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Spatial interpolation of rain-field dynamic time-space

evolution based on radar rainfall data

Peng Liu and Yeou-Koung Tung
ABSTRACT
Accurate and reliable measurement and prediction of the spatial and temporal distribution of rain

field over a wide range of scales are important topics in hydrologic investigations. In this study, a

geostatistical approach was adopted. To estimate the rainfall intensity over a study domain with the

sample values and the spatial structure from the radar data, the cumulative distribution functions

(CDFs) at all unsampled locations were estimated. Indicator kriging (IK) was used to estimate the

exceedance probabilities for different preselected threshold levels, and a procedure was

implemented for interpolating CDF values between the thresholds that were derived from the IK.

Different probability distribution functions of the CDF were tested and their influences on the

performance were also investigated. The performance measures and visual comparison between the

observed rain field and the IK-based estimation suggested that the proposed method can provide

good results of the estimation of indicator variables and is capable of producing a realistic image.
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INTRODUCTION
As rainfall constitutes the main source of freshwater for our

planet and all living things on earth, accurate and reliable

measurement and prediction of its spatial and temporal distri-

bution over a wide range of scales is an important subject for

hydrologic investigations. The estimation of the rainfall

amount over the spatial domain from the data taken at

measurement stations is a crucial stage in many hydrological

applications. The problem of estimating spatial distribution

of rainfall may be described as follows. Obtain an estimate of

the unknown rainfall amount, r(x0), at an arbitrary location,

x0, within the estimation domain, A, using nearby

measurements in and around A, r(x1), r(x2), . . . , r(xn), at

locations, x1, x2, . . . , xn, respectively. The value of r(x0) can

be estimated as a weighted average of r(x1), r(x2), . . . , r(xn)

(Seo ).
To construct new data points within the range of a dis-

crete set of known sample data points, interpolation is

needed. Many schemes for spatial interpolation of rainfall

have been developed, ranging from simple techniques,

such as Thiessen polygons (Thiessen ), which simply

assign the record of the nearest raingauge to the unsampled

location, or inverse-distance weighting (IDW) schemes

(Cressman ; Shepard ; Barnes ), to more com-

plex approaches, such as kriging (Matheron ). In the

Thiessen polygons method, only one raingauge is contribu-

ted to the estimated value of each unsampled location and

the information on rainfall gradients is lost (Dirks et al.

). To overcome this shortcoming in estimating the

spatial variation of rainfall within the considered domain,

numerous studies have been proposed and tested. A

simple scheme is based on IDW function with different

forms of the weighting functions. The IDW scheme is a rela-

tively simple, deterministic interpolation method, and it

requires the determination of the weighting functions prior

mailto:pliu@nhri.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/nh.2020.115&domain=pdf&date_stamp=2020-03-17


522 P. Liu & Y.-K. Tung | Spatial interpolation of rain-field dynamic time-space evolution Hydrology Research | 51.3 | 2020

Downloaded fr
by guest
on 24 April 202
to the interpolation. Furthermore, the arbitrary nature of

choosing the weighting functions may significantly affect

the accuracy of the interpolated field. More studies have

been made on geostatistical tools, like kriging, to interpolate

rainfall field. Kriging avoids the need for preselecting par-

ameters by calculating the semi-variogram for each pair of

observations in the network as a measure of the degree of

spatial dependence between the points. Kriging is increas-

ingly preferred in the study of spatial interpolation of

precipitation because it allows one to capture the spatial cor-

relation between neighboring observations to estimate and

predict attribute values at unsampled locations (Goovaerts

). Especially in a region with intense and strongly vary-

ing rainfall events, a kriging procedure generally provides a

much better estimation than any of the more commonly

used methods (Creutin & Obled ). Similar conclusions

were drawn in several other studies (Shaw & Lynn ;

Tabios & Salas ; Phillips et al. ; Abtew et al. ).

In kriging, the semi-variogram is used to determine the

weighting function.

Kriging is a local estimation technique of the best linear

unbiased estimator (BLUE) for the unknown values of

spatial and temporal variables. It is based on the use of a

random field, and a number of assumptions such as statio-

narity and spatial ergodicity, so as to reduce the needed

information to a so-called variogram that can be estimated

from the available measurements (Loquin & Dubois ).

Based on the variogram, optimal weights are assigned to

known values in order to calculate unknown ones. The var-

iogram changes with the distance and the weights depend

on the known sample distribution. As an interpolation

tool, it has some very useful properties (Grimes ). It

takes account of spatial structure inherent in the data and

provides unbiased, optimal (in a least-squares sense)

measured values. In addition, it can be adapted to account

for secondary information (e.g., topography) and provides

the degree of uncertainty for each interpolated value. Ordin-

ary kriging (OK) is the most commonly used algorithm in

the kriging family. Another best-known technique is simple

kriging (SK), which is based on the assumption that the

expected value of the regionalized variable is a known con-

stant. There are many variants of the kriging method, such

as co-kriging which takes into account the correlation of

the main variable (e.g., rainfall) and secondary variables
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(e.g., topography), kriging with external drift (KED) which

assumes that the mean of a considered variable is linearly

related to a secondary variable and indicator kriging (IK)

which carries out the kriging procedure on a binary pattern

and provides the probability of occurrence of a considered

variable being greater than a given threshold at the esti-

mated locations. The new method, besides allowing spatial

information to be incorporated into the modeling and esti-

mation process, also allows temporal information to be

incorporated. This technique employs temporal data as sec-

ondary co-kriged variables.

Quite a number of works have been carried on to inter-

polate rainfall data using geostatistical kriging methods

(Lebel & Laborde ; Barancourt et al. ). Goovaerts

() compared three multivariate geostatistical algorithms

to incorporate a digital elevation model into the spatial pre-

diction of rainfall with the straightforward linear regression

techniques, such as the inverse distance or Thiessen poly-

gon. The results confirmed that in a region with low-

density raingauge network, geostatistical interpolation out-

performed the other univariate methods. Kyriakidis et al.

() presented a geostatistical framework that integrated

atmospheric and terrain characteristics into the spatial

interpolation of seasonal average daily precipitation. The

results indicated that geostatistical framework could provide

more accurate representations of the spatial distribution of

rainfall than those found in the traditional analyses. How-

ever, the degree of the improvement depended on the

density of the rain gauge stations and the spatial variability

of rain field. Pardo-Igúzquiza & Dowd () described a

two-step procedure of IK and OK, made a comparison

with the empirical kriging and discussed the pros and cons

of each method. Kriging with external drift (KED) and indi-

cator kriging with external drift (IKED) were used for the

spatial interpolation of hourly rainfall from raingauges

using additional information from the radar by Haberlandt

(). The impact of the semi-variogram estimation

(isotropic or anisotropic behavior) on the interpolation

performance was analyzed, and it was concluded that the

automatic fitting procedure with isotropic variograms

offered the best results in his study.

A merging method combining a mean precipitation field

interpolated from raingauge observations, along with infor-

mation about the spatial variability from radar data, was
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developed by Ehret et al. (). This method was proved to

offer a reliable basis for a flood forecasting system. Gouden-

hoofdt & Delobbe () tested several radar-gauge merging

methods with various degrees of complexity and found that

geostatistical merging methods outperformed the others.

Verworn & Haberlandt () applied the multivariate kri-

ging method with external drift (MKED) using additional

information from topography, rainfall data from the denser

daily networks and weather radar data and concluded that

the weather radar was proved to be the most valuable

additional information for convective summer events,

while daily rainfall was sufficient for winter events. Tobin

et al. () compared different interpolation methods,

including IDW, OK and KED, and showed that KED out-

performed other methods, which was consistent with the

observation by Velasco-Forero et al. (). Wagner et al.

() analyzed seven different rainfall interpolation

schemes including Thiessen polygons and geostatistical

approaches with regard to their suitability to produce spatial

rainfall estimates in a monsoon-dominated region with

scarce rainfall measurements. They concluded that the pre-

cipitation interpolation approaches using appropriate

covariates performed the best. Sideris et al. (b)

expanded the well-tested technique (KED) by introducing

and coupling temporal data with spatial data through co-kri-

ging and this proposed technique achieved to serve as a real-

time operational tool in Switzerland. Lebrenz & Bárdossy

() applied quantile kriging (QK) to the variable of

observed monthly precipitation from raingauges in South

Africa. The cross-validations proved that QK performed the

best among OK and external drift kriging (EDK). Huang

et al. () proposed a new spatial precipitation interpolation

method based on the information diffusion principle that has

been proven to effectively reduce data or information uncer-

tainties from point ground observations.

However, kriging is limited in that it depends on the

existence of a reliable representation of the spatial corre-

lation structure and is mathematically more complicated

and computationally more intensive. The usefulness of kri-

ging depends on whether the distribution of data agrees

with certain statistical assumptions (e.g., Gaussian distri-

bution) and a representative semi-variogram can be

defined. In modeling spatial variability of rainfall field,

these assumptions are not always satisfied. A number of
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
technical studies are carried out to fix this problem and

are well documented in Goovaerts (). IK is often qua-

lified as a ‘non-parametric’ approach because it does not

rely on a prespecified spatial distribution model for the

attribute under study. It is, therefore, applicable for any

data sets, which explains the popularity of the method.

Liu & Tung () established a geostatistical model

based on indicator variograms fed with radar-derived rain-

fall data that could effectively evaluate the dynamic

evolution of the spatial-temporal variation of rain field in

Hong Kong. Apart from this non-Gaussian distribution

issue, still several questions need to be further addressed

for an improvement of interpolation, like the influence of

the semi-variogram estimation on the interpolation per-

formance of short time step rainfall in Hong Kong is

relatively unknown.

The main objective of this paper is to contribute to evalu-

ate the performance of IK schemes using different sample

variograms and different probability distribution functions

for fitting rainfall intensity. The paper is organized as follows.

First, a brief description of the study area and the data

preparation is presented. Then, the methodology to estimate

the rainfall intensity by different sample variograms and

different probability distribution functions is introduced.

This is followed by discussion of the results and finally the

conclusions that can be drawn from this study are presented.
STUDY AREA AND DATA PREPARATION

Study area

Hong Kong, with a population of about 7 million people, is

situated on China’s south coast and is enclosed by the Pearl

River Delta and the South China Sea. Heavy rain in summer

in Hong Kong is typically associated with the southwest

monsoon and tropical cyclones. The threat of flooding is

greatest during storm surges generated by the passage of

typhoons due to high wind. Many parts of the territory

are densely populated urban areas surrounded by or situated

within catchments that are typically small with relatively

steep slopes. These urban areas and catchments have a rela-

tively short time-of-concentration and are particularly

susceptible to the threat of flash floods and extensive
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flooding rendering significant economic losses and possible

fatalities. Apart from urban flash flooding, another disaster

caused by persistent heavy rain in Hong Kong is landslides

because of the hilly terrain.

Data preparation

There are numbers of factors influencing the evolution of

the spatial structure of rainfall during a rainstorm event,

including the weather conditions, the topography of the

study area, type of precipitation, and the spatial and tem-

poral scale under consideration. The spatial structure of

rainfall could be quite dynamic in space and time. To cap-

ture and describe the dynamic time-space evolution of the

rainfall, Liu & Tung () proposed a geostatistical

approach based on indicator variograms of rain fields

and found that the variability of the spatial structure of

rain field was rationally retrieved by the main features of

the variograms. Therefore, effective and reliable estimation

of the variograms at each time step during the rainstorm

event is of great importance for the geostatistical inter-

polation. The variogram estimation has to be made for

each time step.

Traditionally, rainfall information has been collected

in the form of raingauge records and rainfall is observed

at a particular point on the Earth’s surface. While the

temporal resolution of the rainfall records from the rain-

gauge stations is acceptable, the density of raingauge

network is sometimes too sparse to reliably estimate the

spatial structure. The idea of using radar reflectivity

measurements is appealing by providing the high space-

time resolution of observations. In recent years, increasing

use has been made of radar-based rainfall estimates

and radar images. Due to the superiority of the high

spatial and temporal resolution, radar rainfall data have

been used more frequently as an input for hydrological

modeling.

However, careful system design and sophisticated data

processing are required for radar rainfall estimation

because of sampling error and measurement-algorithm

induced error. The relative influence for different sources

of error as well as relations between point raingauge rain-

fall records and radar measurements are described at

length elsewhere (Huffman ; Ciach & Krajewski
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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; Harrison et al. ; Germann & Joss ; Sokol

). Because of the existence of frequently occurring

large space-time variable bias, radar data that have not

been corrected are insufficient for the rainfall estimation

or prediction (Cole & Moore ; Verworn & Haberlandt

). Quite a number of studies which compare different

algorithms for deriving estimates of precipitation from

radar rainfall data have been carried out in conjunction

with measurements at raingauges to map precipitation

(Wagner et al. ).

The radar data used in this study is collected by the

Hong Kong Observatory (HKO) from a rainstorm nowcast-

ing system SWIRLS (Short-range Warning of Intense

Rainstorms in Localized Systems). The radar reflectivity

with a high spatial (1 km2) and temporal (6 min) resolution

which is detected at 1 km height is correlated every 5 min

with the rainfall recorded by the raingauges underneath to

gain the optimal parameters a and b in the Z� R relation-

ship (Z ¼ aRb). A total of 132 raingauge stations, 46 from

the HKO and 86 from the Geotechnical Engineering

Office (GEO), over the Territory of Hong Kong were used

(Figure 1).

To choose the thresholds, the quantiles of the rainfall

intensity values are obtained for each rainstorm event

(see Figure 2). For the purpose of illustration, rainstorms

occurred on 18 May 2007 and 19 April 2008 are used

herein.

On 18 May 2007, a trough of low pressure developed

over inland Guangdong and moved across the south

China coast. A squall line swept across Hong Kong from

northwest to southeast that evening, bringing heavy

showers and severe gusts to the territory. A peak gust

over 100 km/h was recorded at Waglan Island. With the

trough of low pressure lingering along the south China

coast, there were heavy showers and thunderstorms

between 19 and 22 May.

Under the combined effect of Typhoon Neoguri and

the northeast monsoon, local winds started to pick up

on 18 April 2008. Local winds became generally strong

on the afternoon of 19 April 2008 when Neoguri was

about 200 km to the west-southwest of Hong Kong.

When Neoguri approached the coast of western Guang-

dong, the warm southerly winds associated with Neoguri

met the relatively cooler northeast monsoon and formed



Figure 2 | Quantiles of the distribution of the rain rate values for the four studied rainstorm events.

Figure 1 | Location of raingauge stations in Hong Kong.
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a warm front with severe convective activities over the

coastal waters of Guangdong. The warm front moved

from south to north across the coast of Guangdong and

brought heavy rain to Hong Kong on that day. The total

daily rainfall recorded at the HKO on that day was
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
233.4 mm, the highest daily rainfall amount recorded in

April since records began. After making landfall and

moving further inland, Neoguri weakened rapidly.

Locally, rain also eased off rapidly with just a few showers

on 20 April 2008.



Figure 4 | Example of estimated ranges of indicator variogram at the threshold of

10 mm/h for different directions at 20:00 pm during the 2008-04-18 rainstorm

event.
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METHODOLOGY

IK scheme

Theoretically, the variogram estimation needs to be carried

out for each time step. Since anisotropy is considered in

this study, the indicator variograms of rain field at a given

time instant are found to fit an exponential model for 24

different directions (Liu & Tung ). However, due to the

sample error, the parameters of the variogram at a given

time instant may vary erratically even in adjacent directions.

This sampling variability may induce erratic results in the kri-

ging estimations. Figures 3 and 4 show the examples of

estimated ranges of indicator variogram for different direc-

tions for each selected rainstorm event. Hence, to capture

the essential feature of anisotropic behavior of spatial corre-

lation while avoiding the erratic remove its sampling

fluctuations, which can be expressed as the path of a point:

X(ω) ¼ Xcenter þA cos ω cos φ� B sin ω sin φ
Y(ω) ¼ Ycenter þA cos ω sin φþ B sin ω cos φ

�
(1)

where the angle parameter ω varies from 0 to 2π. In Equation

(1), (Xcenter, Ycenter) is the center of the ellipse which is set to
Figure 3 | Example of estimated ranges of indicator variogram at the threshold of 5 mm/h

for different directions at 16:30 pm during the 2007-05-18 rainstorm event.
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be (0, 0) during the fitting procedure; A and B are, respect-

ively, the semi-major and semi-minor axes of the ellipse and

φ is the angle between the x-axis and the major axis of the

ellipse.

Then, the value of the semi-variogram parameter (e.g.,

range a for direction ω) can be derived from the correspond-

ing X�(ω) and Y�(ω) as follows:

a�(ω) ¼ 2 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�(ω)2 þ Y�(ω)2

q
(2)

To determine the optimal parameters of the elliptic

model (A, B, φ), the average square of distance (ASD)

between the original estimated range for each direction

and the corresponding elliptic-fitted value is minimized:

ASD(A, B, φ) ¼
P24

i¼1 [a
�(θi, A, B, φ)� a(θi)]

2

24
(3)

where a(θi), i ¼ 1, . . . , 24 is the original estimated

range for the considered 24 directions and a�(θi, A, B, φ),

i ¼ 1, . . . , 24 is the elliptic-fitted value of the range.
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By IK, the actual rain process is transformed into a

binary process to distinguish whether the rainfall intensity

R(x) at location x at time t is above a special threshold k

or not. IK does not aim at estimating the indicator transform

i(x, k) set to 1 or 0 but provides an estimate of the cumulat-

ive distribution function (CDF) value conditional on

threshold level k. A linear estimate of the conditional prob-

ability that R(x0) greater than a given threshold k from the

sample data R(xα), α ¼ 1, . . . , n, which is also the mean

of i(x0, k), is given by the following equation:

E[i�IK(x0, k)] ¼ 1 × Pr{i(x0, k) ¼ 1j(n)}þ 0 × Pr{i(x0, k) ¼ 0j(n)}
¼ Pr{R(x0)> kj(n)}

¼
Xn
α¼1

λIKα (x0, k)i(xα, k) (4)

Denoting the covariance of the indicator variables for

the threshold level k at location xτ and xν by CI(k, xτ � xν),

the ordinary IK weights λIKα (x0, k), α ¼ 1, . . . , n are obtained

by solving the following OK system as follows:

Pn
β¼1

λIKβ (x0, k)CI(k, xα � xβ) ¼ CI(k, xα � x0), α ¼ 1, . . . , n

Pn
β¼1

λβ(x0, k) ¼ 1

8>>><
>>>:

(5)

where CI(k, xα � xβ), α ¼ 1, . . . , n; β ¼ 1, . . . , n is the

n × n matrix of data-to-data covariance; CI(k, xα � x0),

α ¼ 1, . . . , n is the n × 1 vector of covariance between the

data and the target and λIKβ (x0, k), β ¼ 1, . . . , n is the n × 1

vector of unknown weights to be solved.

Since 1983 when IK was introduced by Journel (), it

has grown to become a widely applied estimation technique.

The method offers a non-parametric, distribution-free

solution to the spatial interpolation problem of a variable

at an unsampled location. IK has a number of advantages:

(1) it does not require the prior knowledge about the spatial

distribution of the original sample data; (2) it can handle

moderate mixing of diverse sample populations and is resist-

ant to outliers; (3) it takes into account the structure of

indicators at each considered threshold; (4) it provides full
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
information of the CDF at the selected thresholds and (5)

it provides an estimation variance.

Despite its wide use, IK suffers from several limitations

and impediments (Emery & Ortiz ), some practical

issues need to be addressed which include issues associated

with kriging neighborhood and the order relations problem

and their correction.

1. Selection of kriging neighborhood

The kriging theory is always derived as if all sample data

points were used in the estimation; it is the so-called global

neighborhood case. The minimum mean squared error is

achieved when all the sample data are included. If a smaller

neighborhood is chosen, the estimation can be considered

as a constrained optimization with zero weights assigned

on the discarded points. However, a global neighborhood

may result in a kriging matrix that is too large to be numeri-

cally inverted. Another concern is that the geostatistical

model may only be valid over short distances. The exper-

imental variogram is generally accurate for small distance

lag, and the uncertainties grow rapidly as the separation dis-

tance gets large.

The other alternative is called ‘moving neighborhood’,

and the point selection is restricted to a subset of the

sample data which is changing with the estimated point.

In this study, only the sample data that lie within the prese-

lected distance δθ from the point of estimation are counted

as conditioning in kriging, and this distance δθ is a function

of direction θ because of the anisotropy (Figure 5). For the

exponential variogram model, Gilgen () suggested not

to interpolate for distances larger than the range.

2. Problem of the order relation

The IK algorithm itself does not necessarily ensure that

the resulting probability estimates satisfy non-decreasing (or

non-increasing) relationships between the threshold level k

and non-exceedance probability (or exceedance probability).

Let

Pr{R(x)> kj(n)} ¼ Pr{i(x, k) ¼ 1j(n)} ¼ �F{x, kj(n)} (6)

be the exceedance probability of a continuous variable

R(x)> k and the corresponding indicator variable i(x, k) ¼ 1.

Then, for two threshold levels k0 > k, the legitimate



Figure 5 | Illustration of kriging with moving neighborhood with the solid circle indicating

the conditioning sample data used to estimate R(x0) and the empty circle

indicating the discarded points.
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exceedance probability relationship should satisfy

�F{R(x), k0j(n)} � �F{x, kj(n)} (7)

However, the violation of such order relation could

happen during the estimation.

There are two sources that could cause the violation of

order relation: negative IK weights and insufficient

number of data in some classes. Practice has shown that

the majority of order relation problems are due to the lack

of sufficient data, more precisely, to cases when IK is

attempted at a cutoff ks which is the lower bound of a

class [ks, ksþ1) that contains no data. In such a case, the indi-

cator data set is the same for both cut-off levels kl and ksþ1,

and yet, the corresponding indicator variogram models are

likely to be different. Therefore, the resulting exceedance

probability values will likely be different with a good

chance of violating the non-increasing relationship.

A correction of the IK-returned exceedance probability

value is necessary. Correcting for order relation problems

is quite delicate because of the ordering of the cumulative

indicators. The following correction algorithm considers
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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the average of an upward and downward correction

(Deutsch & Journel ): The upward correction starts

with the lowest cut-off level k1. If the IK-returned excee-

dance probability value �F{x, k1j(n)} is not within [0, 1],

reset it to the closest bound. Proceed to the next cut-off

level k2. If the IK-returned exceedance probability value
�F{x, k2j(n)} is not within [0, �F{x, k1j(n)}], reset it to the clo-

sest bound. A loop through all remaining cut-off levels ks,

s ¼ 3, . . . , S with S being the total number of cut-off

levels. The downward correction starts with the largest

cut-off level kS. If the IK-returned exceedance probability

value �F{x, kSj(n)} is not within [0, 1], reset it to the closest

bound. Proceed to the next cut-off level kS�1. If the IK-

returned exceedance probability value �F{x, kS�1j(n)} is not

within [�F{x, kSj(n)}, 1], reset it to the closest bound. A loop

downward through all remaining cut-off levels ks,

s ¼ S� 2, . . . , 1. Average the two sets of corrected excee-

dance probability values.

Since the exceedance probabilities for different

threshold levels are available by IK, it is possible to estimate

the mean rainfall intensity at all unsampled locations within

the studied domain. The CDF value for the rainfall intensity

at each unsampled location can be obtained from the excee-

dance probability by the following equation:

F(x, ks) ¼ 1� �F(x, ks), s ¼ 1, 2, . . . , S (8)

where �F(x, ks), s ¼ 1, 2, . . . , S is the exceedance probability

at cutoff ks for location x gained by IK.

Various estimates for the unknown value R(x) can be

derived from the conditional CDF, e.g., expectation

(E-type), median (M-type) or a maximum probability type

(P-type) (Bierkens & Burrough ). In this study, the

E-type estimate R�
E(x) is used to estimate the performance

IK and is defined as follows:

R�
E(x) ¼

ð∞
0
R(x)dF�(x) (9)

where F�(x) is the estimated CDF for the rainfall intensity at

location x. The standard deviation sd�(x) of rainfall intensity

can also be calculated to investigate the corresponding
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uncertainties:

sd�2 (x) ¼
ð∞
0
[R(x)� R�

E(x)]
2dF�(x) (10)

To evaluate this integral, the procedures for inter-

polation between the IK-derived conditional CDF values

are critical. Knowing a conditional CDF at several cut-off

values, the integral can be estimated by assuming the distri-

bution of the rainfall intensity at the considered location. In

this study, several commonly used parametric probability

distribution functions are used to fit the IK estimated CDF

at different cut-off rainfall intensities, as well as a discrete

approximation.

1. Discrete approximation

Discrete approximation (DA) is actually assuming line-

arity between two adjacent IK estimated CDF values. The

mean value of DA-based rainfall intensity at location x can

be estimated by the following equation:

R�
E(x) ¼

XSþ1

s¼1

R0(x) × [F�(x, ks)� F�(x, ks�1)] (11)

where R0 is the mean value of the class (ks�1, ks] as obtained

from the conditional CDF model.

The standard deviation can be estimated by the follow-

ing equation:

sd�2 (x) ¼
XSþ1

s¼1

[R0(x)� R�
E(x)]

2 × [F�(x, ks)� F�(x, ks�1)] (12)

where ks, s ¼ 1, . . . , S is the S cutoffs and k0 ¼ 0,

kSþ1 ¼ Rmax are the minimum and maximum R-values.

2. Log-normal distribution

When a log-normal distribution (LN) is assumed for the

random rainfall intensity at an unsampled location, its CDF

corresponding to each cutoff ks, s ¼ 1, 2, . . . , S, can be
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
expressed as follows:

F(x, ks) ¼ Pr {R(x) � ks} ¼ Pr {lnR(x) � lnks}

¼ Pr
lnR(x)� μlnR(x)

σ lnR(x)
� lnks � μlnR(x)

σ lnR(x)

� �
¼ Φ

lnks � μlnR(x)

σlnR(x)

� �

(13)

where R(x) is the value of rainfall intensity at location x;

μlnR(x) is the mean of lnR(x); σlnR(x) is the standard

deviation of lnR(x) and Φ() is the standard normal CDF.

μlnR(x) and σ lnR(x) can be estimated by linear regression of

lnks ¼ μlnR(x) þ σ lnR(x)zs (14)

where zs ¼ Φ�1[F(x, ks)].

The mean value of LN-based rainfall intensity at

location x can be estimated by the following equation:

R�
E(x) ¼ μR(x) ¼ exp μlnR(x) þ

1
2
σ2
lnR(x)

� �
(15)

whereas the standard deviation of R(x) can be estimated by

the following equation:

sd�2 (x) ¼ σ2
R(x) ¼ exp{σ2

lnR(x)}� 1 (16)

3. Generalized extreme value distribution

When generalized extreme value (GEV) distribution is

assumed for random rainfall intensity at each unsampled

location, the CDF corresponding to each cutoff

ks, s ¼ 1, 2, . . . , S, can be expressed as follows:

F(x, ks) ¼ Pr {R(x) � ks}

¼
exp � 1� κx(ks � ξx)

αx

� � 1
κx

8><
>:

9>=
>;, for κx ≠ 0

exp �exp �ks � ξx
αx

� �� �
, for κx ¼ 0

0
BBBBBB@

1
CCCCCCA

8>>>>>><
>>>>>>:

(17)

where ξx, αx, κx are, respectively, location, scale and shape

parameters. Furthermore, ξx þ
αx

κx
� x<∞ if κx < 0;

�∞ � x<∞ if κx ¼ 0 and �∞< x � ξx þ
αx

κx
if κx > 0.
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The shape parameter κx governs the tail behavior of the

distribution and the sub-family defined by κx ¼ 0 corre-

sponds to the Gumbel (or extreme value type I, EV1)

distribution.

The inverse CDF is:

ks(F) ¼
ξx þ

αx

κx
{1� [� lnF(x, ks)]

κx }, for κx ≠ 0

ξx � αx ln {� lnF(x, ks)}, for κx ¼ 0

8<
: (18)

The mean value of GEV-based rainfall intensity at

location x can be estimated as follows:

R�
E(x) ¼ μR(x)

¼ ξx þ
αx[1� Γ (1þ κx)]

κx
, for κx ≠ 0, κx >�1

ξx þ 0:5772αx, for κx ¼ 0

8<
:

(19)

and the standard deviation of R(x) can be estimated by the

following equation:

sd�2 (x) ¼ σ2
R(x)

¼

αx[Γ (1þ 2κx)� Γ 2(1þ κx)]
κ2
x

, for κx ≠ 0, κx >�0:5

αxπ2

6
, for κx ¼ 0

Not exists, for κx � �0:5

8>>>>><
>>>>>:

(20)

4. Gumbel

When Gumbel distribution is assumed for random rain-

fall intensity at each unsampled location, the CDF

corresponding to each cutoff ks, s ¼ 1, 2, . . . , S, can be

expressed as follows:

F(x, ks) ¼ Pr {R(x) � ks} ¼ exp �exp �ks � μx
βx

� �� �
(21)

where μx and βx are, respectively, location and scale

parameters.
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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The inverse CDF of Gumbel is:

ks(F) ¼ 1
βx

exp �ks � μx
βx

� exp �ks � μx
βx

� �� �
(22)

The mean value of Gumbel-based rainfall intensity at

location x can be estimated as follows:

R�
E(x) ¼ μR(x) ¼ μx þ γxβx (23)

where γx is Euler’s constant, and the standard deviation of

R(x) can be estimated by the following equation:

sd�2 (x) ¼ σ2
R(x) ¼ β2xζ(2) (24)

where ζ( � ) is the Riemann zeta function.

5. Generalized Pareto distribution

When generalized Pareto (GPA) distribution is assumed

for the random rainfall intensity at each unsampled location,

the CDF corresponding to each cutoff ks, s ¼ 1, 2, . . . , S,

can be expressed as follows:

F(x, ks) ¼ Pr {R(x) � ks}

¼ 1� 1� κx(ks � ξx)
αx

� � 1
κx , for κx ≠ 0

1� exp �ks � ξx
αx

� �
, for κx ¼ 0

8>>>><
>>>>:

(25)

where ξx, αx, κx are, respectively, location, scale and shape

parameters. ξx � x<∞ if κx � 0 and ξx � x< ξx þ
αx

κx
if

κx > 0. When the shape parameter κx ¼ 0, the GPA distri-

bution is reduced to the Pareto (PA) distribution.

The inverse CDF of GPA is given as follows:

ks(F) ¼
ξx þ

αx

κx
[1� (1� F(x, ks))

κx ], for κx ≠ 0

ξx � αx ln {1� F(x, ks)}, for κx ¼ 0

8<
: (26)
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The mean value of GPA-based rainfall intensity at

location x can be estimated as follows:

R�
E(x) ¼ μR(x) ¼ ξx þ

αx

1þ κx
(27)

and the standard deviation of R(x) can be estimated by the

following equation:

sd�2 (x) ¼ σ2
R(x) ¼

α2
x

(1þ κx) 2 þ (1þ 2κx)
(28)

6. Generalized logistic distribution

When the generalized logistic (GLO) distribution is

assumed for the random rainfall intensity at each unsampled

location, for each cutoff ks, s ¼ 1, 2, . . . , S, can be expressed

as follows:

F(x, ks) ¼ Pr {R(x) � ks} ¼ 1
1þ exp(�y)

(29)

where

y ¼
� 1
κx

ln 1� αx(ks � ξx)
αx

� �
, for κx ≠ 0

ks � ξx
αx

, forκx ¼ 0

8>><
>>:

where ξx, αx,κx are, respectively, location, scale and shapepar-

ameters. ξx þ
αx

κx
� x<∞ if κx < 0;�∞ � x<∞ if κx ¼ 0 and

ξx < x � ξx þ
αx

κx
if κx > 0. The GLO distribution is reduced to

logistic (LO) distributionwhen the shape parameter κx is zero.

The inverse CDF of GLO is given as follows:

ks(F) ¼
ξx þ

αx

κx
1� 1� F(x, ks)

F(x, ks)

� �κx� �
, for κx ≠ 0

ξx � αx ln
1� F(x, ks)
F(x, ks)

� �
, for κx ¼ 0

8>><
>>:

(30)

The mean value of GLO-based rainfall intensity at

location x can be estimated as follows:

R�
E(x) ¼ μR(x) ¼ ξx þ

αx(1� g1)
κx

, for κx ≠ 0

ξx, for κx ¼ 0

8<
: (31)
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
And the standard deviation can be estimated by the

following equation:

sd�2 (x) ¼ σ2
R(x) ¼

α2
x(g2 � g21)
κx

2 , for κx ≠ 0

α2
xπ

2

3
, for κx ¼ 0

8>><
>>:

(32)

where gr ¼ Γ (1� rκx)Γ (1þ rκx).
Statistical indices

Various estimates for the unknown value R(x) can be

derived from the conditional CDF, e.g., expectation

(E-type), median (M-type) or a maximum probability type

(P-type) (Bierkens & Burrough ). In this study, the

E-type estimate R�
E(x) is used to estimate the performance

IK and is defined as follows:

R�
E(x) ¼

ð∞
0
R(x)dF�(x) (33)

where F�(x) is the estimated CDF for the rainfall intensity at

location x. The standard deviation sd�(x) of rainfall intensity

can also be calculated to investigate the corresponding

uncertainties:

sd�2 (x) ¼
ð∞
0
[R(x)� R�

E(x)]
2dF�(x) (34)

To evaluate this integral, the procedures for inter-

polation between the IK-derived conditional CDF values

are critical. Knowing a conditional CDF at several threshold

values, the integral can be estimated by assuming the distri-

bution of the rainfall intensity at the considered location. In

this study, several commonly used parametric probability

distribution functions, including LN distribution, GEV dis-

tribution, GPA distribution, GLO distribution, are used to

fit the IK estimated CDF at different threshold rainfall inten-

sities, as well as DA.

There are many factors affecting the performance of

spatial interpolation methods, including sampling density,

sample spatial distribution, sample clustering, surface type,

data variance, data normality, quality of secondary
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information, stratification and temporal scale. Among them,

data variation is a dominant factor (Li & Heap ). Large

data variation indicates a high heterogeneity in the data.

Since the original rainfall data have transformed into

binary variables to distinguish whether the rainfall intensity

is higher than the considered threshold in this study, vari-

ation in data itself is not a concern that affects the

performance of spatial interpolation methods. Herein,

the interpolation performance, as well as the impact of the

semi-variogram estimation on the interpolation perform-

ance, is evaluated. IK results, along with different

distributional assumptions of the random rainfall intensity

at unsampled locations, were used to estimate the mean

rainfall intensity value. The estimated values of rainfall

intensity within the domain of interest were compared

with the observed values at every sample point using the fol-

lowing performance criteria.

BIAS measures the averaged differences between the

estimated rainfall values with the reference to the observed

values as follows:

BIAS ¼ 1
n

Xn
i¼1

[R�
E(xi)� R(xi)] (35)

where R�
E(xi) is the E-type estimate at location xi; R(xi) the

observed value at location xi. Since the negative and positive

estimates counteract each other, the resultant BIAS tends to

be lower than the other performance criteria considered

below. The positive-valued BIAS indicates that the estimated

rainfall value on average is higher than that of the observed.

It should not be used as an indicator of prediction accuracy.

The mean absolute error (MAE) summarizes the aver-

aged absolute differences between the observed and

estimated rainfall values:

MAE ¼ 1
n

Xn
i¼1

jR�
E(xi)� R(xi)j (36)

The root mean squared error (RMSE) is a commonly

used performance indicator of overall model prediction

accuracy as compared to the observed values. It is more sen-

sitive to outliers than the MAE as large errors exert heavier
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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influence on the value of RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

[R�
E(xi)� R(xi)]

2

vuut (37)

The accuracy of estimated indicator variables (AIEV) is

given as follows:

AEIV ¼ mean
Pn

i¼1 1� abs[I�(xi, k)� I(xi, k)]
n

� �
(38)

where I�(x, k) is the indicator transformation of the esti-

mated rainfall intensity for threshold k at location x;

I(x, k) is the indicator transformation of the observed rain-

fall intensity for threshold k at location x.
RESULTS AND DISCUSSION

To estimate the probability distribution as well as the mean

rainfall intensity at an unsampled location within the

studied domain, several thresholds need to be selected. At

each threshold, the data are indicator-transformed and

their resulting indicator variograms are used to describe

the changes in spatial variability along with the CDF.

Hence, threshold values need to be selected to provide the

maximum possible resolution defining CDF. More

thresholds, in theory, provide a better definition of the

CDF, but the more intensive calculation is required.

In this study, six threshold values of rainfall intensity

were chosen, based on a numerical experiment indicating

that increasing the number of thresholds brings only a

minor additional reduction in estimation accuracy. The

threshold value k was set to be 1, 2, 3, 5, 10 and 20 mm/h,

respectively, for modeling the prior distribution.

Isotropic variogram

One important problem for geostatistical interpolation of rain

field is the effective and reliable estimation of the variogram

for each time step. Variograms were inferred from radar rain-

fall data because of the higher resolution in space compared

to the recording raingauge stations. To investigate the influ-

ence of variogram estimation on interpolation performance,
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isotropic experimental semi-variograms are estimated for

every 6-min time step under the considered six threshold

levels during each selected rainstorm event. The automati-

cally estimated parameters (e.g., range and sill) of the

isotropic variogram for an exponential model for the two

selected rainstorm events are shown in Figures 6 and 7.

There are some features that can be noticed from the

estimated parameters of the isotropic variograms for the

selected rainstorm events.

Most of the sills of indicator variograms at all considered

cut-off levels and time steps are ranging from 0 to 0.4.

For the 2007-05-18 rainstorm event, it is clear that the

values of the range and sill have a negative correlation

with the rainfall intensity thresholds. The larger the

threshold, the smaller the range and sill are. Situations are

different for the 2008-04-19 rainstorm event from the 80th

6-min to the 200th 6-min. This correlation offers information

about the number of the rainstorm centers. Confirmed from

the rainfall intensity images of the 2008-04-19 rainstorm

event, there is indeed more than one rainstorm center

during those time periods, which makes the values of the

variogram parameters for lower cut-off levels (e.g., 1 and

2 mm/h) go down, even to the smallest. ‘Rainstorm centers’
Figure 6 | Time variation of estimated variogram parameters ((a) range and (b) sill) of the exp

://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
here are referring to the areas where the rainfall intensity is

greater than 10 mm/h. The instantaneous rain field of the

2007-05-18 rainstorm event at the 33rd 6-min shown in

Figure 8 clearly indicates that the only one rainstorm

center is located in the northwest. For the 160th 6-min of

the 2008-04-19 rainstorm event (see Figure 9), the rainstorm

centers scatter at several different locations. This result con-

sists of the information obtained from the correlation

between the mean length and range of the indicator vario-

gram (Liu & Tung ). Because of the existence of

multiple rainstorm centers, the correlation coefficients of

the mean length and range for the 2008-04-19 rainstorm

event are slightly lower than those for the other two con-

sidered rainstorm events.

Anisotropic variogram with elliptic-fitted parameters

The spatial structure of rain field at each threshold level

reveals strong anisotropy. Hence, the indicator vario-

grams are fitted with the exponential variogram model

for 24 directions at each time step. The variogram par-

ameters (e.g., range and sill) are expected to show its

directional association and tend to be similar if the
onential model under the isotropic condition for the 2007-05-18 rainstorm event.



Figure 7 | Time variation of estimated variogram parameters ((a) range and (b) sill) of the exponential model under the isotropic condition for the 2008-04-19 rainstorm event.
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directions are close. However, the presence of sampling

variation could result in significant variability of vario-

gram parameters with the direction even the two

considered directions only differ by about 10�. Herein,

the parameters of anisotropic variograms are fitted with
Figure 8 | Instantaneous rainfall intensity contour (in mm/h) over the study area during

the 2007-05-18 rainstorm event at 33rd 6-min.

om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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an elliptic model. Figures 10 and 11 show the examples

of sample estimated and elliptic-fitted ranges of aniso-

tropy variogram for the selected rainstorm events. The

procedure of fitting the variogram parameters with the

elliptic model removes the fluctuation of the original
Figure 9 | Instantaneous rainfall intensity contour (in mm/h) over the study area during

the 2008-04-19 rainstorm event at 160th 6-min.
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parameters that are directly estimated from the theoreti-

cal variogram model for 24 directions. In addition, the

parametric representation of variogram parameters by

the elliptic model reduces the number of the parameters

of the model from 48 (both ranges and sills for all 24 con-

sidered directions at one time) to 6 (the biggest range and

sill, the smallest range and sill and the angle of the big-

gest range and sill).

IK is used to analyze the probability that the rainfall

intensity is greater than the considered threshold for the

unsampled location and the non-decreasing CDF values at

the predetermined threshold levels are available. Eight

different interpolation schemes are tested to fit the estimated

CDF from IK by the least-square method and to estimate the

mean rainfall intensity within the study area (see examples

in Figure 12).
Figure 11 | Sample and elliptic-fitted ranges of anisotropy variogram for the threshold of

10 mm/h at 20:00 pm during the 2008-04-19 rainstorm event.

Discussion

The results of the performance of IK and mean rainfall

intensity estimation (compared with the 132 observed rain-

gauge estimations) are shown in Tables 1 and 2 under

different assumptions about the semi-variogram model and

different probability distributions of the CDF.
Figure 10 | Sample and elliptic-fitted ranges of anisotropy variogram for the threshold of

5 mm/h at 18:30 pm during the 2007-05-18 rainstorm event.

://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
Comparing the results based on different variogram

models, it is clear that IK based on the variogram under iso-

tropic assumption shows the worst performance for most

times. This result signifies the necessity of capturing the ani-

sotropy feature of rain field although it is more

computationally intensive and complex to fit the variogram

model for 24 different directions. The other finding is that

the IK based on the anisotropic variogram with strictly

sampled estimated parameters and that of elliptic-fitted par-

ameters show similar performances and the former one

leads to slightly better results. Without sacrificing too

much in the accuracy, the sampling fluctuation of the vario-

gram parameters for 24 directions can be removed by fitting

with an elliptic model and the number of the parameters is

reduced from 48 to 6.

It can be seen that the estimation on the value of the

rainfall intensity is not always satisfactory. However, per-

formance varies from one rainstorm event to another. The

worst performance was found during the 2008-04-19 rain-

storm event, the values of BIAS, MAE and RMSE are

around �4.1, 9.0 and 21.8 mm/h, respectively. IK shows

reasonable performance for the 2007-05-18 rainstorm

event (BIAS: �1.3 mm/h, MAE: 2.3 mm/h and RMSE:

6.3 mm/h). This accuracy of estimation can be improved



Figure 12 | Examples of curve fitting for CDF at four different locations for the 2007-05-18 rainstorm event (18:30 pm).
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by increasing the number of the thresholds, but at the same

time, the indicator variograms associated with the new

thresholds need to be calculated which is very time-consum-

ing. The other performance measure, AEIV, shows that,

although the estimated mean rainfall intensity value some-

times may not be that precise, most of the times the

estimation is located in the right range of the threshold

levels. It can be concluded that IK can usually adequately

provide the probability that an unknown rainfall intensity

at an unsampled location is greater than the given threshold

value (or the value of the indicator variable), and this infor-

mation is the basis for sequential indicator simulation and
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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critical decisions in agriculture, hydrology, hydraulic struc-

tural design and other areas.

For further analysis, the BIAS, MAE and RMSE are

calculated for each threshold range of the rainfall intensity.

Most contribution of the error comes from the large range

with rainfall intensity greater than 10 mm/h.

In general, the three-parameter distribution models

usually show slightly better performance than the two-

parameter distributions. Fitting the CDF with a GPA distri-

bution outperformed the other six distribution models

considered according to the values of BIAS, MAE, RMSE

and AEIV.



Table 1 | Example of performance assessment of IK based on sample isotropic and anisotropic variograms and elliptic-fitted anisotropic variogram at 18:30 pm during the 2007-05-18

rainstorm event

Distribution

IK based on
sample isotropic
variogram

IK based on sample
anisotropic
variogram

IK based on elliptic-
fitted anisotropic
variogram Distribution

IK based on
sample isotropic
variogram

IK based on sample
anisotropic
variogram

IK based on elliptic-
fitted anisotropic
variogram

BIAS RMSE

DA 1.992 �0.529 0.526 DA 15.682 6.439 8.951

LN �0.462 �0.932 �0.526 LN 6.910 6.291 6.556

GEV �1.282 �1.907 �1.567 GEV 9.017 6.319 6.371

Gumbel �0.293 �1.387 �1.132 Gumbel 9.561 6.707 6.958

GPA �0.336 �1.333 �0.928 GPA 8.847 6.296 6.403

PA �0.198 �1.356 �1.059 PA 8.791 6.336 6.505

GLO �1.053 �1.528 �1.199 GLO 9.037 6.325 6.345

LO �0.343 �1.392 �1.174 LO 9.934 6.44 6.655

MAE AEIV

DA 4.926 2.577 3.468 DA 0.847 0.828 0.830

LN 2.707 2.443 2.632 LN 0.847 0.844 0.840

GEV 3.141 2.297 2.374 GEV 0.847 0.852 0.850

Gumbel 3.334 2.431 2.64 Gumbel 0.818 0.837 0.825

GPA 3.250 2.298 2.413 GPA 0.848 0.852 0.855

PA 3.089 2.313 2.478 PA 0.843 0.851 0.849

GLO 3.063 2.297 2.348 GLO 0.848 0.851 0.850

LO 3.307 2.363 2.542 LO 0.821 0.845 0.834
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Figures 13 and 14 compare the observed rainfall inten-

sity with that of the estimated value under the assumption

of GPA distribution for the CDF. From the standard devi-

ation map, it is clear to see that large uncertainty in

estimating unknown rainfall intensity at unsampled location

is associated with the large rainfall intensity. The AIEV is

high when the rainfall intensity exceeds 5 mm/h. From the

results of BIAS, it can be seen that overestimation often

occurs when estimating the lower range rainfall intensity,

while it tends to underestimate in the range of higher rainfall

intensity.
CONCLUSIONS

IK has the capability of estimating the probability that an

unknown quantity at an unsampled location is greater

than a given threshold value by capturing the proportion

of neighboring data valued above the considered threshold.
://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
In this study, IK is used to estimate the exceedance probabil-

ities for different rainfall intensity threshold levels at all

unsampled locations within the studied domain. Six rainfall

intensity thresholds are chosen based on a numerical exper-

iment, indicating that increasing the number of thresholds

brings only a minor additional improvement in estimation

accuracy. A procedure for the interpolation between the

IK-derived conditional CDF values is implemented.

The performance accuracy of spatial interpolation

results as well as influences of different variogram models

(isotropic and anisotropic) and different fitted schemes

for the estimated conditional CDF are studied. Under the

isotropy assumption, values of the exponential variogram

model parameters (e.g., range and sill) have a negative cor-

relation with the rainfall intensity threshold except for the

time periods when multiple rainstorm centers exist. When

different time resolutions (6-min, 12-min, 30-min and 60-

min) are considered, the time series of isotropic variogram

parameters for the four-time resolutions share a similar



Table 2 | Example of performance assessment of IK based on sample isotropic and anisotropic variograms and elliptic-fitted anisotropic variogram at 20:00 pm during the 2008-04-19

rainstorm event

Distribution

IK based on
sample isotropic
variogram

IK based on sample
anisotropic
variogram

IK based on elliptic-
fitted anisotropic
variogram Distribution

IK based on
sample isotropic
variogram

IK based on sample
anisotropic
variogram

IK based on elliptic-
fitted anisotropic
variogram

BIAS RMSE

DA 28.089 16.345 18.327 DA 48.423 25.197 26.179

LN 1.247 �2.311 �0.373 LN 22.139 20.396 19.622

GEV � 0.878 �3.358 �1.604 GEV 20.916 20.783 19.546

Gumbel 0.657 �5.690 �4.380 Gumbel 20.973 22.321 21.116

GPA 1.359 �2.810 �1.077 GPA 21.359 20.440 19.173

PA 2.293 �4.925 �3.366 PA 21.626 21.639 20.226

GLO � 0.909 �3.593 �1.922 GLO 20.048 21.035 19.740

LO � 1.822 �6.177 �5.050 LO 21.664 22.787 21.753

MAE AEIV

DA 29.971 19.937 21.594 DA 0.584 0.856 0.595

LN 10.282 9.712 10.140 LN 0.699 0.878 0.722

GEV 9.910 9.338 9.644 GEV 0.708 0.841 0.721

Gumbel 10.563 7.777 10.031 Gumbel 0.703 0.916 0.709

GPA 9.773 9.773 9.393 GPA 0.717 0.925 0.721

PA 10.057 9.768 9.421 PA 0.713 0.902 0.716

GLO 10.041 8.486 9.703 GLO 0.710 0.855 0.718

LO 10.931 7.728 10.452 LO 0.698 0.916 0.702

Figure 13 | Example of observed rainfall intensity (left), estimated mean rainfall intensity (middle) and standard deviation of the estimation (right) in mm/h under the assumption of GPA

distribution at 18:30 pm during the 2007-05-18 rainstorm event.
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trend. IK based on these isotropic variograms shows the

worst performance for most times. While IK based on the

anisotropic variogram with strictly sampled estimated par-

ameters and that of elliptic-fitted parameters show similar

performances. This confirms the necessity of capturing
om http://iwaponline.com/hr/article-pdf/51/3/521/698364/nh0510521.pdf
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the anisotropy feature of rain field and the procedure of fit-

ting anisotropic variogram parameters with an elliptic

model.

Fitting the conditional CDF values at the selected

threshold levels with a GPA model shows slightly



Figure 14 | Example of observed rainfall intensity (left), estimated mean rainfall intensity (middle) and standard deviation of the estimation (right) in mm/h under the assumption of GPA

distribution at 20:00 pm during the 2008-04-19 rainstorm event.

539 P. Liu & Y.-K. Tung | Spatial interpolation of rain-field dynamic time-space evolution Hydrology Research | 51.3 | 2020

Downloaded from http
by guest
on 24 April 2024
better performance when estimating the mean rainfall

intensity. The corresponding AEIV is the highest among

the eight considered distributions for most considered

rainstorm events. The proposed IK method tends to over-

estimate the rainfall intensity values in a lower range and

underestimate them in a higher range. And the perform-

ance varies from one rainstorm event to another. The

standard deviation maps indicate that there is high

uncertainty associated with the large rainfall intensity

values. However, it can provide a good estimation of

an indicator variable for rainfall intensity based on the

predetermined thresholds, which can serve a good basis

for sequential indicator simulation and critical decisions

in agriculture, hydrology, hydraulic structural design and

other areas.
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