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ABSTRACT

Although hydrological model forecasts aid water management decisions, they normally have predictive uncertainties. Generalized likelihood

uncertainty estimation (GLUE) is popular for constructing predictive uncertainty bounds (PUBs). GLUE is based on simple Monte Carlo

sampling (SMCS), a technique known to be ineffective in establishing behavioural simulations. This study introduced randomized block

quasi-Monte Carlo sampling (RBMC). In RBMC, each parameter’s range is divided into a stipulated number of sub-blocks (Snb). Parameters’

values are separately generated in each sub-block. Finally, the sub-blocks are shuffled while maintaining the sequence of generated values in

each sub-block. When Snb is equal to the number of simulations, RBMC reduces to SMCS. Otherwise, each Snb leads to a separate RBMC

configuration or sampling scheme. The number of RBMC-based behavioural solutions was often found to be greater than that of SMCS, in

some cases, by up to 33.6%. The width of the 90% confidence interval on 95th percentile flow based on SMCS was often larger than

those of RBMC, sometimes by up to 23.4%. PUBs were found to vary in widths among RBMC configurations, thereby revealing the influence

of the choice of a sampling scheme. Thus, GLUE based on RBMC is recommended to take into account the said influence.

Key words: generalized likelihood uncertainty estimation, hydrological model uncertainty, Latin hypercube sampling, Monte Carlo sampling,

predictive uncertainty, randomized block quasi-Monte Carlo sampling

HIGHLIGHTS

• GLUE uses simple Monte Carlo sampling (SMCS) which is ineffective in establishing behavioral simulations.

• This study introduced randomized block quasi–Monte Carlo Sampling (RBMC) for GLUE and SMCS becomes one of the various RBMC con-

figurations.

• RBMC improved the number of retained solutions by up to 33.6% in some cases.

• RBMC improved the width of 90% confidence interval on a flow event by up to 23.4%.

• RBMC takes into account the influence of the choice of a sampling scheme as a sub-source of calibration uncertainty.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

The indispensability of modelling as a tool for understanding different hydrological processes obligates scientific researchers
to continually focus on ways of understanding and/or reducing model uncertainties. Uncertainty can be epistemic (Der

Kiureghian & Ditlevsen 2009; Beven 2016; Nearing et al. 2016; Gupta & Govindaraju 2023) or aleatoric (Hora 1996;
Gong et al. 2013; Nearing et al. 2016). Epistemic uncertainty can be linked to the model parameters and comprises a mod-
eller’s ignorance of his or her choice of the best-performing model. Aleatoric uncertainty is due to the noise inherent in the
observations. To reduce epistemic (or reducible) uncertainty, a modeller has to make use of additional data (Nearing et al.
2016; Zhou et al. 2022) for training or calibration. Aleatoric uncertainty can be reduced by enhancing the precision and accu-
racy of measuring equipment. Aleatoric and epistemic uncertainties combine to yield predictive uncertainty in the model
output (Beven & Binley 1992; Gupta & Govindaraju 2023). Although predictive uncertainty reduction does not mean sim-

plification of decision-making, it is to increase the ‘trustworthiness’ of the inferences made on forecasts from scenario results.
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Apart from model structure, parameters, and input data, calibration comprises an important area on which a modeller can

focus to reduce model uncertainty (Beven & Binley 1992; Kavetski et al. 2006; Zhang et al. 2009). Calibration entails chan-
ging the values of a model’s parameters to guarantee the minimal mismatch between the observed and modelled variables. In
other words, calibration is performed to minimize parameter estimation uncertainties (Eckhardt et al. 2005) and maximize a

model’s reliability.
Changing a model’s parameters can be done manually or automatically. The idea behind manual calibration is that when

certain parameters are adjusted (for instance, by increasing their magnitudes), some predictable changes in the modelled out-
puts can be obtained. When several interacting parameters are adjusted, the changes in the outputs can be unpredictable

(Gupta et al. 1999). Furthermore, manual calibration tends to be time-consuming and requires expert knowledge of the mod-
eller (Boyle et al. 2000). For complex models with many parameters, manual calibration can be inefficient and frustrating. In
fact, a strict adherence to model calibration using manual procedure would inhibit the widespread use of complex and soph-

isticated models (Gupta et al. 1999). To overcome the challenges of changing parameters manually, automation of the model
calibration started way back in the mid-1960s (see for instance, Dawdy & O’Donnell 1965). Automatic changing of par-
ameters involves applications of mathematical and statistical approaches to minimize the model residuals based on mainly

optimization functions. Even in the automatic calibration, it remains unlikely, given the various model uncertainties, that
a modeller can obtain only one set of optimal parameters (Qi et al. 2019). This notion led to equifinality (Beven & Binley
1992; Beven & Freer 2001), a concept which recognizes the fact that there can be several sets of model parameters to

yield a highly comparable model performance. The recognition and acceptance of equifinality steered the development of
the generalized likelihood uncertainty estimation (GLUE) framework by Beven & Binley (1992).

GLUE is the Bayesian approach (which is, actually, an automatic calibration strategy) and consists of (i) stipulation of each
parameter’s upper and lower limits, (ii) randomization of many (e.g. 10,000) sets of model parameters from the prior distri-

bution, and (iii) inferring posterior distribution using simulations. Apart from the GLUE framework, several approaches exist
for establishing bounds of uncertainty on model predictions such as sequential data assimilation (Moradkhani et al. 2005;
Vrugt et al. 2005), multi-model averaging methods (Georgekakos et al. 2004; Vrugt & Robinson 2007), classical Bayesian

(Kuczera & Parent 1998; Thiemann et al. 2001), and pseudo-Bayesian (Freer et al. 1996). Other uncertainty analysis methods
include the Bayesian total error analysis (Kavetski et al. 2003), parameter estimation code (PEST) (Doherty 2010), multi-
objective analysis (Hadka & Reed 2013), and differential evolution adaptive metropolis (DREAM) (Vrugt 2016). While

these methods have different underlying assumptions, each of them also has its own advantages and disadvantages. Never-
theless, among the various uncertainty analysis methods, GLUE is very popular due to its conceptual simplicity, ease of
implementation, and capacity to handle various error structures and models (Blasone et al. 2008).

It can be argued that the randomization of parameter values in the GLUE framework with regard to Monte Carlo analysis

is mainly ineffective in establishing behavioural simulations (Blasone et al. 2008). This problem can be compounded by the
substantial computational time required to obtain the stipulated behavioural modelled series from complex models, and the
hardship in dealing with high-dimensional parameter estimation problems (Blasone et al. 2008). Furthermore, the use of less

formal likelihood by GLUE can lead to very flat posterior distributions (Mantovan & Todini 2006; Stedinger et al. 2008; Liu
et al. 2022). To obtain better posterior distributions, one would think of other Markov chain Monte Carlo (MCMC) methods.
Actually, through the use of simple Monte Carlo random sampling (hereinafter denoted as RND), GLUE does not take into

account the influence of the choice of parameter sampling technique on calibration results and this is the gap on which this
paper focused.

This paper introduced randomized block quasi-Monte Carlo sampling (RBMC) while investigating its suitability to support

the GLUE framework. The RBMC starts by dividing each parameter range into a stipulated number of intervals or sub-blocks.
The parameter’s values are separately generated in each interval. The final step consists of shuffling the sub-blocks while the
sequence of the generated values in each sub-block is not affected. In this way, RND is nested within the RBMC in terms of
the chosen number of sub-blocks.

2. MATERIALS AND METHODS

2.1. RBMC sampling

Monte Carlo sampling relies on a pseudo-random generator with the underlying concept of using randomness to solve
tasks which may, in principle, comprise deterministic problems. An important note is that the approach of using a
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pseudo-random generator leads to values which are chaotic or extremely in disarray. Thus, the generated random numbers

are not equidistant and they have uneven differences in their magnitudes. In a quasi-Monte Carlo sampling, we can use the
sequence of low discrepancy to bring about a faster rate of convergence. A number of low-discrepancy sequences exist such as
the Faure sequence, Halton sequence, and Sobol sequence. A key challenge of low-discrepancy sequences is that they are

deterministic and not random and this means that quasi-Monte Carlo sampling can be considered a de-randomized or deter-
ministic approach. De-randomization in the quasi-Monte Carlo sampling leads to error bound which makes the estimation of
the error hard. Since we want a method which can allow us to estimate the variance, randomization becomes a plausible
technique to modify the quasi-Monte Carlo sampling into the randomized quasi-Monte Carlo sampling. One technique is

the shuffling of sub-blocks of the generated values. Eventually, this study introduced RBMC.
To explain the RBMC, we can start from the RND. Let n be the total number of model parameters. In the Monte Carlo

simulation approach, which makes use of RND, the values of the uj’s get drawn from the entire range 0–1. Let f(x) and
F(x) be the probability density function (pdf) and cumulative distribution function (CDF), respectively, of a certain
random variable X. Using RND, a realization xj of X can be obtained through the calculation from the pdf (Equation (1))
based on a uniform deviate uj over the range 0–1 using a pseudo-random number generator such that

FZ(z) ¼ P[X � x] ¼
ðx

�1
fZ0 (z0) (1)

and uj can be converted using the inverse function zj ¼ F�1
X (uj): In RND, values of a parameter are generated in a purely

random way over the specified domain.
In RBMC, the first step comprises the specification of the range of each parameter value. In other words, for 1 � i � n, we

provide the upper (uu(i)) and lower (lu(i)) limits of the ith parameter. In the second step, we choose the term b that is the
number of sub-blocks of values of each parameter. In the third step, we draw numbers from a distribution function based
on the term b. Consider that nsim denotes the number of simulations. The number of values to be generated from each
sub-block is given by the ratio of nsim to b. A good idea is that nsim should be chosen such that it is divisible by b. This is

possible for the case when a single RBMC configuration is being considered. When a modeller chooses to consider several
RBMC configurations, it means that the term b will have several values. Thus, it becomes impossible to choose a particular
nsim that can be divisible by each of the values of b for the respective RBMC configurations. In other words, in cases where

nsim is not divisible by b (or when mod(nsim, b). 0), we introduce another term nwa (or the modified number of simulations)
such that nwa¼ (nsim�mod(nsim, b)þ b) where mod(nsim, b) stands for nsim mod b. Therefore, the number of values of each
parameter to be generated within each interval or sub-block is given by (nsim/b) and (nwa/b) for the cases when mod(nsim,
b)¼ 0 and mod(nsim, b). 0, respectively. Figure 1 shows an illustration of four sub-blocks (b¼ 4) for a model with five par-
ameters. The values (m(i,j)) denoting the bounds of the sub-blocks of values of each parameter can be given by

m(i,j) ¼ lu(i) þ ( j� 1)� (uu(i) � lu(i))
b

for 1 � i � n and 1 � j � (bþ 1) (2)

For the initial parameter (or when i ¼ 1), the first (h1,1), second (h1,2), third (h1,3), and fourth (h1,4) sub-blocks are bounded

by (m(1,1), m(1,2)], (m(1,2), m(1,3)], (m(1,3), m(1,4)], and (m(1,4), m(1,5)], respectively. It should be apparent that lu(1) ¼ m(1,1) and
m(1,5) ¼ uu(1). The next step entails determining the number of values to be generated from each sub-block of every parameter.
Let us assume that in our case, b ¼ 4 and nsim ¼ 8 such that we want to generate two (i.e. 8/4¼ 2) values from each sub-

block (as illustrated in Figure 1). Based on the initial model parameter (θ1), we have h1,1 ¼ [z1, z2], h1,2 ¼ [z3, z4], h1,3 ¼ [z5, z6]
and h1,4 ¼ [z7, z8] where zj ¼ F�1

Z (uj) and 1 � j � 8. In other words, we separately apply Equation (1) to each sub-block of
every parameter’s values. The last step entails separately shuffling the sub-blocks of the values of each parameter. Here,
the shuffling process should be carefully done to ensure that only the sub-blocks are shuffled while the sequence of generated

values in each sub-block is not altered. At this point, the total number of generated values for each parameter should be nsim
and nwa for the cases where mod(nsim, b)¼ 0 and mod(nsim, b). 0, respectively. For the first case (or when mod(nsim, b)¼ 0),
we finally consider all the nsim generated values of each parameter for model calibration. In the second case (or when

mod(nsim, b) . 0), only the first nsim (from the total nwa) generated values of each parameter are considered for model cali-
bration or simulation. For 1� k� nsim, a complete kth set of the model parameters is obtained by taking every kth value of
each parameter. Therefore, a model can be run nsim times to yield nsim modelled series.
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An important note is that there are two special cases when RBMC is the same as RND. The first case is when the value of

the term b is set to one (1), meaning that the nsim value of each parameter is generated once. This first case can rarely be
applicable for simulation analysis given the need for large nsim required to achieve realistic predictions in the context of
Monte Carlo analysis. The second case is when the term b is set to nsim (given that nsim is far larger than 1) indicating

Figure 1 | Procedure of RBMC for the case with four sub-blocks when a model has five parameters.
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that one value of a given parameter is generated in each of the nsim sub-blocks of every parameter's values. In other words, the

number of every parameter's generated values becomes equal to nsim. This means that RBMC is a composite Monte Carlo
sampling method which comprises RND as one of its configurations.

2.2. Existing schemes for comparison with RBMC

2.2.1. Latin hypercube sampling

Latin square is a square grid with sampling points such that each row and every column include one point. If this concept is

extended to large numbers of dimensions such that each axis-aligned hyperplane consists of one point, it means we are deal-
ing a with a Latin hypercube. To generate v sample values, we divide the total area under the pdf in to v equal areas. From
each area, one random value is generated. Considering all the areas, we obtain a sample of v values. For instance, let us con-

sider that we are dealing with a uniform distribution whose pdf with domain [c, d] is to be divided into five equal areas. We
divide the domain to obtain [c, t1], [t1, t2], [t2, t3], [t3, t4) and [t3, d]. We make use of the analytical inversion method to
generate one point from each interval. Thus, the interval [0, 1] is split into v equal portions and from each portion, a random
variable is generated to obtain u1, u2, . . . ::, uv. The generated values become x1, x2, . . . ::, xv based on

x1 ¼ F�1(u1), x2 ¼ F�1(u2), . . . :, xv ¼ F�1(uv):

2.2.2. Stratified Monte Carlo random sampling

Consider that a certain random variable Z has pdf and CDF denoted by fZ(z) and FZ(z), respectively. For a stratified random
sampling, we divide the range 0–1 into a finite number of intervals which can be of the same or equal width (such as 0–0.2,
0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1.0 if there should be five intervals). Over each interval, we can generate the same number of
deviates uj’s and the associated zj’s. The idea is that the procedure should lead to realizations of Z which are nearly

evenly spread over the range with the advantage of achieving realistic estimates of fZ(z) using few realizations. One may rea-
lize that Latin hypercube sampling (LHS) is comparable with the stratified random sampling. However, an important note is
that if we draw v samples with LHS, we will have v equal sub-space, while stratified random sampling can have w sub-space

and in each sub-space k, samples will be drawn resulting into a total of v values or w� k ¼ v:

2.3. Case study

2.3.1. Selected data and models

Quality-controlled daily precipitation and potential evapotranspiration (PET) over the River Mpanga catchment with an area
of 1,484 km2 in Uganda were adopted from Onyutha et al. (2021). To allow comparison of the new and existing methods, two

lumped conceptual hydrological models were applied. The first model was the VHM (Willems 2014) and it makes use of
catchment-wide average of precipitation and PET as time-variable model inputs to generate runoff as a function of the soil
moisture storage. The model splits runoff into overland flow, interflow, and slow flow and these components are separately

routed and later combined into the modelled flow. The other model was the Nedbør–Afstrømnings model (NAM) (Nielsen &
Hansen 1973). Like the VHM, NAM also uses lumped (or catchment-wide averaged) precipitation and PET as the meteor-
ological model inputs. In NAM, surface storage is obtained as a function of the precipitation and PET. Quick flow and

slow flow components are generated from the surface storage and separately routed and the resultant outputs are combined
into the modelled flow from NAM.

2.3.2. The choice of the number of parameter sub-blocks

The choice of the term b in Equation (2) can be made on a case-by-case basis. For a high-dimensional parameter space, the
term b could be set to range from 2 up to, say, t. To consider the uncertainty of the choice of parameter sampling scheme on
model output, t can be greater than 10. However, since this study focused on testing the acceptability of RBMC for GLUE, t

was set to 10. Thus, qMC2, qMC3, … , qMC10, were considered.

2.3.3. Number of retained modelled series

Values of both NAM and VHM parameters were generated using RND, LHS, and nine configurations of the introduced

method from qMC2 to qMC10. In other words, there were a total of 11 sampling schemes considered in this study. In the
next step, uu and lu of each parameter were specified as shown in Appendix A. The number of simulations (nsim ) was at
first set to 1,000. In other words, a total of nsim values of each parameter were generated using every sampling scheme.
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For a particular sampling scheme, each model was run nsim times. This procedure was repeated with various values of nsim

varying from 10,000 to 90,000 at an interval of 10,000.
A likelihood function was required for obtaining behavioural solutions. Several likelihood functions exist in the literature

(see for instance, Christensen 2004; Moradkhani et al. 2005; Beven & Binley 2014) for measuring mismatch between obser-

vations and modelled series. A likelihood function adopted for this study was given by

L(ukjY) ¼ exp(�N � s2
k=s

2
Y ) (3)

such that L(ukjY) is the likelihood measure for the kth model conditioned on observations Y, s2
k denotes the error variance for

the kth model, and s2
Y is the variance of observations. The term N is an adjustable parameter to assign weights for distinguish-

ing between good and bad solutions (Freer et al. 1996). The likelihood function in Equation (3) was adopted in this study
because it is commonly used for GLUE (Blasone et al. 2008). When N ¼ 1, the basic form of Equation (3) or
L(ukjY) ¼ (1� (s2

k=s
2
Z))

2 becomes the commonly known Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe 1970) and may
indirectly be related to the other recently introduced forms of coefficient of determination such as the revised R-squared
and hydrological model skill score (Onyutha 2022). Small N leads to a flat likelihood function which extends over a wider
region of the parameter space (Freer et al. 1996). A large N leads to a peaked likelihood function with a precise optimal sol-
ution (Blasone et al. 2008). To allow investigation of the possible effect of the shape of the likelihood function on the

efficiency of the various sample-generating schemes, N was varied from 1 to 20.
Further comparison was made in terms of the relative bias (RB, %) or the difference between the number of retained sol-

utions of RND and those from other sampling schemes. Values of RB were computed using

RB ¼ (Si � SRND)=SRND � 100 (4)

where SRND and Si refer to the number of retained solutions based on RND and the ith other remaining sampling scheme (and

1 , i � 11 in this study). Large nsim values from 30,000 to 90,000 were considered in the computation of RB to avoid exag-
gerated values of RB.

2.3.4. Comparison of uncertainty bounds of the various sampling schemes

To construct the confidence interval (CI), α ¼ 0.10 was chosen. Normally, 95% CI (or the use of α ¼ 0.05) is common in the

application of GLUE. However, GLUE has a limitation such that it is difficult to ensure many observations fall within the
95% CI especially based on available formulations (Blasone et al. 2008). Therefore, the use of α ¼ 0.10 was preferred to
α ¼ 0.05.

The initial value of nsim was set to 1,000 and each model was calibrated using the nsim sets of parameters’ values generated
by each of the selected sampling schemes. Two quantiles were considered for analysis including the 95th and 2nd percentile
modelled flow events. The uncertainty bounds on each selected flow quantile were obtained as the difference between the

upper and lower limits (or width) of the 90% CI. This procedure was repeated with nsim varying from 10,000 to 90,000 at
an interval of 10,000.

Comparison was also made in terms of the relative difference (RD, %) in the CI widths for the various sampling schemes.

To do so, RD was computed using

RD ¼ (Ci � CRND)=CRND � 100 (5)

where CRND and Ci refer to the widths of the CI based on RND and the ith other remaining sampling scheme (and 1 , i � 11
in this study).

3. RESULTS

3.1. Likelihood

Figure 2 shows likelihood based on various sampling schemes. Generally, the likelihood for a particular nsim decreases expo-
nentially with increasingN (Figure 2(a)–2(f)). On a cursory look, patterns of the variation of likelihood under various nsim and
N appear comparable for the different sampling schemes (Figure 2(a)–2(f)). This was for both NAM (Figure 2(a), 2(c) and
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2(e)) and VHM (Figure 2(b), 2(d) and 2(f)). These results depict the acceptability of the RBMC. Besides, patterns of the like-
lihood obtained by applying all the selected RBMC configurations (though shown only for qMC2, Figure 2(e)–2(f)) were also
comparable.

Figure 3 shows the variation of likelihood with the term N. The plots in Figure 3 were based on values in Table 1 for nsim
equal to 90,000. The vertical axis of each of the plots in Figure 3(a) and 3(b) was made on a logarithmic scale for clarity. For
all the values of nsim (though only shown for 90,000 in Figure 3 for illustration), the likelihood value decreased with an

increase in N and this was due to the exponential effect of N. For NAM, some values were above and others below that
of RND (Figure 3(a)). However, the likelihood of RND based on VHM was systematically below the values of other sampling
schemes (Figure 3(b)). The likelihood of the best simulation was obtained with the term N equal to 1 (Figure 3(c) and 3(d)).
Generally, the likelihood tended to increase with increasing nsim. For a particular nsim, there were a number of RBMC con-

figurations which yielded higher likelihood values than that of RND and this was for both models (Figure 3(c) and 3(d)).
Considering results from both models, there was no sampling scheme which consistently yielded the highest (or best) likeli-
hood value for the various values of nsim and N. This demonstrates the uncertainty in calibration due to the choice of the

sampling scheme. To quantify such an uncertainty, results from a large array of sampling schemes are required. Thus, the
concept of having several configurations of RBMC, as demonstrated in this study, offers an important step for insights on
quantifying influence from the said sub-source of calibration-related uncertainty.

Figure 2 | Likelihood for the various schemes applied to (a,c,e) NAM and (b,d,f) VHM.
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Figure 3 | Likelihood for the various values of (a,b) N and (c,d) best simulation.

Table 1 | Likelihood values for nsim set to 90,000

Sampling scheme

N

1 5 10 15 20 1 5 10 15 20

VHM NAM

RND 0.7194 0.1927 0.0371 0.0072 0.0014 0.6800 0.1967 0.0387 0.0076 0.0011

LHS 0.7166 0.1890 0.0357 0.0068 0.0013 0.6967 0.1641 0.0269 0.0044 0.0008

qMC2 0.7306 0.2082 0.0433 0.0090 0.0019 0.7248 0.2000 0.0400 0.0080 0.0016

qMC3 0.7462 0.2313 0.0535 0.0124 0.0029 0.7278 0.2042 0.0417 0.0085 0.0017

qMC4 0.7772 0.2837 0.0805 0.0228 0.0065 0.7210 0.1949 0.0380 0.0074 0.0014

qMC5 0.7351 0.2147 0.0461 0.0099 0.0021 0.7427 0.2260 0.0511 0.0115 0.0026

qMC6 0.8111 0.3511 0.1233 0.0433 0.0152 0.7074 0.1772 0.0314 0.0056 0.0010

qMC7 0.7676 0.2666 0.0711 0.0189 0.0050 0.7526 0.2415 0.0583 0.0141 0.0034

qMC8 0.7942 0.3160 0.0998 0.0315 0.0100 0.7194 0.1927 0.0371 0.0072 0.0014

qMC9 0.7236 0.1984 0.0394 0.0078 0.0015 0.7242 0.1991 0.0397 0.0079 0.0016

qMC10 0.7408 0.2231 0.0498 0.0111 0.0025 0.7147 0.1865 0.0348 0.0065 0.0012
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3.2. Number of retained modelled series

Figure 4 shows variation in the number of solutions that were behavioural with nsim. Note that the first value of nsim in Figure 4
is 1,000 and not 0. The difference between any two subsequent nsim values greater than 1,000 is 10,000. However, the differ-

ence between the first two nsim values considered was less than 10,000. This explains why the horizontal axis starts from
0. The spread of the number of behavioural solutions increased with increasing nsim although this was smaller for NAM
(Figure 4(a)) than VHM (Figure 4(b)).

For certain values of nsim, e.g. when nsim was 50,000 and 20,000 considering NAM (Figure 4(a)) and VHM (Figure 4(b)),

respectively), the numbers of retained solutions from RND were less than those from other sampling schemes. Nevertheless,
the numbers of behavioural solutions generally tended to fluctuate around those for RND. Values of RB are summarized in

Figure 4 | Number of retained solutions for (a) NAM and (b) VHM.

Table 2 | Values of RB for the various sampling schemes

nsim� 104 LHS qMC2 qMC3 qMC4 qMC5 qMC6 qMC7 qMC8 qMC9 qMC10

NAM

3 � 13.5 � 9.0 � 3.3 � 10.5 � 12.3 � 1.8 4.5 � 16.8 1.2 12.6

4 8.7 13.5 16.0 11.2 � 1.0 14.8 22.4 2.5 � 2.3 20.6

5 10.4 13.2 16.2 33.6 21.7 6.0 20.0 1.7 11.7 8.9

6 4.9 0.2 � 3.0 2.5 1.3 2.5 � 0.9 2.7 � 7.7 � 9.0

7 3.0 10.4 � 8.6 � 1.1 � 3.8 1.2 2.3 4.6 2.5 4.0

8 0.7 0.7 � 6.3 1.9 0.9 � 1.2 3.9 3.2 0.5 � 9.3

9 1.4 14.3 � 4.7 7.0 2.7 � 1.7 5.4 10.3 1.8 1.2

VHM

3 31.8 14.1 28.2 � 4.7 9.4 14.1 32.9 27.1 57.6 14.1

4 4.5 21.1 � 0.8 21.1 3.0 3.0 � 13.5 17.3 � 8.3 � 7.5

5 3.5 0.6 4.7 � 2.9 10.0 10.0 � 11.2 4.7 28.8 � 0.6

6 15.3 12.2 5.1 6.6 4.1 � 15.8 9.7 3.1 12.8 � 8.7

7 � 6.6 � 2.9 2.1 � 3.3 5.8 � 0.8 0.8 9.5 0.8 12.8

8 � 8.5 19.6 15.0 3.8 � 5.8 27.3 28.1 9.6 12.3 16.9

9 7.5 10.5 5.6 3.9 2.6 12.1 6.9 17.0 � 16.4 2.3
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Table 2. The smaller the RB, the more comparable the numbers of series retained based on the two sampling schemes being

considered. The larger the number of retained series, the better the sampling scheme. Thus, positive RB indicates better per-
formance of a given sampling scheme than that of RND. The maximum improvement in NAM was 33.6% (qMC4) followed
by 22.4 (qMC7). However, improvements in VHM went up to 57.6 (qMC9) followed by 32.9 (qMC7). This demonstrates the

adequacy of the RBMC for GLUE. Importantly, the values of RB were both positive and negative even for particular nsim. This
further reinforced the notion that the use of a single sampling scheme such as the well-known RND of LHS for GLUE com-
prises an uncertainty due to the choice of the parameter sampling method.

3.3. Uncertainty bounds

Figure 5 shows widths of 90% CI on the second percentile modelled flow quantile based on nsim set to 1,000 for demon-
stration. The uncertainty bounds based on NAM (Figure 5(a) and 5(c)) were narrower than those of VHM (Figure 5(b)

and 5(d)). Based on results from either VHM or NAM, the width of the CI varied from one sampling scheme to another.
The largest CI widths for NAM and VHM were 21.5 and 48.7 m3/s based on qMC9 and qMC7, respectively. The modelled
quantiles from both hydrological models were closer to the lower than upper CI limits. Assuming that the difference between

the observed and modelled quantiles is minimal with the residuals being normally distributed, one would expect the modelled
value to lie around the centre of the CI. However, the result from Figure 5 showed that many of the simulations from both

Figure 5 | Uncertainty bound on the second percentile flow-based (a,c) NAM and (b,d) VHM.
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models over-estimated the low flow quantile. Generally, calibration using objective functions such as NSE (as applied in this

study) as a metric that is typically based on the comparison of overall water balance makes the hydrological model perform-
ance good for high flows compared to low flows. Nevertheless, the narrower the CI width, the more precise the prediction.
The minimum CI widths of 16.2 and 27.9 m3/s for NAM and VHM were obtained using qMC7 and qMC8, respectively.

Figure 6 shows differences (RD) between RND and other sampling schemes in terms of the widths of the confidence inter-
vals (CIs). The smaller the CI width, the more precise the method used. Here, the zero horizontal line can be taken as the
reference indicating the bias of RND relative to itself. It is noticeable that values for a particular sampling scheme fluctuate
about the reference. Positive RD indicates that the CI based on RND is more precise than that from the other sampling

scheme under consideration. In the same line, negative RD values indicate improvement with respect to the precision of
the prediction. The configurations qMC7 and qMC8 yielded the best improvements of CI on 95th percentile flow by 11.4
and 10.6%, respectively (Figure 6(a)). However, for the low flow quantile base from NAM, the improvements of CI relative

to RND were best exhibited by qMC10 and qMC6 by 19.2 and 16.0%, respectively (Figure 6(b)). The top two improvements in
CI on the 95th percentile flow from VHM were by 23.4 and 21.2% based on qMC8 and qMC7, respectively (Figure 6(c)). For

Figure 6 | Relative difference in the CI width between RND and other sampling schemes applied to model (a,b) NAM and (c,d) VHM. Due to
the large difference between the first two nsim values (i.e. 1,000 and 10,000), the horizontal axis starts from 0. However, the first value of nsim
is 1,000 and not 0.
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low flow quantile from VHM, the largest improvement was by 9.5% based on qMC6, followed by 9.1% from qMC7

(Figure 6(d)). Fluctuations in NAM-based RD values for a given nsim were larger for high flow than low flow quantiles
(Figure 6(a) and 6(b)). However, the fluctuations in the RD values based on VHM were larger for low flow than high flow
quantiles (Figure 6(c) and 6(d)). This contrast reflects the differences in the capabilities of the selected models in reproducing

hydrological extremes.

4. DISCUSSION

The likelihood value for the best simulation based on each RBMC configuration was shown to increase with the increasing
nsim. Similar results were also obtained with RND and LHS. It is worth noting that GLUE uses the ‘less formal likelihoods’.
Several studies (Mantovan & Todini 2006; Stedinger et al. 2008; Liu et al. 2022) argued that GLUE’s use of informal likeli-

hood functions (or soft rules) to determine the behavioural parameters normally results in very flat posterior distributions.
Specifically, Mantovan & Todini (2006) demonstrated the incoherence of GLUE with Bayesian inference using a pseudo-
Bayes experiment. They showed that ‘less formal likelihoods’ failed to add information to the conditioning process especially

under the circumstance of gradually increasing the number of observations. Beven et al. (2007), in their response, clarified
that GLUE was developed to be applied to actual calibration issues comprising errors from both model inputs and model
structures. Furthermore, Beven et al. (2007) concluded that the demonstration by Mantovan & Todini (2006) of the incoher-

ence of GLUE regarding the requirement that including every new observation should add information to the conditioning
process could not hold.

The purpose of this paper was not to refute the argument that other MCMC methods could be more efficient and effec-
tive in obtaining a better posterior distribution of parameters than that based on GLUE. In fact, GLUE can be considered

to be an extension of the Bayesian averaging approach to a less formal likelihood (Beven et al. 2000). The ‘less formal
likelihood’ comprises the key aspect of the differentiation in the Bayesian inference thereby allowing for flexibility in
the definition of the likelihood function to eliminate the need for strong assumptions on the error model (Jin et al.
2010). In the case when all the assumptions are satisfied, the use of the formal Bayesian technique becomes more accep-
table given its linkage to its classical statistical theory and application of formal mathematical procedure and MCMC
simulation for inferring parameter and model prediction distributions (Vrugt et al. 2009). It is worth noting that a direct

comparison of GLUE and the formal Bayesian method is generally difficult for various reasons. Firstly, the formal Bayesian
method’s focus on unraveling the effects of errors due to model inputs, outputs, and model structures complicates statistical
inference (Vrugt et al. 2009). On the other hand, GLUE does not consider separating these effects on the total uncertainty.
Secondly, the formal Bayesian method makes use of an exact (or formal) likelihood function (assumed or transformed from

an unknown form) to estimate the prediction precision of one-step ahead forecasting (Vrugt et al. 2009; Jin et al. 2010).
However, GLUE applies an informal likelihood function to estimate prediction precision (or CI) on simulated variables
(such as river flow in this case).

It is known that the sources of the total predictive uncertainty are numerous especially due to inputs (Renard et al.
2010; McMillan et al. 2018), calibration (Beven 2006), and model parameters or structure (Beven 1989; Butts et al.
2004; Renard et al. 2010). Attempts to reduce the total predictive uncertainty can be made by tackling the various

sources of uncertainties. Beyond the calibration sphere, uncertainty due to the model structure becomes substantially
dominant in the predictive uncertainty (Højberg & Refsgaard 2005; Rojas et al. 2008; Troin et al. 2018). Some sub-
sources of calibration-related uncertainty include the choice of (i) a calibration method, (ii) an objective function, and

(iii) an optimization approach. This study found that results (in terms of widths of CI, or number of behavioural sol-
utions) of some RBMC configurations were below while others lied above those for RND. This demonstrated the
influence from the choice of parameter sampling method as a sub-source of calibration uncertainty. Application of an
array of the RBMC configurations presents a creditable capacity to quantify the total predictive uncertainty while offering

the opportunity to understand the influence of the choice of a parameter sampling method. This property is not pos-
sessed by LHS or RND. Furthermore, the application of RND as a single parameter generation scheme
conventionally used for GLUE makes it a difficult task to quantify the uncertainty due to the choice of sampling

scheme. Other issues of the conventional sampling techniques especially RND and LHS are known. For instance,
LHS assumes independence among the parameters (Petelet et al. 2010) and when some model parameters are depen-
dent, the use of LHS in a GLUE framework can impact the number of behavioural solutions. Furthermore, the
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pseudo-random sampling in LHS requires several samples to be accurate (Huntington & Lyrintzis 1998). The advantage

of RND normally used in the conventional GLUE framework is that it is simple and faster to generate parameter values
(Huntington & Lyrintzis 1998). However, RND has the limitation of tackling problems which require high-dimensional
parameter estimation (Blasone et al. 2008). Given the composite nature of the introduced RBMC such that it comprises

RND as one of its configurations, this paper puts forth the proposition for researchers to adopt RBMC for running the
GLUE framework.

An important step in adopting RBMC for the GLUE framework is to decide on the number of RBMC configurations for
application. In this study, only 10 configurations were used to demonstrate the acceptability of the introduced method. How-

ever, the number of RBMC configurations in the application of GLUE can be far larger than 10. The larger the number of
RBMC configurations used, the better the uncertainty analysis. For each RBMC configuration, a separate set of uncertainty
limits and modelled series can be derived. A combination of modelled series from the various RBMC configurations yields a

single model ensemble. Various methods for obtaining model ensembles exist and they date back to the 1970s (Twedt et al.
1977) among which we have simple arithmetic averaging, and weighted mean approach (Baker & Ellison 2008).

5. CONCLUSIONS

Many models in hydrology are complex and make use of non-linear equations in their structures. Using analytical tech-
niques to quantify the uncertainty in such models is a difficult task. GLUE is a calibration strategy which relies on

RND. The use of RND reduces the effectiveness of GLUE in establishing behavioural solutions. This study introduced
RBMC and investigated its use for GLUE. In the first step of the RBMC, the upper and lower limits of each parameter
are stipulated. The next step consists of deciding on the number of intervals into which the full range of each parameter

is divided. Over each interval, values of every parameter are separately generated. Here, the RND approach of generating
parameter values can be used. Lastly, the various sub-blocks of the generated values of a given parameter are shuffled.
During the shuffling process, the sequence of the generated values in each interval is ensured not to be affected.

The number of behavioural solutions based on RBMC was larger than that of RND, in some cases, by up to 33.6%.
The widths of 90% CI on 95th percentile flow based on some RBMC configurations were smaller than those of RND
by up to 23.4%. For a selected nsim in the range 1,000–90,000, the numbers of behavioural solutions from RBMC fluc-

tuated around those from RND. Similarly, the widths of 90% CI on a selected flow quantile were below and above that
from RND. These findings revealed that the choice of a sampling scheme is a sub-source of calibration uncertainty. The
use of RND or LHS as a single sampling scheme for GLUE is insufficient to support the quantification of the afore-
mentioned sub-source of calibration uncertainty. In this line, the introduced method presents the key advantage that

RND becomes nested within the RBMC approach. Furthermore, the introduced method takes into account the influ-
ence of the choice of a sampling scheme by offering an opportunity to select a particular number of RBMC
configurations. Thus, RBMC given its demonstrated potential for uncertainty quantification is proposed to be adopted

for GLUE instead of RND.
MATLAB codes for RBMC implemented in a simplified manner for calibrating HMSV lumped conceptual model

(Onyutha, 2019) can be downloaded along with example modelling datasets via https://doi.org/10.5281/zenodo.10702810

for illustration purpose. The following procedure is recommended for constructing uncertainty bounds on predictions
from a model using RBMC while taking into account the influence of the choice of a sampling scheme on calibration results:

(a) The upper and lower limits of each model parameter are stipulated, and the term b is also specified.
(b) nsim is set to a large number (e.g. 100,000) and as guided under section 2.1, relevant number parameter values are gen-

erated in each interval or sub-block of a given parameter with respect to nsim, nwa and the term b stipulated in step (a).
Here, a pseudo-random generator can be used to separately generate parameter values in each interval.

(c) The total number of behavioural solutions (nbs) is also stipulated, for instance, nbs ¼ 2,000.
(d) Threshold of the chosen objective function to generate behavioural solutions is specified (e.g. NSE¼ 0.6).
(e) The number of RBMC configurations (ncon) is chosen (e.g. ncon ¼ 20). This means that RBMC is varied using qMC( j)

where j ¼ 2, 3, … .., ncon.
(f) By setting j in qMC( j) to 2 (or using qMC2), the model is set to run nsim times using awhile loop. This means that thewhile

loop is terminated when the number of behavioural solutions is equal to nbs stipulated in step (c).
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(g) For each of the remaining RBMC configurations (or from j in qMC( j) set to 3, 4 … ., ncon), step (f) is repeated. This leads to

(ncon � 1) sets of behavioural solutions each of size equal to nbs.
(h) For each RBMC configuration, the series with the best value of the objective function (for instance, the highest NSE) is

selected as the best-modelled series. The ensemble mean is obtained by averaging the best-modelled series based on all the

considered (ncon � 1) RBMC configurations.
(i) It is worth noting that for each RBMC configuration, there are nbs modelled values in an attempt to reproduce each

observed flow event. From these nbs modelled values, the (100� α)% CI on the modelled flow event under consideration
is obtained as [0:005 � a%� nbs]th and [{1–(0:005 � a%)} � nbs]th values, respectively. For all the selected RBMC

configurations, it means that there are (ncon � 1) values of the upper limit of CI on a particular flow event. Similarly,
there are (ncon � 1) values of the lower limit of CI on a flow value. To obtain the ensemble (100� a%) CI, the
(ncon � 1) values of the upper limit of CI on a particular flow event are averaged. Similarly, the (ncon � 1) values of the

lower limit of CI on a flow value are averaged.
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