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Evaluation of the effective parameters on energy losses

of rectangular and circular culverts via kernel-based

approaches

Kiyoumars Roushangar, Ghazaleh Nasssaji Matin, Roghayeh Ghasempour

and Seyed Mahdi Saghebian
ABSTRACT
Energy dissipation in culverts is a complex phenomenon due to the nonlinearity and uncertainties of

the process. In the current study, the capability of Gaussian process regression (GPR) and support

vector machine (SVM) as kernel-based approaches and the gene expression programming (GEP)

method was assessed in predicting energy losses in culverts. Two types of bend loss in rectangular

culverts and entrance loss in circular culverts with different inlet end treatments were considered.

Various input combinations were developed and tested using experimental data. The OAT (one-at-a-

time), factorial sensitivity analysis and Monte Carlo uncertainty analysis were used to select the

effective parameters in modeling. The results of performance criteria proved the capability of the

applied methods (i.e. high correlation coefficient (R) and determination coefficient (DC) and low root

mean square error (RSME)). For rectangular culverts, the model with parameters Fr (Froude number)

and θ (bend angle), and for circular culverts, the model with parameters Fr and Hw/D (depth ratio),

were the superior models. It showed that using the bend downstream Froude number caused an

increment in model efficiency. Among the four end inlet treatments, mitered flush to 1.5:1 fill slope

inlet yielded more accurate prediction. The sensitivity and uncertainty analysis showed that θ and

Hw/D had the most significant impact on modeling, and Fr had the highest uncertainty.
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INTRODUCTION
A culvert is a hydraulically short segment of conduit which

conveys stream flow through a roadway embankment or

past some other type of flow obstruction. Numerous cross-

sectional shapes are available. The most commonly used

shapes include circular, box (rectangular), elliptical, pipe-

arch, and arch. Prediction of the accurate amount of local

loss in the culvert systems is important due to its impact

on saving costs and time of construction processes and

determination of the size, shape, and diameter of the cul-

verts. In a culvert system, with decreasing energy loss, its

effect on the upstream flow profile decreases. The energy

loss is divided into two categories: major loss and minor
(or local) loss, which in the culvert systems due to its

short length, major energy loss is negligible compared with

minor loss. In fact, major loss is caused due to the friction

between the flow and pipe walls and since culverts are

usually used in short lengths in practice, therefore, the fric-

tional or longitudinal loss is negligible in comparison with

minor loss. So far, various studies have been conducted to

explain the complex phenomenon of energy losses in culvert

systems with different geometries. Tullis () investigated

the minor loss in buried-invert culverts and determined the

optimum section from the point of view of the least loss.

Malone & Parr () investigated bend loss in rectangular
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culverts and proposed some graphs for calculating this par-

ameter. Tullis et al. () studied the inlet losses in elliptical

culverts and offered a precise method for calculating the

outlet loss of the culvert and to identify the best section

with minimum loss. Anderson () studied the worn-out

culverts and embedding new culverts inside them and deter-

mined the local loss empirically. Kotowski et al. ()

studied the inlet and outlet loss coefficient in the conduits

and concluded that inlet loss coefficient in the pipes was

not constant. However, due to the complexity and uncer-

tainty of the local losses phenomenon, the results of the

classical models are not general and under variable con-

ditions do not present the same results. Therefore, it is

essential to use other methods with more accuracy in pre-

dicting energy loss in culverts with different shapes under

varied hydraulic conditions.

In recent years, the application of nonlinear machine

learning (ML) (e.g. artificial neural networks (ANNs), neuro-

fuzzy models (NF), genetic programming (GP), gene

expression programming (GEP), support vector machine

(SVM), and Gaussian process regression (GPR)) in water

resources engineering has become viable leading to numerous

publications in this field. A complete review of all the appli-

cations is beyond the scope of this paper and only some

studies are mentioned here, such as assessing tree-based

methods concepts, uses and limitations (Carvalho et al.

), modeling historical land use changes using ANN

(Tayyebi et al. ), prediction of groundwater levels using

data-driven models (Huang et al. ; Amaranto et al. ),

estimation of hydraulic jump energy dissipation in channels

with rough elements using SVM (Roushangar &Ghasempour

), prediction of pile scour using ANN and kernel methods

(Ghazanfari-Hashemi et al. ; Pal et al. ), computing

longitudinal dispersion coefficients in natural streams using

SVM (Azamathulla &Wu ), real time hydrologic forecast-

ing using EC-SVM (Yu et al. ), quantify runoff

contributions from different land uses in tropical urban

environments using GP (Meshgi et al. ), side weir dis-

charge coefficient using SVM (Azamathulla et al. ), and

forecasting monthly and seasonal streamflow using mixture-

kernel GPR approach (Zhu et al. ).

In artificial intelligence models we are looking for a

learning machine capable of finding an accurate approxi-

mation of a natural phenomenon, as well as expressing it
://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
in the form of an interpretable equation. However, this

bias towards interpretability creates several new issues.

The computer-generated hypotheses should take advantage

of the already existing body of knowledge about the

domain in question. However, the method by which we

express our knowledge and make it available to a learning

machine remains rather unclear (Babovic ). Machine

learning, a branch of artificial intelligence, deals with the

representation and generalization using a data learning tech-

nique. Representation of data instances and functions

evaluated on these instances are part of all machine learning

systems. Generalization is the property that the system will

perform well on unseen data instances; the conditions

under which this can be guaranteed are a key object of

study in the subfield of computational learning theory.

There is a wide variety of machine learning tasks and suc-

cessful applications (Mitchell ). In general, the task of

a machine learning algorithm can be described as follows:

Given a set of input variables and the associated output vari-

able(s), the objective is learning a functional relationship for

the input–output variables set. It should be noted that artifi-

cial intelligence models typically do not really represent the

physics of a modeled process; they are just devices used to

capture relationships between the relevant input and

output variables. However, when the interrelationships

among the relevant variables are poorly understood, finding

the size and shape of the ultimate solution is difficult, and

conventional mathematical analysis methods do not (or

cannot) provide analytical solutions; these methods can pre-

dict the interest variable with more accuracy.

Due to the complexity and uncertainties of the energy

losses process, the existing regression models do not show

desired accuracy and their output is often associated with

large errors. Therefore, the present research proposed

kernel based models to predict the energy losses coefficient

and also to investigate the best input models and determine

the effective parameters of different shaped culverts. To the

best of the authors’ knowledge there is a lack of research on

the comprehensive study of predicting local losses in cul-

verts using artificial intelligence. In all previous studies the

local loss coefficient in the culvert was measured and

recorded experimentally at various velocities, but the

relationship between this coefficient and the Froude and

Reynolds numbers, and the geometric parameters, and the
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dependency rate of this coefficient on these parameters, was

not investigated. Therefore, this study aimed to assess the

capability of GPR and SVM as kernel-based approaches

for modeling the losses of culverts with different geometries.

Also, the GEP method was used to develop new equations

for predicting the local loss coefficient in different shaped

culverts. In order to determine the most effective combi-

nation for modeling the losses of culverts, different input

combinations were considered under two scenarios (losses

due to the culvert bend and culvert entrance) and the

impact of hydraulic characteristics and culvert shapes

was assessed. In addition, the most important parameters

in predicting the energy losses were determined using one-

at-a-time (OAT) and factorial sensitivity analysis and

Monte Carlo uncertainty sensitivity.
MATERIALS AND METHODS

The data sets

The data sets of laboratory experiments of local losses of cul-

verts performed by Malone & Parr () and Tullis ()

were used in the present study. Malone & Parr ()

studied bend losses in rectangular culverts. Laboratory

experiments were performed in rectangular channels with

abrupt bends. Bend angles of approximately 30, 45, 60, 75

and 90� were tested. Tullis () conducted experiments

on circular culverts in order to determine the entrance

loss coefficient and the inlet control head discharge relation-

ships for circular culverts with invert burial depths of 20, 40,

and 50%. All buried-invert culverts were tested with four
Table 1 | Detail of various parameters from laboratory experiments used in this study

Bend loss Entrance

Circular c

Rectangular culvert (Malone &
Parr 2008)

Thin-wall
projectin

Parameters Ke 0.157–1.078 0.157–1
θ (radian) 0.523–1.578 –

Fr 0.181–0.86 0.0124–
Re 42,138–140,590 14,408–

No. of data 190 66
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different end treatments: (1) thin-wall projecting, (2) mitered

flush to 1.5:1.0 (horizontal to vertical) fill slope, (3) square-

edged inlet with vertical headwall, and (4) 45� beveled

entrance with vertical headwall. The ranges of some

parameters used in the tests are given in Table 1 in which

Ke, θ and Fr, and Re represent the entrance loss coefficient,

culvert bend angle, Froude number, and Reynolds number

respectively.
Kernel-based approaches

Kernel based approaches, such as GPR and SVM, are a rela-

tively new important method based on the different kernel

types which are based on initiation of statistical learning

theory. Such models are capable of adapting themselves to

predict any variable of interest via sufficient inputs. These

methods can model non-linear decision boundaries, and

there are many kernels to choose from. They are also fairly

robust against overfitting, especially in high-dimensional

space. However, the appropriate selection of kernel type is

the most important step in the GPR and SVM due to its

direct impact on the training and classification precision. In

fact, these methods are memory intensive, trickier to tune

due to the importance of picking the right kernel, and do

not scale well to larger data sets. In these models we will be

able to predict the proper behavior of the system, although

we will not be able to characterize its intrinsic structure and

behavior. In other words, we will be able to say what the

model does, but not how. In addition to this, we will not be

able to guarantee the behavior of such a model in regions

not covered by the data from which the model was
loss

ulvert (Tullis 2012)

g
Mitered to flush
1.5 h:1 v fill slope

Square edge inlet
with vertical
headwalls

45� beveled inlet
with vertical
headwalls

.03 0.42–0.93 0.3–0.6 0.22–0.38
– – –

1.058 0.01–0.81 0.43–0.97 0.049–1.05
30,711 18,743–268,0463 9,616–305,469 79,175–292,240

65 45 48
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constructed. This is due to the fact that the model covers only

the relationships found within the given data (Babovic ).
Gaussian process regression

GPR models are based on the assumption that adjacent

observations should convey information about each other.

Gaussian processes are a way of specifying a priori directly

over function space. This is a natural generalization of the

Gaussian distribution, whose mean and covariance are a

vector and matrix, respectively. The Gaussian distribution

is over vectors, whereas the Gaussian process is over func-

tions. Thus, due to prior knowledge about the data and

functional dependencies, no validation process is required

for generalization and GP regression models are able to

understand the predictive distribution corresponding to the

test input (Rasmussen & Williams ). A GP is defined

as a collection of random variables, any finite number of

which has a joint multivariate Gaussian distribution. Let

χ × γ represent the domains of inputs and outputs, respect-

ively, from which n pairs (xi, yi) are drawn independently

and identically distributed. For regression, assume that

y ⊆ ℜ; then, a GP on χ is defined by a mean function

μ : χ ! ℜ and a covariance function k: χ × χ ! ℜ.

The main assumption of GP regression is that y is given

by y ¼ f(x) þ ξ, where ξ ∼ N(0, σ2). In GP regression, for

every input x there is an associated random variable f(x),

which is the value of the stochastic function f at that

location. In this work, it is assumed that the observational

error ξ is normally independent and identically distributed,

with a mean value of zero (μ(x) ¼ 0), a variance of σ2 and

f(x) drawn from the Gaussian process on χ specified by k.

That is, Y ¼ (y1, . . . . . . :, yn) ∼ N(0, K þ σ2 I) where

Kij ¼ k (xi, xj), and I is the identity matrix. Because

Y=X ∼ N(0, K þ σ2 I) is normal, so is the conditional distri-

bution of test labels given the training and test data of

p(Y�=Y , X, X�). Then, one has Y�=Y , X, X� ∼ N(μ, Σ),

where:

μ ¼ K(X�, X)(K(X, X) þ σ2 I)�1 Y (1)

Σ ¼ K(X�, X�)� σ2I � K(X�, X)(K(X, X)þ σ2 I))�1 K(X, X�)
(2)
://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
If there are n training data and n�test data, then

K(X, X�) represents the n × n� matrix of covariances eval-

uated at all pairs of training and test data sets, and this is

similarly true for the other values of K(X, X), K(X�, X)

and K(X�, X�); here X and Y are the vectors of the training

data and training data labels yi, whereas X� is the vector of

the test data. A specified covariance function is required to

generate a positive semi-definite covariance matrix K,

where Kij ¼ k(xi, xj). The term of the kernel function used

in SVM is equivalent to the covariance function used in

GP regression. With the known values of kernel k and

degree of noise σ2, Equations (1) and (2) would be enough

for inference. During the training process of GP regression

models, one needs to choose a suitable covariance function

as well as its parameters. In the case of GP regression with a

fixed value of Gaussian noise, a GP model can be trained by

applying Bayesian inference, i.e. maximizing the marginal

likelihood. This leads to the minimization of the negative

log-posterior:

p(σ2, k) ¼ 1
2
yT (K þ σ2 I) �1 yþ 1

2
log jK þ σ2 Ij

� log p(σ2)� log p(k) (3)

To find the hyperparameters, the partial derivative of

Equation (3) can be obtained with respect to σ2 and k,

and minimization can be achieved by gradient descent.

For more details about GP regression and different covari-

ance functions, readers are referred to Kuss (). The

optimal value of capacity constant (C) and the size of

error-intensive zone (ε) in SVM and Gaussian noise in

GPR are required due to their high impact on the accuracy

of the mentioned regression approaches. The optimum

values of these parameters were obtained after the trial-

and-error process.
Support vector machine

Support vector machines as an intelligence approach are

used in information categorization and data set classifi-

cation. This approach, developed by Vapnik (), is

known as structural risk minimization (SRM), which mini-

mizes an upper bound on the expected risk, as opposed to
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the traditional empirical risk (ERM) which minimizes the

error on the training data. The SVM method is based on

the concept of the optimal hyper plane that separates

samples of two classes by considering the widest gap

between two classes. SVR is an extension of SVM

regression. The purpose of the SVR is to find a function

having the most deviation from the actual target vectors

for all given training data and to have it be as flat as possible

(Smola ). Vapnik () introduced the concept of

kernel function for non-linear support vector regression.

The most important step in the SVM is the appropriate

selection of kernel type. In general, there are several types

of kernel functions, namely linear, polynomial, radial basis

function (RBF) and sigmoid functions. Due to the black-

box nature of SVM and GPR models, the learned relation-

ship between the inputs and output is not revealed. This

requires cautious usage of the new model, such as GEP,

and it should not be used beyond the ranges of the data

for which it was trained.

Gene expression programming

Gene expression programming was developed by Ferreria

() using fundamental principles of genetic algorithms

(GA) and genetic programming (GP). One strength of the

GEP approach is that the creation of genetic diversity is

extremely simplified as genetic operators work at the

chromosome level. Another strength of GEP consists of its

unique, multigenic nature, which allows the evolution of

more complex programs composed of several subprograms.

GEP as GA mimics the biological evolution to create a com-

puter program for simulating a specified phenomenon. A

GEP algorithm begins by selecting five elements such as

the function set, terminal set, fitness function, control par-

ameters, and stopping condition. There is a comparison

between predicted values and actual values in each sub-

sequent step. When desired results in accordance with

previously selected error criteria are found, the GEP process

is terminated. If the desired error criteria could not be found,

some chromosomes are chosen by a method called roulette

wheel sampling and they are mutated to obtain new chromo-

somes. After the desired fitness score is found, this process

terminates and then the chromosomes are decoded for the

best solution of the problem. The advantages of a system
om http://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
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like GEP are clear from nature, but the most important

are (Ferreria ): (1) the chromosomes are simple entities:

linear, compact, relatively small, easy to manipulate geneti-

cally (replicate, mutate, recombine, etc.); (2) the expression

trees are exclusively the expression of their respective

chromosomes; they are entities upon which selection acts,

and according to fitness, they are selected to reproduce

with modification.
Performance criteria

In the current study, the model’s performance was evaluated

using three statistical parameters: correlation coefficient (R),

determination coefficient (DC), and root mean square errors

(RSME). It should be noted that the RMSE criteria has the

same unit of the target parameter (Ke). However, science

Ke is a non-dimensional parameter, therefore, RMSE is

also a dimensional value. Expressions for performance

criteria are as follows:

DC ¼ 1�
PN

i¼1 (lo � lp)
2PN

i¼1 (lo � lp)
2 , R ¼

PN
i¼1 (lo � lo) × (lp � lp)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (lo � lo)

2
× (lp � lp)

2
q ,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

(lo � lp)
2

N

s
(4)

where lo, lp, lo, lp, N are, respectively: the measured values,

predicted values, mean measured values, mean predicted

values and number of data samples.
Simulation and models development

Input variables

The crucial step during the modeling process via an intelli-

gent method is an appropriate selection of model input

parameters. In this study, the local energy loss in culvert sys-

tems is expressed through a set of dimensionless variables.

Based on Malone & Parr () and Tullis (), the most

important parameters in the energy loss (Ke) prediction in

culverts with different shapes are as follows:

V , D, g, μ, θ, ρ, Hw
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where V1 is upstream flow velocity, µ is dynamic viscosity of

water, g is acceleration due to gravity, ρ is density of water,D

is culvert diameter, Hw is flow depth. Also, θ is a geometric

parameter and indicates the bend angle along the culvert.

From the dimensional analysis the above parameters can

be expressed as follows:

Fr, θ, Re,
Hw
D

where Fr¼V/(g ×Hw)0.5 is the Froude number. The Froude

number is a dimensionless value that describes different

flow regimes of open channel flow. The Froude number is

a ratio of inertial and gravitational forces. As flow passes

through critical conditions its Froude number has a value
Figure 1 | Schematic view of different states considered in the study.

://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
of 1. For subcritical flow the depth is greater and the velocity

lower, therefore the Froude number is always less than 1; for

supercritical flow the opposite is true and the Froude

number is always greater than 1. Calculation of the Froude

number thus provides an immediate check on the type of

flow and how near the flow conditions are to those at critical

depth. Re¼VR/ν is Reynolds number (R: hydraulic radius,

ν: kinematic viscosity). The Reynolds number is the ratio

of inertial forces to viscous forces and is a convenient par-

ameter for predicting if a flow condition will be laminar or

turbulent. In this study, for developing the local loss

models in rectangular and circular culverts, two scenarios

with different input variables were considered (Figure 1).

In the first scenario, the impact of culvert bend was evalu-

ated and in the second scenario, the entrance energy loss
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was investigated. Figure 1 illustrates the flowchart of con-

sidered scenarios. Developed models of GPR and SVM for

predicting local losses are given in Table 2. In assessing

the local loss in culvert bend, Froude numbers of three

points (downstream and upstream of bend and at the

bend) were used. It should be noted that for all models
Table 2 | GPR, SVM, and GEP developed models

Bend energy loss Entrance loss

Model Input variables Model Input variables

B(I) Fr downstream E(I) Re

B(II) Fr downstream, θ E(II) Re, Hw/D

B(III) Fr average E(III) Fr

B(IV) Fr average, θ E(IV) Fr, Hw/D

B (V) Fr upstream

B(VI) Fr upstream, θ

Figure 2 | Statistics parameters via SVM and GPR kernels function types for a testing set of m

om http://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
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75% of the data set was used for training goals and the

remaining 25% of data were used for testing goals.
SVM, GPR, and GEP models development

The design of GP and SVM-based regression approaches

involve the use of the concept of the kernel function. A

number of kernels are discussed in the literature, but

studies suggest a better performance by radial basis ker-

nels for different civil engineering problems (Gill et al.

). In this study, for determining the best performance

of SVM and GPR and selecting the best kernel function,

the model B(II) from Scenario 1 in a rectangular culvert

was predicted via SVM and GPR using various kernels.

Figure 2 indicates the results of the statistical parameters

of different kernels for this model. According to the

results, using the kernel function of RBF in the SVM

model led to better prediction accuracy in comparison
odel B(II) of rectangular culvert.
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to the other kernels and for the GPR model using the

kernel function of Pearson led to better prediction accu-

racy. Therefore, RBF and Pearson kernels were used as

a core tool of SVM and GPR which were applied for

the rest of the models.

GEP was trained for energy losses prediction in rec-

tangular and circular culverts. Basic arithmetic operators

of (þ, –, *, /) and several mathematical functions (exp, X2,

X3, √) were utilized as the GEP function set. The architec-

ture of the chromosomes, including number of

chromosomes (25-30-35), head size (7-8) and number

of genes (3–4), were selected and different combinations of

the mentioned parameters were tested. The model was

run for a number of generations and was stopped when

there was no significant change in the fitness function

value and coefficient of correlation. It is observed that

the model with the number of chromosomes of 30, head

size of 7, and number of genes of 3 yielded better results.

Also, addition and multiplication were tested as

linking functions and it was found that linking the

sub-ETs by addition represented better fitness values. One

of the important steps in preparing the GEP model is to

choose the set of genetic operators. In the current study, a

combination of all genetic operators (recombination,

mutation, transposition, and crossover) was used for this

aim. Parameters of the optimized GEP model are shown

in Table 3.
Table 3 | Optimized parameters of GEP models used in this study

Description of
parameter

Setting of
parameter

Description of
parameter

Setting of
parameter

Function set þ, –, ×,
/, X2,
X3, √

Fitness function
error type

Root mean
square error

Chromosomes 30 Mutation rate 0.044

Head size 7 Inversion, IS and
RIS transposition
rate

0.1

Number of
genes

3 One- and two-point
recombination rate

0.3

Linking
function

Addition Gene recombination
and transposition
rate

0.1

://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
RESULTS AND DISCUSSION

Developed models for rectangular culvert with bend

(Scenario 1)

For evaluating the impact of culvert bend on energy loss in

culvert systems, several models were developed based on

flow characteristic (in the term of Froude number at three

points of the culvert) and bend angle. All of the SVM,

GPR, and GEP models were trained and tested to carry

out the local loss prediction in culverts. The obtained results

are listed in Table 4 and shown in Figure 3. From the RMSE,

R, and DC viewpoints (i.e. highest R and DC and lowest

RMSE), it can be seen that the models with input par-

ameters of Fr and θ show better performance than the

models which only use Fr as an input variable. According

to the results, among the six developed models, the model

B(II) led to more accurate results. It could be inferred that

adding the geometric θ parameter to the input combination

caused an increment in models efficiency and this par-

ameter had a significant impact on local loss prediction

process. Also, the Froude number of the bend downstream

led to more accurate outcomes. However, considering the

results of the model B(VI), using the upstream Froude

number did not lead to undesirable results. This issue con-

firms that the local loss can be estimated using upstream

flow parameters when there is no information about hydrau-

lic conditions of bend downstream. According to the results,

it can be seen that the results of the GPR models are slightly

more accurate than the SVM and GEP models. The com-

parison of observed and predicted local loss for the

superior model is shown in Figure 3. The mathematical

expression of GEP for the best model is as follows:

Ke ¼
ffiffiffiffiffi
Fr

p

�4:66θ
þ (Fr4 � θ) ×

Fr
0:996

� �3

þ 0:875θ (5)

Developed models for circular culverts with different

end inlet treatments (Scenario 2)

For Scenario 2, different models were developed based on

flow condition and culvert diameters in order to assess the

entrance loss in circular culverts with different end inlet

treatments. The obtained results of GPR, SVM, and GEP



Table 4 | Statistical parameters of the GPR and SVM models; Scenario 1

Models

Train Test

R DC RMSE R DC RMSE

B(I) SVM 0.601 0.503 0.243 0.564 0.487 0.271
GPR 0.604 0.507 0.241 0.566 0.490 0.268
GEP 0.521 0.402 0.302 0.505 0.334 0.312

B(II) SVM 0.981 0.964 0.053 0.976 0.956 0.058
GPR 0.985 0.971 0.051 0.981 0.961 0.055
GEP 0.973 0.947 0.064 0.972 0.943 0.068

B(III) SVM 0.701 0.612 0.241 0.659 0.537 0.266
GPR 0.705 0.613 0.240 0.661 0.539 0.263
GEP 0.691 0.532 0.260 0.618 0.438 0.298

B(IV) SVM 0.980 0.961 0.056 0.976 0.951 0.062
GPR 0.984 0.965 0.053 0.981 0.955 0.059
GEP 0.972 0.945 0.065 0.971 0.942 0.075

B(V) SVM 0.705 0.529 0.272 0.647 0.424 0.283
GPR 0.709 0.530 0.270 0.650 0.427 0.280
GEP 0.652 0.512 0.298 0.611 0.412 0.302

B(VI) SVM 0.977 0.962 0.055 0.973 0.949 0.064
GPR 0.982 0.964 0.056 0.978 0.953 0.062
GEP 0.965 0.931 0.074 0.962 0.926 0.086
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models are listed in Table 5 and shown in Figure 4. The

superior performance for this state and for all end inlet treat-

ments was obtained for the model E(IV), in which the inputs
Figure 3 | Comparison of observed and predicted local loss for best models of Scenario 1; m

om http://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
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were Fr and Hw/D. According to Table 5, it seems that for

modeling entrance loss in culverts, using relative flow

depth as the input parameter improved the efficiency of

the models. Comparing the models E(I) and E(III) and con-

sidering the RMSE values, the obtained error percentage for

the model E(I) is almost 8–22% more than the model E(II),

therefore, in models with only one input parameter, using

the Fr number led to better prediction than using the Re

number. Among the four end inlet treatments, culverts

with a mitered flush to 1.5:1 (horizontal to vertical) fill

slope yielded a more accurate prediction. The mathematical

expressions of GEP for all cases are as follows.

Thin-wall projecting:

ke ¼1� 0:01
Hw

D

� �3

þ
0:73

Hw

D

� �2
 !3

2:3� Hw

D

� �3 � Fr2

3:4Fr3� ffiffiffiffiffi
Fr

p (6)

Mitered flush to 1.5:1 (horizontal to vertical) fill slope:

ke ¼ �0:55 0:02Fr2 þHw

D

� �
þ

ffiffiffiffiffiffiffi
Hw

D

r
ffiffiffiffiffi
Fr

p
Hw

D
� Fr

þ 5:82

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hw

D

r 3
s

(7)
odel B(II).



Table 5 | Statistical parameters of the GPR, SVM, and GEP models; Scenario 2

Model

Train Test

R DC RMSE R DC RMSE

E(I) SVM 0.705 0.632 0.075 0.634 0.547 0.073
GPR 0.716 0.635 0.073 0.653 0.574 0.071
GEP 0.622 0.62 0.088 0.617 0.592 0.092

E(II) SVM 0.841 0.732 0.059 0.832 0.681 0.068
GPR 0.842 0.733 0.057 0.837 0.684 0.065
GEP 0.831 0.720 0.058 0.790 0.610 0.080

E(III) SVM 0.820 0.692 0.065 0.695 0.612 0.071
GPR 0.822 0.695 0.063 0.716 0.643 0.068
GEP 0.815 0.659 0.068 0.593 0.63 0.073

E(IV) SVM 0.846 0.769 0.055 0.832 0.741 0.058
GPR 0.853 0.770 0.054 0.857 0.748 0.056
GEP 0.851 0.750 0.060 0.830 0.725 0.063

E(I) SVM 0.852 0.747 0.073 0.833 0.741 0.075
GPR 0.856 0.751 0.070 0.837 0.745 0.073
GEP 0.843 0.735 0.08 0.826 0.69 0.09

E(II) SVM 0.980 0.960 0.033 0.975 0.943 0.041
GPR 0.985 0.962 0.030 0.979 0.947 0.039
GEP 0.964 0.924 0.046 0.962 0.88 0.057

E(III) SVM 0.941 0.854 0.056 0.912 0.856 0.059
GPR 0.944 0.857 0.054 0.918 0.859 0.056
GEP 0.911 0.822 0.07 0.908 0.82 0.06

E(IV) SVM 0.979 0.959 0.032 0.978 0.954 0.037
GPR 0.984 0.963 0.029 0.979 0.959 0.035
GEP 0.975 0.950 0.033 0.962 0.92 0.040

E(I) SVM 0.820 0.685 0.041 0.812 0.635 0.052
GPR 0.824 0.688 0.039 0.817 0.636 0.048
GEP 0.816 0.641 0.039 0.790 0.560 0.064

E(II) SVM 0.887 0.791 0.031 0.876 0.671 0.036
GPR 0.891 0.795 0.029 0.883 0.673 0.034
GEP 0.883 0.781 0.032 0.860 0.641 0.038

E(III) SVM 0.834 0.752 0.033 0.817 0.662 0.046
GPR 0.835 0.755 0.031 0.821 0.666 0.043
GEP 0.820 0.661 0.036 0.810 0.592 0.058

E(IV) SVM 0.905 0.817 0.028 0.894 0.742 0.034
GPR 0.911 0.822 0.025 0.896 0.745 0.032
GEP 0.889 0.791 0.030 0.876 0.732 0.034

E(I) SVM 0.732 0.605 0.027 0.699 0.532 0.036
GPR 0.736 0.608 0.026 0.702 0.533 0.034
GEP 0.687 0.504 0.029 0.664 0.470 0.035

E(II) SVM 0.821 0.672 0.021 0.812 0.632 0.024
GPR 0.824 0.677 0.018 0.816 0.633 0.023
GEP 0.753 0.630 0.022 0.680 0.612 0.024

E(III) SVM 0.795 0.671 0.022 0.714 0.602 0.029
GPR 0.799 0.673 0.020 0.718 0.605 0.028
GEP 0.730 0.582 0.024 0.654 0.530 0.032

E(IV) SVM 0.914 0.833 0.013 0.895 0.736 0.015
GPR 0.919 0.837 0.011 0.899 0.739 0.014
GEP 0.802 0.784 0.018 0.730 0.651 0.021

1023 K. Roushangar et al. | Evaluation of the energy losses of culverts via kernel-based approaches Journal of Hydroinformatics | 21.6 | 2019

Downloaded from http://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
by guest
on 09 April 2024
Square-edged inlet with vertical headwall:

Ke ¼ 7:6þ Fr

438:97
9:36D
Hw

þ Hw

D
� 9:36

� �� �

þ Fr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hw

D × Fr
4

r 3 !
þ Fr � 0:16

D × Fr × 0:77�Hw

D

� �
Hw

0
BB@

1
CCA
(8)

45� beveled inlet with vertical headwall:

Ke ¼ Fr

0:21Fr×
Hw

D

� �
þ (Fr�8:14)

þ (0:22�0:011Fr3)þ 1
Fr

� �3

(9)

Sensitivity and uncertainty analysis

Sensitivity analysis was used to evaluate the effect of differ-

ent employed parameters on local loss prediction via GPR.

There are different methods for carrying out sensitivity

analysis, such as local or global, quantitative or qualitative

or one-at-a-time (OAT), etc. One of the most simple and

most common approaches is that of changing OAT, to see

what effect this produces on the output. OAT sensitivity

analysis essentially consists of selecting a base parameter

setting (nominal set) and varying one parameter at a time

while keeping all other parameters fixed (hence it is referred

to as a local method). An important use of OAT is to reveal

the form of the relationship between the varied parameter

and the output, given that all other parameters have their

nominal values (Holvoet et al. ). In this study, for eval-

uating the impact of each parameter, the model was run

with all input parameters and then one of the input par-

ameters was eliminated and the model was re-run. Based

on the results from Figure 5, it could be deduced that in

the bend loss prediction process the variable θ, and in

entrance loss prediction process the variable Hw/D, had

the most significant impact on local loss, respectively.

With eliminating the θ and Hw/D variables the amount of

RMSE error criteria increased to 0.212 and 0.066, respect-

ively. Also, the uncertainty analysis was performed in

order to determine the uncertainty of each parameter.



Figure 4 | Comparison of observed and predicted local loss for best models of Scenario 2 for circular culvert with mitered flush to 1.5:1 (horizontal to vertical) fill slope.

Figure 5 | Relative significance of each of input parameters of the best models.
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Uncertainty is a result-dependent factor that demonstrates

the range of values a modeling result can attain. It also rep-

resents the possibility that the measured value may fall into

the specified range. In this study, the Monte Carlo uncer-

tainty analysis method was used. In this procedure, two

factors are considered to examine the robustness and ana-

lyze the uncertainty of the models. The first one is the

percentage of the studied outputs that are in the range of

95PPU and the second one is the average distance between

the upper (XU) and lower (XL) uncertainty bands (Noori

et al. ). To do that, the considered model is developed

many times (1,000 in the present study), and the empirical

cumulative distribution probability of the models is

obtained. After that, the XL and XU are considered 2.5 and

97.5% probabilities of the cumulative distribution, respect-

ively. The appropriate confidence level is the level in

which two requirements are met: (1) the 95PPU band

brackets most of the observations; and (2) the average dis-

tance between the upper (at the 97.5% level) and the

lower (at the 2.5% level) parts of the 95PPU is small.

Quantifications of the two requirements are problem depen-

dent to an extent. For the second requirement it is essential

that the average distance between the upper and the lower

95PPU be smaller than the standard deviation of the

measured data (Abbaspour et al. ). The above two indi-

ces were used to quantify the strength of calibration,

accounting for the combined parameter, model, and input

uncertainties. To evaluate the average width of the confi-

dence interval band, the band width indicator was

suggested by Abbaspour et al. () as follows:

d� factore ¼ dx
σx

(10)

where σx is the standard deviation of observed data and dx

is the confidence band’s average width. The percentage of

the data within the confidence band of 95% is determined

as follows:

Bracketed by 95PPU ¼ 1
k
Cont(jjXL <Xreg <XU (11)

where 95PPU indicates 95% predicted uncertainty; k is the

number of observed data; l is the current month which

changes from 1 to k and Xreg is the current registered data.
://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
The results are shown in Figure 6. According to Figure 6,

and based on the d-factor and 95PPU values, it can be

seen that the Fr parameter has higher uncertainty compared

with the Hw/D and θ parameters. The Fr parameter higher

uncertainty is due to the high value of d-factor (i.e. 0.48 in

bend loss state and 0.72 in inlet loss stat) and lesser value

of 95PPU (i.e. 58.33 in bend loss state and 68.78 in inlet

loss state).

For investigating the main effects of parameters quanti-

tatively, the factorial analysis (FA) was also performed. FA

is originated from experimental design to explore both the

main and interaction effects of several factors on a response

variable (Tezcan et al. ). It is particularly useful when

there is a curvilinear relationship between design factors

and the response variable. In fact, FA attempts to identify

underlying variables, or factors, that explain the pattern of

correlations within a set of observed variables. It is often

used in data reduction to identify a small number of factors

that explain most of the variance that is observed in a much

larger number of manifest variables. FA can also be used to

generate hypotheses regarding causal mechanisms or to

screen variables for subsequent analysis. The results of FA

are listed in Table 6. According to the results, it could be

seen that the correlation coefficients between K and θ (in

bend loss sate), and between K and Hw/D (in local loss

state) are higher than other parameters. Therefore, the θ

and Hw/D variables are more effective in energy losses

modeling.

Combined data

For evaluating the performance of the GPR method for a

wide range of data, data series of entrance loss were com-

bined. Two states were considered in the data combining

process: pairwise mixing and mixing all data series. Then,

for predicting Ke, the superior model of Scenario 2 (the

model E(IV)) was re-run for the mixed data. The results

of this state are given in Figure 7. It could be seen that pair-

wise mixing of thin-wall projecting and mitered flush to

1.5:1 (horizontal to vertical) fill slope data sets led to

better results in comparison with another pairwise

mixing. However, according to Figure 7, the results

revealed that using the mixed data set decreased the

model accuracy, especially for the state of combining all



Table 6 | The correlation coefficients between the samples of the parameters

State Parameters

Best model of bend loss
in rectangular culvert

Fr θ K
Fr 1 –0.301 –0.485
θ 1 0.947
K 1

Best model of inlet loss in
circular culverts

Fr Hw/D K
Fr 1 –0.719 –0.779
Hw/D 1 0.947
K 1

Figure 6 | Uncertainty analysis for best model of (a): scenario 1 (bend loss), and (b): scenario 2 (inlet loss).
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data series, it could be seen that the error criteria increased

significantly. For all mixed data sets the values of R and

DC decreased and the RMSE values increased. However,

it should be noted that the models based on mixed data

sets are able to cover a wider range of data and in this

case, entrance loss can be studied without regarding the

end inlet treatment shape.
om http://iwa.silverchair.com/jh/article-pdf/21/6/1014/623030/jh0211014.pdf
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CONCLUSIONS

In the current study, the capability of the GPR, SVM, and

GEP approaches were assessed for predicting local loss in

culverts. The culvert experimental data with a different

shape was applied for training and testing the models. In

the model development process, two scenarios were con-

sidered and bend and inlet end treatment losses were

evaluated. According to the results, it was found that in

Scenario 1, which investigated the bend loss in a rectangular

culvert, the model with input parameters of Fr and θ led to

more accurate results. It was observed that using the

Froude number of the bend downstream caused an incre-

ment in model efficiency. Also, the bend upstream Froude

number did not lead to undesirable results, therefore, this

parameter can be used when there is no information about

flow conditions of bend downstream. It showed that the

bend angle had a significant impact on local loss prediction



Figure 7 | The statistical parameters of the E(IV) model for separate and mixed data series.
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process. The superior performance for Scenario 2 and for all

end inlet treatments was obtained for the model E(IV), in

which the inputs were Fr and Hw/D. It was observed that

for modeling entrance loss in culverts, using relative flow

depth as the input parameter improved the efficiency of

the models. For models with only one input variable, using

the Fr number led to better prediction than the Re

number. Among the four end inlet treatments, culverts

with a mitered flush to 1.5:1 (horizontal to vertical) fill

slope yielded more accurate prediction. It was also observed

that the mixed data set led to a less accurate outcome. From

the obtained results of OAT and factorial sensitivity analysis

and Monte Carlo uncertainty analysis, it was found that the

correlation coefficients between K and θ (in bend loss state),

and between K and Hw/D (in local loss state) were higher

than other parameters. Therefore, the variable θ and

Hw/D had the most significant impact on local loss predic-

tion. Also, the Fr parameter had higher uncertainty

compared with Hw/D and θ parameters. The proposed

approaches were found to be able to predict local loss in

different shaped culverts successfully, however, it should

be noted that the used methods are data-driven models

and the SVM, GPR, and GEP-based models are data sensi-

tive, so further studies using data ranges out of this study

and field data should be carried out to find the merits of

the models to estimate local energy loss in real conditions

of flow.
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