local

scouring around the submerged weirs is as follows:

dS

ht
¼ 1

(1þ exp (InW × InV þ BHN))

� 	T
×OutW (38)



Figure 6 | Comparison of observed and simulated values of scouring and scatter diagram for the superior SAELM models.
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Figure 7 | Comparison of the results of superior models of ANN and SVM.

Table 2 | The results of uncertainty analysis for superior SAELM models

Target
parameter Models

Number of
samples

Mean prediction
error

Standard
Division Se

Width of uncertainty
band

95% prediction error
interval

ds�a SAELM 2 139 1.271E-09 0.081 0.007 �0.014 �0.014 and 0.014

ds�max SAELM 2 139 1.050E-09 0.089 0.008 �0.015 �0.015 and 0.015

dus�a SAELM 1 139 �0.004 0.052 0.004 �0.009 �0.013 and 0.005

dus�max SAELM 1 139 �0.005 0.109 0.009 �0.019 �0.024 and 0.013
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where, InW is the matrix of input weights, InV is the matrix

of the input variables, BHN is the matrix of bias hidden
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
neurons, and OutW is the matrix of output weights. The

optimal values of these matrices are as follows.
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For estimation of ds-a using the SAELM2 model:

InV ¼
U0=Uc

z=ht

d50=ht

2
4

3
5 BHN ¼

0:429
0:416
0:088
0:308
0:769
0:657
0:673
0:699
0:133
0:991
0:648
0:018
0:196
0:812
0:081
0:447
0:118
0:882
0:746
0:336

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

InW ¼

�0:755 0:7
�0:755 �0
0:484 �0
�0:916 �0
0:187 0:4
0:785 �0
0:358 0:8
0:027 �0
0:424 �0
�0:734 �0
�0:510 �0
�0:233 �0
�0:760 �0
0:171 0:0
0:839 0:6
0:365 �0
0:758 0:5
0:769 0:9
�0:626 �0
0:191 �0

2
666666666666666666666666666666666664

For estimation of ds-max using the SAELM2 model:

InV ¼
U0=Uc

z=ht

d50=ht

2
4

3
5 BHN ¼

0:100
�0:688
�0:104
�0:855
�0:664
0:709
0:247
�0:959
�0:633
�0:200
�0:744
�0:369
�0:242
�0:231
0:532
�0:263
�0:963
0:934
�0:524
�0:560

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

InW ¼

0:687 �
�0:757 �
�0:178 0
�0:167 0
�0:819 �
0:658 �
0:399 �
�0:057 0
�0:235 �
0:663 0
0:322 �
0:125 0
�0:909 0
�0:429 �
�0:033 �
0:390 0
�0:510 �
0:274 0
0:847 �
0:644 0

2
666666666666666666666666666666666664
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�0:906
4 �0:136
2 �0:443
0 0:233

�0:267
3 0:372

�0:415
2 0:813
2 �0:546
9 0:822
2 0:270
5 0:773
3 0:075

0:505
0:266

3 �0:660
�0:364
0:439

1 0:314
1 0:797

3
777777777777777777777777777777777775

OutW ¼

�5182:117
41461:834
�25410:525
�9397:317
132049:116
2101:598
�70098:007
8945:292
37064:258
�1796:013
�20649:296
45128:990
�77697:496
�49552:988
�31058:601
6096:474
�34604:612
27892:949
9202:837
�432:649

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

(39)

32 �0:228
03 0:389
8 �0:656
4 0:344
83 0:174
12 �0:033
88 0:223
9 0:139
07 0:770
3 �0:802
89 �0:160
0 0:266
2 0:382
89 �0:018
79 0:377
46 �0:982
37 0:999
3 0:999
49 0:355
8 0:139

3
777777777777777777777777777777777775

OutW ¼

3077:385
�140328:103
6517:276
�145387:976
64905:481
37818:822
�3174:665
227343:025
�9995:323
�18301:876
53705:396
12972:207
13117:018
�57252:748
115142:823
�30088:598
135487:140
�161550:463
�1039:080
14655:244

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

(40)
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For estimation of dus-a using the SAELM1 model:

InV ¼
U0=Uc

z=ht

d50=ht

2α=π

2
6664

3
7775 BHN ¼

�0:052
�0:931
0:424
0:855
0:286
�0:694
�0:276
0:548
0:303
0:609
�0:237
0:723
�0:181
0:646
�0:368
0:705
0:431

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

InW ¼

0:369 0:626 �0:276 0:927
�0:275 �0:707 �0:194 �0:709
�0:571 �0:826 0:261 �0:461
�0:887 �0:643 �0:341 �0:029
�0:775 0:262 0:566 �0:347
0:861 �0:088 �0:472 0:209
�0:168 0:356 �0:702 �0:145
�0:178 0:807 �0:830 �0:306
�0:976 �0:886 �0:507 �0:560
0:707 �0:053 �0:546 0:086
0:938 �0:157 0:876 �0:670
�0:808 �0:628 �0:812 0:538
0:626 0:598 �0:0715 �0:025
�0:533 0:044 0:006 �0:664
�0:595 0:989 �0:274 �0:337
0:764 �0:180 0:763 0:182
�0:121 �0:194 0:193 0:124

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

OutW ¼

239:348
447:778
�354:972
�197:708
116:239
�27:718
�1759:703
716:108
51:371
1089:362
�13:691
�27:427
�688:459
252:449
71:504
�652:324
347:021

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

(41)

For estimation of dus-max using the SAELM1 model:

InV ¼
U0=Uc

z=ht

d50=ht

2α=π

2
6664

3
7775 BHN ¼

�0:260

�0:488

0:325

�0:825

�0:371

�0:999

�0:714

0:733

�0:986

�0:798

0:034

0:092

�0:731

�0:077

0:638

0:271

�0:231

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

InW ¼

�0:299 �0:671 0:991 0:391

0:005 �0:371 �0:233 0:676

0:901 �0:869 �0:646 �0:031

�0:945 0:277 0:986 �0:030

0:048 0:173 �0:513 �0:940

0:454 �0:318 0:212 �0:247

0:581 0:445 0:583 0:090

�0:360 �0:371 0:451 0:216

0:432 �0:021 �0:385 �0:207

�0:034 �0:670 0:031 �0:765

�0:442 �0:019 �0:856 0:030

0:606 �0:077 0:224 0:296

0:315 0:222 0:921 �0:878

�0:315 0:219 0:730 0:413

�0:791 �0:336 �0:747 0:663

�0:619 �0:751 0:770 0:985

�0:610 �0:966 �0:326 0:064

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

OutW ¼

�641:892

287:941

233:214

�90:424

445:982

2409:836

533:799

�625:087

�3043:478

�620:429

844:119

�289:120

�34:748

153:656

�101:050

152:261

305:846

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

(42)
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Figure 8 | Sensitivity analysis flowchart used in this study.
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Partial derivative sensitivity analysis (PDSA)

In the following, partial derivative sensitivity analysis

(PDSA) is considered for superior models and calibration

of input parameters. In other words, the partial derivative

sensitivity analysis (PDSA) is one of the most important

methods for identifying the pattern of changes in input par-

ameters (Azimi et al. b). In general, the positive values of

PDSA indicate the increase of the objective function; in con-

trast, the negative values mean a decrease in the output

value. The sensitivity analysis flowchart used in this study

is depicted in Figure 8. As shown in this figure, the relative

derivative of f(x) is used for each input variable. It should
Figure 9 | The results of PDSA for simulation of ds-a by the SAELM2 model.

om http://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
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be noted that each input variable is a matrix k × l, in

which k is the number of samples.

The results of partial derivative sensitivity analysis for

the input parameters of the SAELM2 and SAELM1 superior

models that simulate the values of ds-a, ds-max, dus-a, and

dus-max are shown in Figures 9–12. For example, for ds-a
and ds-max, by increasing the ratio of Uo/Uc, the value of

PDSA increases. In contrast, for the parameters dus-a and

dus-max, the sensitivity analysis decreased when increasing

the ratio of Uo/Uc. In addition, in the simulation of the

parameter dus-max by the SAELM1 model, the sensitivity

analysis decreased with increasing z/ht.
CONCLUSION

In this paper, the scour depth upstreamand downstreamof sub-

merged weirs was simulated by the self-adaptive extreme

learning machine (SAELM) model for the first time. In

addition, for validation of SAELM model results, k-fold cross

validation method was used, the value of k in this study was

assumed to be 4. Using non-dimensional input parameters,

five different SAELM models (SAELM 1 to SAELM 5) were

defined. Also, the sigmoid activation function was introduced

as the optimal activation function. The determination coeffi-

cient (R2) and the scatter index (SI) for the activation

functionwere calculated equal to 0.944 and 0.147, respectively.

Then, by analyzing the results of modeling, SAELM 1 and

SAELM 2 models were introduced for estimation of scour

depth upstream and downstream of the submerged weirs. The

models had a reasonable performance for simulating the



Figure 10 | The results of PDSA for simulation of ds-max by the SAELM2 model.

Figure 11 | The results of PDSA for simulation of dus-a by the SAELM1 model.
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scour depth, for instance, the RMSE and MARE for the best

model were respectively estimated as 0.052 and 0.040, respect-

ively. In addition, the dimensionless parameter of Uo/Uc was

detected as the most effective input parameter. Also, it was

shown that the SAELM model had better performance than

classical artificial intelligence techniques. Finally, some

equations were presented for calculating the scour depth
://iwa.silverchair.com/jh/article-pdf/21/6/1082/623348/jh0211082.pdf
around the submerged weirs and partial derivative sensitivity

analysis (PDSA) was performed for all input parameters of

these equations. All in all, SAELM was identified as a reliable

method to simulate scour depth in the vicinity of submerged

weirs. The model had acceptable accuracy and presented

matrices can be utilized by engineers and scholars without

knowledge of soft computing.



Figure 12 | The results of PDSA for simulation of dus-max by SAELM1 model.
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