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Haar wavelet-based adaptive finite volume shallow water

solver

Dilshad A. Haleem, Georges Kesserwani and Daniel Caviedes-Voullième
ABSTRACT
This paper presents the formulation of an adaptive finite volume (FV) model for the shallow water

equations. A Godunov-type reformulation combining the Haar wavelet is achieved to enable solution-

driven resolution adaptivity (both coarsening and refinement) by depending on the wavelet’s

threshold value. The ability to properly model irregular topographies and wetting/drying is

transferred from the (baseline) FV uniform mesh model, with no extra notable efforts. Selected

hydraulic tests are employed to analyse the performance of the Haar wavelet FV shallow water

solver considering adaptivity and practical issues including choice for the threshold value driving the

adaptivity, mesh convergence study, shock and wet/dry front capturing abilities. Our findings show

that Haar wavelet-based adaptive FV solutions offer great potential to improve the reliability of

multiscale shallow water models.
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INTRODUCTION
Within computational hydraulics, the finite volume (FV)

Godunov-type method has been extensively used for model-

ling shallow water flows due to its desirable properties, such

as locality, numerical mass conservation and ability to inher-

ently incorporate discontinuous flow transitions within the

numerical solution (Toro ; Bouchut ; Toro &

Garcia-Navarro ).

The original Godunov method for the gas dynamic

equations assumes that the representation of the numerical sol-

ution over each discrete control volume is piecewise-

constant. Connecting these approximate solutions via fluxes

obtained from the solution of Riemann problems between

cells leads to make the scheme well suited for solving non-

linear equations containing discontinuities (Harten et al.

). Further theoretical and numerical considerations have

been given to apply Godunov-type FV methods to shallow

water flow problems in order to properly incorporate source

terms (mainly the bed slope term) and model evolving wet/

dry fronts (LeVeque & George ; Liang & Borthwick
; Liang &Marche ; Kesserwani ). Following dec-

ades of research, FV Godunov-type methods have become

widely applied to simulate real-scale flooding and have been

adopted into commercial hydraulic modelling software

packages such as TUFLOW-FV and RiverFlow2D PLUS.

Nevertheless, real large-scale shallow flows have complex

flow features such as shocks, contact discontinuities and a

wide range of spatial scales. Typically, the computational

domain is discretized uniformly using a large number of

cells, given that the position of flow features is usually

unknown and capturing certain small scales within a coarse

mesh simulation may be difficult without causing compu-

tational cost trade-off. Therefore, automated mesh adaptation

comes in handy to improve modelling efficiency and capture

the various physical scales involved in shallow water flows.

Various adaptive techniques have been developed within

the FV framework applied to solve shallow water equations

(SWE). These include moving mesh methods (Skoula et al.

) or static grids with local refinement methods (Nikolos
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&Delis ; Caviedes-Voullième et al. ). However, most

of the present techniques to date are achieved over patches of

grid refinements, in a decoupled manner, which controver-

sially gives rise to many problematic effects (Nemec &

Aftosmis ; Liang et al. ; Kesserwani & Liang a,

; Mocz et al. ). For instance, they require error sensors

and multiple user-chosen parameters (e.g., for setting up grid

resolution coarsening vs. refinement), which introduce sensi-

tivity (e.g., can lead to inadequate or excessive resolution),

inflexibility and problem dependency (e.g., due to the need

to tune many parameters for each simulation problem).

They also lack a rigorous strategy to accommodate flow

data transfer and recovery between various inner resolution

scales (given the changing nature of the mesh). Therefore,

the design of a more integrated adaptation approach, which

can address such problems, is still a crucial challenge (Hov-

hannisyan et al. ) and is the aim of this work.

The classical wavelet theory for local decomposition/

reconstruction of (self-similar) functions (by translation and

dilatation of a single mother function, or wavelet, at finer res-

olution) offers a natural way for adaptive compression of

data. Mathematicians and engineers have widely used the

multiresolution capabilities of wavelets in many applications

(e.g., signal processing and denoising) (Gargour et al. )

including the solution of partial differential equations. The

true power of such a multiresolution approach arises from

the fact that the local piecewise-constant data can be

described as a set of scaling coefficients encapsulating

higher-resolution details thereby allowing (Harten : Kei-

nert ): (a) genuine information exchange between those

(heterogeneous) elements with matching resolution (pro-

motion and demotion of the details via application of high-

and low-pass filters); (b) achievement of grid resolution adap-

tivity by selecting certain details from the local compression

dataset; and (c) quantitatively control the variation of the

adaptive mesh solution with reference to the underlying uni-

form mesh solution relevant to the finest resolution.

In the context of the FV Godunov-type modelling, a

couple of papers have successfully integrated the wavelet

theory for adaptive solution of homogenous conservation

law (scalar and system) (Harten ; Müller ). How-

ever, the implementation and implication of this idea in

addressing practical aspects of shallow water flow simulation

is unexplored as yet. To fulfil this gap, the Haar wavelet basis
om http://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
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is used to reformulate a FV Godunov-type method to obtain

a new adaptive multiresolution scheme, which will be

referred to as Haar wavelets finite volume (HWFV). The

technical development of the HWFV solving the one-

dimensional (1D) SWE with source term and wetting and

drying is described. Particular focus is mainly placed on

how wavelet-based adaptivity is achieved within the

HWFV SWE numerical solver. Selected test cases are used

to systematically verify the performance of the HWFV

scheme addressing issues of adaptivity parameterizations,

modelling of irregular topography with/without wetting

and drying, accuracy preservation and mesh convergence.

The rest of the paper is organized as follows: a brief

overview of 1D SWE is first presented, followed by a section

describing the baseline FV method that will be used.

Second, the multiresolution analysis (MRA) and its math-

ematical properties are introduced, with particular focus

on how the Haar wavelets basis and its scaling basis are

incorporated into the FV method. Finally, the performance

of the HWFV model is tested, analysed and discussed, and

conclusions are drawn.
SWE

The 1D SWE considering the bed source term can be cast in

a conservative matrix form:

@tUþ @xF(U) ¼ S(U) (1)

U ¼ h
q

� �
, F(U) ¼

q
gh2

2
þ q2

h

2
4

3
5, S ¼ 0

�gh@xz

� �
(2)

where t is the time (s), x is space (m) and U, F(U) and S are

the vectors containing the conserved variables, the fluxes and

the bed source terms, respectively, in which h is the water

depth (m), q is the flow rate per unit width (m2/s), g is the

acceleration gravity (m2/s) and z is the bed elevation (m).
OVERVIEW OF THE FV GODUNOV-TYPE
FRAMEWORK

In this section, the Godunov-type FV method is briefly

presented (Garcia-Navarro & Vazquez-Cendon ;
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Fraccarollo et al. ; Bouchut ). The computational

domain is divided into N0 uniform and non-overlapping

cells. A cell i is defined as Ii ¼ [xi�1=2, xiþ1=2] with a cell

size Δxi ¼ xiþ1=2 � xi�1=2 and a centre

xi ¼ (xiþ1=2 þ xi�1=2)=2. Integrating Equation (1) in space

over the ith cell and time interval [tk ¼ t, tkþ1 ¼ tþ Δt]

yields the following conservative discrete form of the SWE:

Utkþ1

i ¼ Utk
i � Δt

Δxi
Ftk
iþ1=2 � Ftk

i�1=2

� �
þ ΔtStk

i (3)

where Utkþ1

i and Utk
i are piecewise-constant average repre-

senting the local numerical solution at the present and the

next time level, respectively. ~Fiþ1=2 are the numerical

fluxes at cell interfaces, which are approximated according

to a two-arguments numerical flux function, ~F, which is

based on the approximate Riemann solver of Roe (Roe

), and Stm
i includes the bed slope source term. Alterna-

tively, Equation (3) can be rewritten in the following semi-

discrete form:

Utkþ1

i ¼ Utk
i þ ΔtLtk

i (4)

Ltk
i ¼ � 1

Δxi
F(Utk

i�1, U
tk
i )� F(Utk

i , U
tk
iþ1)

� �
þ Stk

i (5)

The techniques adopted for well-balanced discretization

of the bed slope source term with wetting and drying are

well-established and verified. For more details see Liang &

Marche (), Kesserwani & Liang (b) and Kesserwani

(). Herein, the threshold for dry cell definition is fixed to

εdry ¼ 10�6. The stability condition on the time step size

(Cockburn & Shu ) is controlled by a Courant–

Friedrich–Lewy condition, which is chosen to be equal to

0.98 for simulations involving fully wet domains and 0.5

when wet/dry fronts are present.
Figure 1 | The scaling function at resolution n ¼ 0.
MRA

In this section, the multiresolution framework, along with

the choice of basis functions for the HWFV scheme, is pre-

sented. The key feature of MRA is the separation of the
://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
behaviour of functions at different resolutions. For simpli-

city, MRA over each cell Ii is presented for the reference

interval [�1, 1] on which each cell is rendered. For example,

any function f supported on a baseline interval V0 can be

described on a dyadic sub-division of the baseline interval

(Vn) n ∈ Z such that V0 ⊂ V1 ⊂ V2 ⊂ V3 . . . ⊂ Vn ⊂ . . .

(Harten ). In particular, this property is valid for a func-

tion space V0 ¼ f:f(x) ∈ ([� 1, 1])f g that can be spanned by

a scaling basis φ (Figure 1). From the father basis φ, it is poss-

ible to span any sub-space Vn via dilation and translation

(Keinert ):

ϕnj ¼ 2n=2ϕ 2n(xþ 1)� 2j� 1ð Þ
n ¼ 0, 1, . . . , m; j ¼ 0, 1, . . . 2n � 1ð Þ (6)

where n is the dilation index and j is the translation index.

The wavelet sub-spaces Wn (n� 0) come into play as an

orthogonal complement of Vn in Vnþ1 and they satisfy the

conditions:

Vn ⊕Wn ¼ Vnþ1 (7a)

Vn⊥Wn (7b)

Taking the Haar wavelet ψ as a mother basis that spans

W0 (Figure 2), any sub-space Wn can also be spanned via its

dilation and translation:

ψn
j (x) ¼ 2n=2ψ 2n(xþ 1)� 2j� 1ð Þ
n ¼ 0, 1, . . . , m; j ¼ 0, 1, . . . 2n � 1ð Þ (8)



Figure 2 | The Haar wavelet at resolution n ¼ 0.
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From Equation (6), the function f can be described in

any space Vn as a linear combination of scaling bases ϕnj
and scaling coefficients snj :

f ≈
Xm

n¼0

X2n�1

j¼0
snj φ

n
j (9)

This is called the single-scale expansion of f at resolution

n, where snj can be computed (or initialized) as:

snj ¼
ð�1þ2�nþ1(jþ1)

�1þ2�nþ1j
f(x)φn

j (x)dx (10)

Owing to the nested sequence of subspaces and the use

of Equations (6), (7), (8) and (10), an alternative expression

of f can be obtained by means of the coarse description in V0

(i.e., at resolution n¼ 0) and its complementary details dn
j in

spaces Wn-1:

f ≈ s00φ
0
0 þ

Xm

n¼0

X2n�1

j¼0
dn
j ψ

n
j (11)

This representation is called the multiresolution expan-

sion of f at resolution n, where the detail coefficients dn
j

can be computed (or initialized) as:

dn
j ¼

ð�1þ2�nþ1(jþ1)

�1þ2�nþ1j
f(x)ψn

j (x)dx (12)

In the expansion (Equation (11)), the representation of

the function f at higher resolution (n> 0) is enabled by the

detail coefficients dn
j when they are non-zero.
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Two-scale transforming coefficients

Owing to the orthonormality and the compact support prop-

erties of ϕnj and ψn
j , rigorous exchange of data across two

resolution levels can be obtained by the so-called two-scale

transformation. To do so, two types of filter bank coefficients

(a common term in the field of signal processing) are

needed. For simplicity, the two-scale transformation is

explained for data transfer between the resolution (0) and

(1). The first type of coefficients {k0, k1} is associated with

low-pass filters, i.e., Equation (13); whereas the second

type of coefficient {g0, g1} is associated with high-pass filters,

i.e., Equation (14):

k0 ¼ 〈ϕ00, ϕ
1
0〉 ¼

ð0
�1

ϕ00(x)ϕ
1
0(x)dx (13a)

k1 ¼ 〈ϕ00, ϕ
1
0〉 ¼

ð0
�1

ϕ00(x)ϕ
1
1(x)dx (13b)

g0 ¼ 〈ϕ00, ψ
1
0〉 ¼

ð0
�1

ϕ00(x)ψ
1
0(x)dx (14a)

g1 ¼ 〈ϕ00, ψ
1
1〉 ¼

ð0
�1

ϕ00(x)ψ
1
1(x)dx (14b)

Low-pass filter coefficients {k0, k1} are used to merge the

two scaling coefficients at resolution (1) into one scaling

coefficient at resolution (0) (this is referred to as demoting):

S00 ¼ k0S10 þ k1S11 (15a)

High-pass filter coefficients {g0, g1} are used to obtain

(or actually store) the complement details (or detail coeffi-

cients) of the scaling coefficients at resolution (1) in

resolution (0):

d0
0 ¼ g0S10 þ g1S11 (15b)

Combined use of both filter coefficients allows to com-

pute the scaling coefficients at resolution (1) from the

scaling coefficients at resolution (0) and their (stored)
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complement detail coefficients (this is referred to as

promoting):

S10 ¼ k0S00 þ g0d0
0 (16a)

S11 ¼ k1S00 þ g1d0
0 (16b)

By recursive application of the two-scale transform

equations, the expansion of scaling coefficients describing

a function f can be demoted or promoted across any differ-

ent resolutions (Figure 3). Consequently, promoting and

demoting the coefficients across different resolutions, i.e.,

by using Equations (15) and (16), is the keystone of the

HWFV scheme.
HWFV METHOD

This section shows how to exploit the multiresolution

description of function f (recall the section ‘MRA’) to decom-

pose the local piecewise-constant solution Ui (recall the

section ‘Overview of the FV Godunov type-framework’) as

a compressed data set of the solution’s information, which

drives adaptivity. The strategy is to first generate a FV discre-

tization at the highest resolution (herein presented for n¼ 2

without loss of generality) to produce a fine uniform refer-

ence mesh. Then, over this mesh, MRA is performed to

select up to which resolution the local numerical solution

needs to be described (i.e., form a heterogeneous grid for
Figure 3 | The promoting and demoting of the scaling coefficients numerical solution

across different resolutions.

://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
actual FV calculations). In doing so, three main steps are

needed: prediction for careful mesh refinement, multiresolu-

tion FV update and thresholding step for mesh coarsening

through solution decompression.

Multiresolution FV formulation

Following the discretization presented in ‘Overview of

the FV Godunov type-framework’ section, a higher resol-

ution mesh is introduced. Each cell of the baseline coarse

mesh, i.e., presented in that section, is subdivided into 2n

cells namely: Inij ∈ [xi þ Δx=2(� 1þ 2�nþ1j), xi þ Δx=2

(� 1þ 2�nþ1(jþ 1))� of a local spatial resolution

Δxn ¼ 2�nΔx. A sub-cell centre is denoted by

xni,j ¼ xi�1=2 þ Δxn(jþ 1=2) (j ¼ 0, 1, . . . , 2n � 1). Figure 4

shows the multiresolution stencil. In this multiresolution set-

ting, the FV formulation, described in Equations (4) and (5),

can be rewritten as:

Un,tkþ1

i,j ¼ Un,tk

i,j þ ΔtLn
i,j (17)

Lni
i,j ¼ � 2ni

ffiffiffi
2

p

Δxi
F
Roe

Uni�1
i�1j, U

ni
ij

� �
� F

Roe
Uni

ij , U
niþ1
iþ1j

� �� �

þ ShjIniij (18)

Here, the translating index j is related to the resolution

level of the local cell n.
Figure 4 | Local multiresolution stencil {Ini,j } embedded within cell Ii.
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Equations (17) and (18) need to be only applied at a

local level resolution (i.e., on the adaptive mesh). This

mesh can be selected by, first, casting each local solution

as in Equation (11). This requires demoting high-resolution

data in order to store detail coefficients and produce the

scaling coefficient at level (0). Then, a mesh prediction

step is needed to locally promote the solution and refine

the grid. This will yield the adaptive mesh on which calcu-

lation is performed. Finally, hard thresholding is

performed to reduce the density of the mesh by discarding

all non-significant details that fall below a certain threshold

value (details in the sections below).
Prediction step for mesh refinement

Since the flow field is evolving in time, the prediction step

must be performed after each time step to guarantee no sig-

nificant features of the numerical solution are omitted in the

next time step. The prediction strategy is only based on the

information available at the current time level (Müller

; Müller & Stiriba ). Generally, the detail coeffi-

cients of predicted cells are not available. Thus, the local

solution over the predicted cells is promoted by simply set-

ting zero detail coefficients (Harten ). To do this, the

following algorithm is used to identify those neighbourhood

cells that needs to be further refined:

a) Find the scale coefficients of the conserved variables at

level n ¼ 0.

b) Compute the normalized gradient α between the local

cell and its neighbour cell (see Figure 5(a)).

α ¼
U0

i,0 �U0
iþ1,0

			 			
max 1, U0

i,0

			 			� � (19)
Figure 5 | Mesh prediction cases.
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c) Introduce two indicators to compare α values and decide

the resolution levels of neighbouring cells that have signifi-
cant details. Here, the values of α¼ 0.1 and α¼ 0.05 are

chosen as indicators for all numerical test cases. The

decision for the local refinement mesh will take the

following form according to the value of α. If α � 0:1

the adaptive mesh is as in Figure 5(c). If 0:1> α > 0:05

the adaptive mesh is as in Figure 5(b) and if 0:05> α the

mesh has the form illustrated in Figure 5(a).

Thresholding step for the decompression of mesh

Thresholding is applied on the detail coefficients after each

update to decompress the mesh. The values of detail coeffi-

cients (Dn
ij) become small when the numerical solution is

smooth. Therefore, they can be cancelled without substan-

tially affecting the accuracy of the numerical solution. To

do so, all detail coefficients whose absolute values are

below a normalized level-dependent threshold value are dis-

carded, i.e., if they satisfy

Dn
ij

			 			
max max Un

ij

			 			, 1� �< 2n�mε (20)

The components in Dn
ij are associated with the com-

ponents of the conserved variables in Un
ij (i.e., h and q). In

real computations, it is impossible to know the optimal

threshold value but a range of options is feasible (Gerhard

& Müller ; Hovhannisyan et al. ) as will be investi-

gated in the following section. By default, in this work, the

threshold value (at the coarsest level) is set to ε ¼ 0:01

and it is normalized according to the resolution levels. In

addition, the magnitudes of the detail coefficients are
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scaled according to the maximum value of the numerical

solution.

Adaptivity of topography

The topography is projected into the highest resolution (n¼ 2)

in the same way as the conserved variables. Thus the com-

pressed data set of bed information over each cell is

obtained. Finally, the adaptive bed mesh is obtained by

applying the thresholding step. However, the topography

adaptation is performed once (i.e., initially when t ¼ 0)

and it remains constant throughout the simulation time.

To ensure the preservation of an accurate water surface

elevation and mass conservation across levels, the bed

mesh should be considered as a reference; this means that

the HWFV scheme does not allow demoting the local

numerical solution to coarsen the mesh to a resolution

level lower than the topography refinement, even if the

local numerical solution allows for a lower refinement level.
NUMERICAL RESULTS

This section shows the ability of the new HWFV scheme to

solve 1D shallow water problems with fewer cells when

comparing to the reference FV scheme, while retaining

accuracy, total mass in the system, well-balancing and posi-

tivity of water depth. Five well-known benchmark problems

are considered for validation of the HWFV scheme. Further-

more, the root mean square error (RMSE) and the relative

mass error (RME) are computed. Two of the test cases are

idealized dam-break cases over frictionless beds (regular

and irregular), the third and fourth test cases consider

steady flow over a hump (transcritical flow with shock and

supercritical flow) and the fifth test case considers a

deeper analysis on the test case of the oscillatory flow in a

parabolic bowl.

Idealized dam-break

The purpose of this case is to test the capability of the

HWFV scheme to efficiently and accurately solve the hom-

ogenous SWE. The solution is compared to the exact

solution, using the RMSE and the maximum error metrics.
://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
A 1D channel with a horizontal frictionless bed is con-

sidered. The length of the channel is 2,000 m and an

imaginary dam is located at 1,000 m from the upstream

end. Initially, the upstream water level is 20 m whereas at

the downstream end, the water level is 5.0 m. The initial dis-

charge was set to zero in every cell. Boundary conditions,

although set to be numerically transmissive, are effectively

irrelevant in this case as the propagating wave does not

reach the boundary. At the instant of dam failure, water is

released producing a shock wave travelling downstream

meanwhile a rarefaction wave is formed propagating

upstream. The computational domain at the coarse level

(n¼ 0) is discretized with 71 uniform cells and the compu-

tational model was run up to 40 s after the dam-break.

Since the HWFV model allows for up to three levels of

mesh refinement, the size of the reference fine uniform

mesh is 568 cells. The numerical results are illustrated in

Figure 6. The highest level of resolution is noted to be

reached at the shock wave and the kink at the tail of the rar-

efaction wave. The other zones of the rarefaction wave are

achieved with the intermediate resolution levels 1 and 2.

Meanwhile, at the rest of the domain, where the solution

is smooth, the HWFV has retained the baseline coarse

level. In this test, the adaptive solution required a maximum

of 124 cells (22% of the fine reference mesh).

Further quantitative analysis is performed via calculat-

ing the RMSE for both water surface and flow rate, i.e.,

RMSEh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN0

i¼1

Pm
n¼0

P2n�1

j¼0
hn
i,j � ĥn

i,j

� �2

AC

vuuut
(21)

RMSEq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN0

i¼1

Pm
n¼0

P2n�1

j¼0
qni,j � q̂ni,j

� �2

AC

vuuut
(22)

in which AC is the total number of active cells forming the

adaptive mesh, hn
i,j, q

n
i,j are the numerical results and ĥn

i,j, q̂
n
i,j

are the reference data (from the analytical solutions).

Figures 7 and 8 compare the depth’s RMSEs and maximum

absolute errors (in L-infinity norm), respectively, for the

different uniform and adaptive meshes considering up to

a maximum resolution level of n¼ 3. Clearly, both error

profiles show a decrease in error magnitude with an



Figure 6 | HWFV adaptive numerical solution to the idealized dam-break flow: (a) water depth, (b) flow rate, (c) levels.
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increase in baseline mesh resolution, which is expected

due to grid convergence properties. The variations of the

RMSEs resulting from the adaptive HWFV models are

bounded between the RMSEs obtained from the coarsest

baseline uniform mesh model and the finest uniform

mesh models. Such bounding of the adaptive RSMEs is

expected because an adaptive mesh scheme at a resolution

n is set to further allow lower resolution down to the base-

line resolution 0. However, since the maximum depth

errors are governed by the highest resolution (due to

shock presence), their error trends are more logical in

this sense, as it can be seen that: (i) any of the adaptive

schemes at resolution n shows comparable error range to

the reference uniform counterpart; and (ii) the variation

of the adaptive errors are consistent level-wise. In addition,
Figure 7 | RMSE evolution for the dam-break case.
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a more quantitative analysis is considered via tabulating

the mean and standard deviation (SD) of the RMSEs (see

Table 1). These results show decreasing trend for the

means accompanied by a faster reduction in their SDs

with more profound refinement levels in the adaptive

scheme. Therefore, the HWFV framework performs the

adaptivity process without introducing any additional

errors to the numerical solution and is able to sensibly

decide resolution level in track with the dynamics of the

flow. For this test, the adaptive model simulation costs

around 78% less, in computational efforts, than the simu-

lation on the finest uniform mesh.

In the following test cases, the highest level will be fixed

to n¼ 2 and the focus will be placed on exploring applied

aspects that are relevant to hydraulic modelling.
Figure 8 | Max error evolution for the dam-break case.



Table 1 | The mean and SD of RMSE for dam-break test case

Water depth (m) Flow rate (m3/s m)

Mean SD Mean SD

Uni. mesh (n¼ 0) 0.497 0.141 6.588 1.952

Uni. mesh (n¼ 1) 0.350 0.096 4.731 1.326

Uni. mesh (n¼ 2) 0.249 0.058 3.424 0.822

Uni. mesh (n¼ 3) 0.147 0.032 1.517 0.351

Adpt. mesh (n¼ 1) 0.369 0.100 4.539 1.434

Adpt. mesh (n¼ 2) 0.362 0.074 4.531 0.902

Adpt. mesh (n¼ 3) 0.288 0.043 3.770 0.659
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Steady flow over a hump

This case is employed to test the performance of the current

scheme in reproducing a steady flow over non-uniform topo-

graphy in a frictionless rectangular channel 1 m wide and

25 m long. The analytical solution was supplied by Goutal

& Maurel () and the bed reads:

zb ¼ 0:2� 0:05(x� 10)2 8 � x � 12
0 otherwise



(23)
Transcritical case involving shock

The initial water surface and flow rate per unit width are set

to hþ z¼ 0.33 m and q¼ 0.18 m2/s, respectively. Physical

boundary conditions consisted of the steady discharge at

the inflow and the initial water level at the outflow. The

coarse baseline mesh comprised 50 uniform cells and
Figure 9 | HWFV adaptive numerical solution for the steady transcritical flow over a hump: (a

://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
simulations are noted to converge at around t¼ 170 s. For

this test, the adaptive HWFV model has been further

implemented and assessed along with the upwind discretiza-

tion of the source term (Vázquez-Cendón ). Figure 9

presents the numerical results of the adaptive scheme

(with n¼ 2) as compared to the analytical solutions. The

numerical water surface profile shows a very good agree-

ment with the analytical solution for both the upwind and

the standard cell-centred source term discretization. In

terms of prediction to the flow rate, it seems to be typically

improved by the upwind source term discretization apart

from the peak caused by the presence of the water jump.

Arguably, this is a known deficiency in standard FV schemes

and, thus, does not relate to the proposed wavelet-based

adaptivity (Garcia-Navarro & Vazquez-Cendon ; Toro

& Garcia-Navarro )). In this case, the majority of the

domain features required coarse resolution level except at

the hump, which dictated local level 1 of refinement from

the onset and at the discontinuities (i.e., starting kink of

the transcritical transition and shock) where the level was

refined to highest.
Supercritical flow case

To ensure that the disturbances observed in the discharge

in the previous test case (Figure 9) are not induced by

adaptivity over the local cells (see the section ‘MRA’),

the supercritical flow case over a hump is also considered.

Channel geometry and bed topography are identical to the

previous test case, but the unit inflow rate and elevation

water surface at the upstream of the channel are set to

hþ z¼ 2 m and q¼ 25.0567 m2/s, respectively. Herein,
) water surface, (b) flow rate, (c) levels.
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both of these physical values are used as steady state

inflow boundary conditions, whereas a free outlet is

numerically set. The simulation time is 10 s and 50 cells

are chosen for the baseline coarse mesh. The results are

shown in Figure 10. The constant flow rate and surface

water profile compared with the analytical solution are

well captured. Again, the mesh refinement was obtained

only in the regions where both bed elevation and flow

are varying. However, no artefacts are noted in the predic-

tion of the discharge for both the upwind and cell-centred

discretization. Consequently, the two test cases demon-

strate the good performance of the adaptive shallow

water flow model in reproducing well-balanced steady

flows over topography, and in performing selection of

resolution levels in relevance with flow and topographic

regions.
Figure 10 | HWFV adaptive numerical solution for the supercritical flow over a hump: (a) wate

Figure 11 | Dam-break over a triangular hump.
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Dam-break over a triangular hump

This test case is employed to verify the capability of HWFV

to preserve the total mass in the system in order to ensure

that the adaptivity process does not introduce or lose mass

even in the presence of shocks and wet/dry fronts. A

hypothetical dam-break over a triangular hump test is set

up (see Figure 11).

The length of the horizontal flume is 38 m and a dam is

located at 15.5 m from the upstream end. A reservoir with a

water surface elevation of 0.75 m is located upstream from

the dam and the rest of the domain is dry. Mesh resolution

at the coarse level consisted of 13 cells. Reflective boundary

conditions are set at both ends of the channel. At t¼ 0 s, the

dam is assumed to fail causing violent wave propagation;

namely, the wetting front rushes into the floodplain,
r surface, (b) flow rate, (c) levels.



Figure 12 | RME evolution for dam-break over a triangular hump (compared with the

projected mass t¼ 0).
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overtops and interacts with the obstacle creating a reflected

wave that will again be reflected by the boundary walls.

Since the system is closed, the initial mass of water should

be conserved. During the simulation, the total mass of

water at time t (Mt) is computed and compared with the

total initial discrete mass (M0) according to the RME below:

RME ¼ Mt �M0j j
M0

(24)

The results in Figure 12 show that the adaptive HWFV

models conserve the initial total mass in the system and

the magnitude of RME is within the range of machine pre-

cision (1 × 10�15) throughout the entire computational

time. However, since in the HWFV scheme the mesh resol-

ution is not fixed, the real physical mass (MR) is also used, as

a reference, to show the ability of HWFV to preserve the

same amount of mass as compared to the corresponding

uniform mesh size; this has been done according to

Equation (25) below:

RME ¼ Mt �MRj j
MR

(25)

In Figure 13, the results show that the RME profiles for

both the adaptive mesh levels and their uniform mesh

counterparts are the same. This means the HWFV is not

introducing any additional mass error beyond the capability

of the discretization relative to the fine reference uniform

scheme.
Figure 13 | RME evolution for dam-break over a triangular hump (compared with the

physical real mass).
Oscillatory flow in a parabolic bowl

This case is well known and recognized as a challenging test

case for numerical models because it involves both moving

wet/dry interfaces and it has an uneven topography. It is

selected here to study accuracy and mesh convergence abil-

ities of the adaptive HWFV scheme and to explore the

sensitivity of the HWFV model, i.e., in performing the adap-

tivity process, considering various choices for the threshold

value parameter and for the baseline coarsest mesh.

The bed is described by z(x) ¼ h0(x=a)
2 with constants

h0 ¼ 10 and a ¼ 3,000. It consists of an oscillatory flow

taking place inside a parabolic bowl. The transient analytical
://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
solution was proposed by Thacker ():

η(x, t) ¼ h0 � B2

4g
cos (2st)� B2

4g
� x

g
Bs cos (st) (26)

u(x, t) ¼ B sin (2st) (27)

where B¼ 5 is a constant value and s ¼ 1=2a
ffiffiffiffiffiffiffiffiffiffi
8gh0

p
is the

frequency. Under these conditions the oscillation period is



Figure 14 | Numerical solution against the analytical solution in parabolic bowl flow (N0 ¼ 40), considering different threshold values: (a) 0.0, (b) 0.001, (c) 0.01, (d) 0.1, (e) 1.0.
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T¼ 1,345.94 s. The case was simulated on the domain

[�5,000m; 5,000m] using different computational mesh cells

at coarse level (N0). Simulations were run up to 1.5 T. Bound-

ary conditions are irrelevant because the flow never reaches

the boundaries. They were set as transmissive boundaries.

Threshold sensitivity

To understand the effect of the threshold value parameter

on the adaptivity process, a baseline mesh with N0 ¼ 40

cells is fixed, while considering the following threshold

values: ε¼ 0.0, 0.001, 0.01, 0.1 and 1.0. In Figure 14, the
Figure 15 | Time evolution of active cells for various baseline meshes in parabolic bowl flow:

://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
numerical water surface profiles at t¼ 275 s (T/5) and t¼
2,020 s (1.5 T ) are compared with the analytical solution.

As seen Figure 14, the HWFV scheme refines in the region

where the wet/dry interface is moving through. Meanwhile,

other parts of the domain stay at the coarsest and the inter-

mediate levels of refinement. Furthermore, it can be seen

that varying the threshold value leads to different refinement

patterns. In particular, it is shown that, as ε increases fewer

cells are refined to higher levels during the simulation, since

smaller detail coefficients are selectively omitted. In

Figure 14(a), it is clear that the adaptive HWFV scheme acti-

vates all the detail coefficients when ε¼ 0.0 and all the
(a) N0¼ 20, (b) N0¼ 40, (c) N0¼ 80, (d) N0¼ 160, (e) N0¼ 320.



Figure 16 | Comparisons of L1-norm for parabolic bowl. Each highlight point is associated

with the initial cell number at coarse level: (a) t¼ 270 s, (b) t¼ 2,020 s.
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computational cells go to the highest level, thus resulting in a

uniform mesh. Figure 14(b) shows an almost uniform mesh

prediction when ε¼ 0.001. Hence, it is not reasonable, in

terms of efficiency, to use a threshold value ε< 0.001. A sen-

sible refinement is obtained with ε¼ 0.01 (Figure 14(c)). For

ε¼ 0.1 and ε¼ 1.0 (shown in Figure 14(d) and 14(e), respect-

ively) poor predictions at the wet/dry interfaces appear,

which may be caused by the fact that a large threshold value

leads to omitting some small detail coefficients, relevant to

the wet/dry front, during the promotion process.

Baseline meshes

The choice of a baseline mesh with N0 ¼ 40 is rather arbi-

trary, and it might be already too fine, or on the contrary,

never allow for a fine enough mesh for this test case. This

may affect the performance of the adaptivity process. There-

fore, the influence of the baseline mesh should be studied.

Several baseline meshes at coarse level N0 ¼ 20, 40, 80, 160

and 320 are introduced to address this. The same settings

of the threshold value as reported in Figure 14 are used.

The evolution of the number of active cells is presented in

Figure 15. The results confirm that all considered combi-

nations of N0 and ε are able to perform the adaptive

solutions. Moreover, when refining the baseline mesh, the

HWFV requires a reduction of the threshold value to better

perform adaptivity process. This is due to the fact that most

of the flow region results in rather smooth solutions; there-

fore the value of the detail coefficients is small. In

Figure 15, N=N0 reduces as the baseline mesh is refined,

regardless of the varying threshold. However, in Figure 15(d)

and 15(e) for ε¼ 0.1 and ε¼ 1.0, the magnitude of N=N0 is

relatively the same and with values bounded between 1.0

and around 2.5. These values are less when compared to

other threshold values, but they strongly influence the quality

of the numerical solution. Notably, with ε¼ 0.01, regardless

of N0, optimal results are obtained, in comparison to other

threshold values. The value of N=N0 is bounded between

around 1 to 4. This case shows a particular trend of how

the pattern of active cells varies with N0. This trend indicates

that ε¼ 0.01 is the most sensitive to N0. Owing to this sensi-

tivity, this threshold value allows for a wide, automatic

response of the adaptive process (contrary to, for example

ε¼ 0.1) and therefore is likely to be the best to perform
om http://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
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adaptivity in a prompt way. It is clear that an inefficient adap-

tive process is obtained with ε¼ 0.001 except in Figure 15(e),

when a very fine baseline mesh is used.
Mesh convergence

Mesh convergence is also studied in terms of the L1-norm as

defined in Equation (28). Simulations were performed up to

2,020 s and for analysis the t¼ 270 s (T/5) and t¼ 2,020 s

(1.5 T) are selected. Several baseline meshes at coarse

level N0 ¼ 10, 20, 30, 40, 80, 160 and 320 are introduced

with using the same threshold values as defined previously.

It can be seen in Figure 16 that the behaviour of the L1-norm
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is asymptotic regardless of N0 and ε. The uniform mesh (ε¼
0.0) is taken as a reference curve for comparison. Each point

within a curve is associated with each baseline mesh. The

difference between the convergence curve for ε¼ 0.001

and the reference are relatively small. For ε¼ 0.01 the con-

vergence is slightly better than all as shown in Figure 16(a)

and 16(b). The large error obtained with ε¼ 1.0 and N0 ¼
20, 30 cells and this is due to too few cells being activated

during the adaptivity process (over-filtering). Thus the quality

of the numerical solution is affected. Nevertheless, the mag-

nitude of the error becomes smaller as N0 increases but still

remains larger than the error of the reference curve. Further-

more, the better results are obtained for ε¼ 0.1 but with

sensible differences compared to ε¼ 1.0. The magnitude of

the L1-norm is increased from Figure 16(a) to 16(b). This is

merely because of numerical diffusion which is an antici-

pated issue for FV first-order schemes. In Figure 17, the

same analysis as the one reported in Figure 16 is considered

to illustrate the relative performance of CPU time (RPCPU).

Figure 17(a) shows the ratio of the CPU times of the adaptive

schemes to the CPU time obtained from the associated fine

uniform reference schemes (i.e., ε¼ 0.0); while Figure 17(b)

further describes the normalized CPU times, which are

obtained by dividing all CPU time by the maximum one

(i.e., N0¼ 320, ε¼ 0.0). The results show clearly that

when ε> 0.0, less time is required for achieving a simula-

tion as the baseline mesh N0 density increases. They also

show that the efficiency of the adaptive HWFV schemes

is near their equivalent uniform mesh FV schemes when

the baseline mesh has a size N0� 40 and despite the

choice of ε.
Figure 17 | Comparisons of the relative CPU time for parabolic bowl.

://iwa.silverchair.com/jh/article-pdf/17/6/857/388797/jh0170857.pdf
For ε¼ 0.001, the RPCPU and normalized CPU time are

noted to be inefficient despite the choice of the baseline

mesh N0. In contrast, for ε¼ 0.01, 0.1 and 1.0 they start to sig-

nificantly decrease in proportion with an increase in the

density of the baseline mesh N0. However, for ε¼ 0.1 and

1.0, the RPCPU tend to remain close for N0� 40; whereas,

with ε¼ 0.01 the RPCPU showed consistent decrease in line

with the refinement of the baseline mesh N0; this suggests

that a threshold value of ε¼ 0.01 enables best selection

among the magnitude of the detail coefficients, and so allows

optimal efficiency and accuracy in the context of the proposed

HWFV model for a baseline mesh of around 40–100 cells.

L1 � norm ¼
XN0

i¼1

Xm
n¼0

X2n�1

j¼0

dxni,j hn
i,j � ĥn

i,j

� �			 			 (28)
CONCLUSIONS

Adaptive mesh refinement schemes are useful tools to effi-

ciently model various scales of shallow water flow. A new

adaptive formulation is proposed that combines the Haar

wavelets with the FV method (HWFV). The appeal of the

formulation can be easily exploited to drive spatial resol-

ution adaptation from the solution itself according to a

single threshold value ε. A series of numerical tests has

been performed, considering issues of well-balanced prop-

erty, convergence of scheme, sensitivity relating to

different choice of the thresholds values and ability to

treat wet/dry fronts.



872 D. A. Haleem et al. | Wavelet-based adaptive shallow water solver Journal of Hydroinformatics | 17.6 | 2015

Downloaded fr
by guest
on 25 April 202
Numerical evidence confirms that the proposed HWFV

scheme can accurately solve the SWE with source term.

Adaptive solutions are shown to be mass conservative. Nota-

bly, the new model is proven to be able to self-decide

appropriate resolution levels following the dynamics of the

flow, including shocks, wet/dry fronts and the presence of

non-flat topography. Future research will consist of integrat-

ing the friction source term in a well-balanced manner,

exploring sensitivity issues in relation to increasing the resol-

ution levels with varying threshold values and extending the

approach to 2D.
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