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ABSTRACT

Identification of hydrologically homogenous watersheds in the Upper Blue Nile Basin of Ethiopia is challenging due to the large number of

watersheds and the lack of consistent and reliable data. Traditional methods, such as expert-based classification, are time-consuming, sub-

jective, and often not reproducible. Therefore, this study aims to identify homogenous gauged watersheds using hydrometeorological and

remote sensing data. In this study 76 watersheds were delineated from a 30-m digital elevation model (SRTM-DEM). Twelve watershed

characteristics were selected to aid the classification process. Three homogenous climate regions were identified using rainfall data

from 42 stations, and for each homogeneous climate region, gauged watersheds were identified. Principal component analysis (PCA) and

K-means clustering were used for classification. The PCA reduced 12 watershed characteristics into three principal components using a

threshold of 80% accounted variance and eigenvalues greater than one. K-means clustering classified the 76 watersheds into nine hom-

ogenous clusters. In the classified regions, vegetation dynamics within three decades have also been analyzed. This helped identify

trends in vegetation cover and its spatial and temporal dynamics. The results of the investigation will potentially be used for runoff prediction

of ungauged watersheds and for water resource management models in the future.

Key words: Blue Nile Basin, homogeneous watersheds, K-means clustering, principal component analysis, remote sensing indices,

vegetation dynamics

HIGHLIGHTS

• Principal component analysis and K-means cluster analysis were used for homogenous watershed classification.

• Use of hydrometeorological data and remote sensing indices were used for homogenous watershed classification.

• Seventy-six watersheds in the upper Blue Nile were classified to three climatological regions and nine homogenous watersheds.
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GRAPHICAL ABSTRACT

INTRODUCTION

Watershed classification is a method used to group watersheds based on similar attributes such as land use, soil type, climate,

topography, geology, and hydrology (Wolfe et al. 2019). This process is useful for predicting streamflow in ungauged basins
(Choubin et al. 2019), sustainable environmental planning (Pascucci et al. 2018), and flood frequency analysis (Pallard et al.
2008; Farsadnia et al. 2014). Predicting runoff in ungauged basins also requires the classification of watersheds into hydro-

logically comparable groups before regionalization (Kanishka & Eldho 2017). This is especially true when there are limited
financial resources and a lack of technical knowledge to undertake on ground work (Choubin et al. 2017). The precision of
regionalization heavily relies on the precise categorization of comparable watersheds (Razavi & Coulibaly 2013; Kanishka &

Eldho 2017; Ayalew et al. 2022). Choubin et al. (2017), Mosavi et al. (2021), and Sardooi et al. (2019) have demonstrated
watershed classification based on average hydrological indices, physiographic features, and meteorological characteristics
specific to each watershed within the basin. With the help of different machine learning clustering algorithms, such as K-
means clustering, agglomerative hierarchical clustering, and hybrid clustering, watersheds are generally grouped into a simi-

lar region (Farsadnia et al. 2014; Kanishka & Eldho 2017; Sardooi et al. 2019) using the hydrological characteristics of each
watershed. So, it is important to choose these watershed characteristics carefully. However, in the Blue Nile Basin, it is gen-
erally difficult to determine and understand the hydrological indices of the ungauged watersheds due to the lack of sufficient

data. This issue may be resolved using remote sensing datasets that are widely used for runoff prediction (Choubin et al. 2017).
Kanishka & Eldho (2020), Palcon (2021), and Chaudhary & Pandey (2022) have explored the potential of clustering water-
sheds into similar regions, aiming to enhance predictions for ungauged watersheds. These studies aimed to identify

homogenous groups of watersheds using various dimensionality reduction techniques on watershed characteristics. Dimen-
sionality reduction methods include both linear and nonlinear techniques. Principal component analysis (PCA) is a linear
dimensionality reduction technique that reduces high-dimensional data into smaller dimensions. Several hydrology research-

ers have demonstrated the effectiveness of utilizing PCA prior to watershed classification (Farhan et al. 2017; Kanishka &
Eldho 2017, 2020; Kunnath-Poovakka & Eldho 2018; Palcon 2021). In each of the studies mentioned, PCA reduced the
dimensionality of the data so that the majority of the variations within the data were reduced in lower dimensions. One
example of nonlinear dimensionality reduction techniques is self-organizing maps (Swain et al. 2016). Watershed classifi-

cation in the Blue Nile River Basin, Ethiopia, is challenging due to the large number of watersheds and the lack of
consistent and reliable data. Traditional methods, such as expert-based classification, are time-consuming, subjective, and
often not reproducible. The Upper Blue Nile River Basin faces recurrent drought and famine due to inadequate infrastructure,

such as a lack of water impounding systems and reliable irrigation schemes to address extended periods of low precipitation
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(Kim & Kaluarachchi 2008; Gebregiorgis et al. 2013). The region’s dependence on rain-fed agriculture and small-scale irriga-

tion makes runoff estimation crucial for small watersheds. In addition, estimating runoff for ungauged watershed is essential
for planning long-term strategies like hydropower generation, large-scale irrigation, and ecological protection. Understanding
the temporal and spatial variability of water yield in the study area is vital for local economies and downstream countries.

Despite the significance, previous studies have primarily concentrated on estimating runoff only at the outlet of the
gauged watersheds (Tigabu et al. 2015, 2020; Ayele et al. 2016). In addition Kim & Kaluarachchi (2008) have attempted
to develop regionalization models without identifying hydrologically homogenous watersheds. Therefore, before developing
a hydrological model, there is a need for a more objective and efficient method for watershed classification in the Blue Nile

River Basin of Ethiopia. Recognizing these challenges in this study, a more objective and efficient linear classification tech-
nique, PCA with K-means clustering, is used for classifying 76 watersheds in Blue Nile River Basin, Ethiopia, using the
existing physiographic and meteorological characteristics as well as remote sensing-based watershed characteristics. One

of the most important objectives and interests of the International Association of Hydrological Sciences (IAHS) is the use
of remote sensing datasets to improve runoff prediction in ungauged watersheds (Sivapalan et al. 2003; Choubin et al.
2017). The use of remote sensing datasets is particularly important in regions where hydrological data may be limited, as

they can provide additional information about land use, vegetation, and soil properties that can be used to improve the accu-
racy of runoff prediction models.

MATERIAL AND METHODS

Study area

The Blue Nile River is the most important tributary of the Nile River, providing over 60–70% of the Nile’s flow at Aswan Dam
(Nawaz et al. 2010). Both Egypt and, to a lesser extent, Sudan are almost entirely dependent on water from the Nile. This

dependency creates the challenges of water resources management in these regions and is currently a subject of the inter-
national law of transboundary rivers (Waterbury 2008). The Upper Blue Nile Basin refers to the uppermost part of the

Figure 1 | Study area: Upper Blue Nile Basin and 76 selected gauged watersheds for hydrological similarity study.
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Blue Nile Basin, located in Ethiopia, that originates from Lake Tana, which is located at an elevation of just under 1,800 m

(Figure 1). It leaves the southeastern corner of the lake, flowing first southeast, before looping back on itself, flowing west and
then turning northwest close to the border with Sudan. Until the main stream reaches the lowlands at the Ethiopian–Suda-
nese border at El-Diem, numerous tributaries join the main stream in the central and southern highlands of Ethiopia. By

gaining a better understanding of the Upper Blue Nile Basin’s homogeneous watersheds, managers can more effectively
plan the utilization of water resources and mitigate natural disasters such as erosion, drought, and others, which may be influ-
enced by the geography and climate of the watershed.

Methodology

The methodology of the study included (i) deriving the required watershed characteristics from hydrometeorological and
different remote sensing datasets, (ii) normalization of watershed characteristics, (iii) multicollinearity assessment, (iv) K-
means clustering, and (v) finding the optimum number of classes according to the classification validation criteria. Various
research studies have utilized different methods to characterize watersheds, indicating the need to determine which water-

shed characteristics significantly affect runoff responses. Expert judgment is required to identify such characteristics.
According to previous studies (Choubin et al. 2017; Sardooi et al. 2019; Wolfe et al. 2019), a total of 12 potentially useful
watershed characteristics were selected to identify homogeneous watersheds in the Upper Blue Nile Basin. The selected

watershed characteristics for the classification of watersheds into homogenous groups are presented in Table 1.

Physiographic and metrological characteristics

The Upper Blue Nile Basin boundary was obtained from the Hydro SHEDS dataset (Lehner et al. 2008). The physiographic
characteristics, elevation and slope, were extracted from SRTM-DEM, and the spatial–temporal variations of long-term

mean annual rainfall data in the Blue Nile Basin was determined by applying the inverse distance weight method on GIS
environment (Figure 2).

Table 1 | Selected watershed characteristics to identify homogenous watersheds in the study area

Description Units Data source

Watershed
attribute

Area The size of each watershed km2 30-m SRTM-DEM (https://gdex.cr.usgs.gov/gdex)

Longitude Longitudinal centroid value for each
watershed

Degrees

Latitude Latitudinal centroid value for each watershed Degrees

Physiographic characteristics

Elevation Average elevation for each watershed M

Slope Average slope for each watershed %

Meteorological characteristics

Precipitation Mean areal precipitation for each watershed Mm Ethiopian National Metrological Agency (ENMA)

Temperature Mean temperature °C

Remote sensing indices

NDVI Mean area normalized difference vegetation
index

– 12-year mean annual Landsat 8 https://earthexplorer.
usgs.gov/

EVI Mean areal enhanced vegetation index –

SAVI Mean areal soil-adjusted vegetation index –

NDMI Mean areal normalized difference moisture
index

–

NDWI Mean areal normalized difference water index –

Note: All data were obtained on October 2, 2023.
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Figure 2 | The physiographic and metrological input data of 12-year mean annual spatial variation (over 2010–2021) in the Upper Blue Nile
Basin.
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Remote sensing indices

Normalized difference vegetation index

Normalized difference vegetation index (NDVI) is used to quantify vegetation greenness. It is used to understand vegetation

cover and assess changes in plant health. NDVI value ranges from �1 to þ1, where a high NDVI value indicates the presence
of healthy vegetation, while negative values indicate poor and sparse vegetation. The NDVI, which runs from �1 to þ1, is also
crucial for identifying various land cover types in the study area. A pixel-based NDVI value was computed using Equation (1)

as the normalized difference between the Red (Band 4:0.64–0.67 μm) and near infrared (NIR) (Band 5: 0.85–0.88 μm) from
the Landsat 8 satellite data (see Figure 3 for a visual representation):

NDVI ¼ (NIR � Red)
(NIR þ Red)

: (1)

Soil-adjusted vegetation index

Soil-adjusted vegetation index (SAVI) is a vegetation index that includes a soil brightness correction factor to reduce the
effects of soil brightness (Huete 1988). This is often used in arid regions where vegetative cover is low. It is calculated

using two bands of Red (Band 4:0.64–0.67 μm) and NIR (Band 5: 0.85–0.88 μm) from the Landsat data (see Figure 3 for a
visual representation):

SAVI ¼ (NIR � Red)
(NIR þ Redþ L)� (1þ L)

(2)

where NIR are the pixel values from the NIR, Red are the pixel values from the near red band, and L is the amount of green
vegetation cover. The L value is determined by how much green vegetation is present. L is typically equal to 1 in places with

no green vegetation, 0.5 in areas with moderate green vegetation, and 0 in areas with very high vegetation coverage. To
account for the majority of land cover types, a soil brightness adjustment factor (L) of 0.5 was adopted for this research.

Normalized difference moisture index

Changes in moisture content are analyzed at the landscape element level, especially for soil and vegetation using a vegetation
distinguishing index called the normalized difference moisture index (NDMI). NDMI is sensitive to the moisture levels in
vegetation. It is used in a variety of applications, including drought monitoring, crop yield estimation, and vegetation

health assessment (Wilson & Sader 2002). It is calculated using two bands of NIR (Band 5: 0.85–0.88 μm) and mid-infrared
(MIR) (Band 6: 1.57–1.65 μm) from the Landsat 8 satellite data. This index ranges from �1 to þ1, where positive values indi-
cate a high moisture level and negative values indicate a low moisture level:

NDMI ¼ (NIR �MIR)
(NIR þMIR)

(3)

The NIR band is sensitive to vegetation reflectance, while the MIR band is sensitive to water and moisture content in veg-

etation and soil. By subtracting the MIR band from the NIR band and normalizing the result, the NDMI index is able to
highlight areas of high moisture content and discriminate them from areas of low moisture content.

Enhanced vegetation index

Enhanced vegetation index (EVI) is a spectral index that measures vegetation density and health using data from satellite ima-
gery. It was developed to improve upon the NDVI, which has limitations in areas with dense vegetation or high levels of

atmospheric interference (Huete et al. 2002). EVI is calculated from the reflectance values of three spectral bands, typically
the Blue (Band 4:0.64–0.67 μm), Red (Band 4:0.64–0.67 μm), and NIR (Band 5: 0.85–0.88 μm) from the Landsat 8 satellite
data as in Equation (4):

EVI ¼ 2:5� (NIR � Red)
(NIR þ 6� Red � 7:5� Blue þ 1)

: (4)
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Figure 3 | The remote sensing indices input data long term annual mean spatial variation (over 2010–2021) in the Upper Blue Nile Basin.
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The Red band is sensitive to chlorophyll absorption, while the NIR band is sensitive to vegetation structure and biomass.

The Blue band helps correct for atmospheric interference and soil background effects. EVI values range from �1 to 1, with
higher values indicating greater vegetation density and health (Huete et al. 2002). EVI is widely used in a variety of appli-
cations, including monitoring crop yields, tracking deforestation, and assessing the impacts of climate change on

vegetation (Fensholt & Proud 2012).

Identifying homogenous climate and watersheds

Homogenous climate zones and watersheds were identified using the PCA. PCA converts possibly correlated multiple vari-

ables into linearly uncorrelated variables and considerably reconstructs the variability in the original dataset with numerous
variables using fewer new variables (Jackson 2005). In this study, the watershed attributes (Table 1) were dimensionally
reduced using PCA. However, the concepts and the algorithms used to execute a cluster analysis with PCA are inherently

different. Due to our data matrix being huge, performing eigen decomposition to calculate the eigenvalues of the covariance
matrix proved challenging and prone to round-off errors. As an alternative, singular value decomposition (SVD) is a reliable
computational technique frequently used to compute PCAs of a dataset (Ayalew et al. 2022). This involves reducing the less

significant basis vectors in the initial SVD matrix. Therefore, the analysis was performed using SVD in R environment. To
determine the number of primary components, in this study, a scree plot of the elbow rule was used (Peres-Neto et al.
2005). This approach involves locating the ‘elbow’ shape on the curve and keeping all components until the curve flattens
out (Holland 2008; Zambelli 2016). In the process of identifying similar watersheds, it is crucial to take into account different

factors that may impact the precision of outcomes, including variation in climate zones. To reduce this influence, initially, the
homogeneous climate zones were identified using data from 42 rainfall stations, and subsequently, for each homogeneous
climate zone, the homogeneous watersheds were identified.

Once PCA was employed to reduce the dimensionality of the dataset by identifying the most important variables that con-
tribute to the variation in the data, K-means clustering was used to group the watersheds based on similarities in these
variables. K-means clustering, introduced by MacQueen (1967), is a frequently used unsupervised machine learning algorithm

to partition a given dataset into a set of K clusters, or groups (Kassambara 2017). It classifies watersheds into multiple groups
(clusters), such that watersheds within the same cluster are as similar as possible (i.e., high intraclass similarity), whereas
watersheds from different clusters are as dissimilar as possible (i.e., low interclass similarity) (Kassambara 2017). In K-
means clustering, each cluster is represented by its center (i.e., centroid), which corresponds to the mean of points assigned
to the cluster. K-means clustering was applied to the derived dimensions obtained using the dimensionality reduction tech-
niques to obtain clusters. For determining the optimal number of clusters in a dataset, numerous indices have been published
in the literature (Zhou et al. 2016; Shahapure & Nicholas 2020; Kassambara 2021). For this study, the most used Elbow and

Average Silhouette methods were applied. The Elbow method is based on determining the within-cluster-sum of squared
errors (WSS) for various numbers of clusters (K) and choosing the K for which change in WSS first begins to decrease,
that is the plot of the WSS with the K value resembles an elbow. The graph then begins to travel nearly parallel to the x-
axis from this point forward. The best K value, or the most clusters, is the one that corresponds to this location (Zambelli
2016). In the Average Silhouette method, optimum value of K refers to the point that maximizes the Average Silhouette
over a range of possible values for K. Generally, K is the minimum number of clusters that were formed from the 25 water-

sheds from the homogenous climate zone 1, 15 watersheds from the homogenous climate zone 2, and 36 watersheds from
the homogenous climate zone 3. This is iteratively until the distance of the watersheds to each cluster centroids is mini-
mal and the distance between the cluster centroids is maximal. The distance of the line segment between two points was
computed using Equation (5) and accounts for correlation within the data (Danielsson 1980; Swain et al. 2016; Kanishka

& Eldho 2017):

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2–x1)2þ (y2–y1)2

q
(5)

where (x1, y1) are the coordinates of one point, (x2, y2) are the coordinates of the other point, and D is the distance
between two points.
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Data normalization

To avoid the impact of measurement units, before performing classification, the raw data should be normalized. This step
makes the variables comparable and eliminates any heterogeneous impact on distance measurement. Here, the variables

were normalized to the range of [0, 1] using a commonly used standard normalization technique, Z-score (Al Shalabi
et al. 2006) as below:

Z ¼ X�Xmean

d
(6)

where Z is the standard normal inputs of watershed attributes, X is the continuous random inputs of watershed attributes, δ is
the standard deviation of inputs of watershed attributes, and Xmean is the mean of inputs of watershed attributes. Z standard-

ization makes the mean to be 0 and the standard deviation to be 1. A flowchart represented in Figure 4 shows the whole
procedure and methodology.

RESULTS AND DISCUSSION

The results of PCA analysis depicted that the 42 stations within the Blue Nile Basin were categorized into three distinct cli-
mate regions (Figure 5). Through identifying homogenous climate regions, we were able to reduce the uncertainty of
homogenous watershed identification. By doing so, we were able to obtain watershed classification results that were more

precise and dependable. This allowed us to achieve more accurate and reliable results in our watershed classification analysis.
The identification of homogenous climate regions provides valuable information about the spatiotemporal distribution of
rainfall within the basin, which can serve as a useful reference for future investigations into the hydrological mechanisms
at work in the region.

According to the PCA presented in Figure 5, three homogenous rainfall regions/clusters can be identified. The vector lines
in the figure represent highly correlated weather stations and are considered part of a single, homogeneous climate zone. The
points indicate temporal variability at a monthly timescale. Based on their relevance degrees, 11 stations in the upper basin

were categorized under homogenous climate region I, 11 stations in the lower basin were categorized under homogenous
climate region II, and 20 stations in the central basin were categorized under homogenous climate region III. The first
two principal components (PCs) explain over 95% of the total variability in the dataset, and their standard deviation is greater

than 1, providing valuable insights into rainfall variability.

Variable reduction for watershed classification

After driving all datasets and computing values for each watershed, the variables used in cluster analysis were reduced using
PCA and then normalized using Z-score, and 76 watersheds were classified using a normalized watershed variable and
K-means clustering algorithm, which uses the Average Silhouette and Elbow methods (Figure 6) to determine the number

of component analysis (dimension).
In Figure 6, the x-axis shows the PCs (dimensions), which are eight in this case, and the proportion of the explained var-

iance (green color) and eigenvalue (blue color) for each PC is displayed on the y-axis. From this, we observed that the elbow is

located at the second PC (eigenvalue greater than 1). This suggests that the analysis should continue with the first two com-
ponents. Furthermore, in Figure 6 we can observe that PC1 accounts for 58.3% of total variation of the data and PC2 accounts
for 11.9% of total variation of the data. Therefore, the first two PCs may be considered the most significant because they

account for more than a threshold of 90% variance of the original data. As a result, we only take into account PC1 and
PC2 in our analysis and leave out the other PCs from the analysis. This is how dimensionality reduction works. We efficiently
reduced our PCs (dimensions) from 12 to 2 PCs. To reduce variables, we considered the mean contribution of variables for
each PC and visualized it using the scree plot (Figure 7).

In Figure 7, the horizontal dashed line represents the expected contribution (average contribution of variables) to each PC
since all variables might be contributed evenly. Therefore, variables that have a contribution to that PC are located above this
line. In the first component, eight watershed characteristics (EVI, Longitude, NDMI, NDVI, Rainfall, and SAVI) have a sig-

nificant contribution, while Elevation and Temperature have a low contribution (as shown in Figure 7). In contrast, the
second PC is determined by only two variables, namely, Area and Slope, as illustrated in Figure 7. After variable reduction,
the cluster analysis was performed using K-means clustering algorithm based on these 10 most significant variables.
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Determine optimal number of clusters

The optimal number of clusters was determined using the Elbow and Average Silhouette methods as shown in Figure 8.
The optimal cluster (K) is determined by selecting the point at which the Average Silhouette is maximized and the total

WSS is minimized, across a range of possible values for K. As shown in Figure 8(a), for homogenous climate region I,

K¼ 4, the WSS tends to fluctuate more slowly than it does for other Ks. Therefore, K¼ 4 should be a good decision for
the number of clusters for region I homogenous climate. For homogenous climate region II, K¼ 3 indicates that the WSS

Figure 4 | K-means watershed clustering methodology flowchart.
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tends to fluctuate more slowly than it does for other Ks. Therefore, K¼ 3 is considered a good decision for the number of

clusters for homogenous climate region II. For homogenous climate region III, K¼ 2, the WSS tends to fluctuate more
slowly than it does for other Ks.

K-means clustering result

We determined the optimal number of clusters for classifying watersheds in the Upper Blue Nile Basin using the Elbow and
Average Silhouette methods (as shown in Figure 8). Based on our analysis, we classified the watersheds into nine homo-
geneous groups using the K-means classification method. This classification method allowed us to group the watersheds

based on their similarities in terms of hydrometeorological and remote sensing data. By doing so, we were able to identify
groups of watersheds that have similar hydrological processes and characteristics, which can be valuable for runoff prediction
in ungauged watersheds using the regionalization method.

In Table 2, we present the cluster membership of the watersheds in the Blue Nile Basin, which were classified into several
clusters based on their similarities in terms of hydrometeorological and remote sensing data. Climate homogeneous region I
consists of four homogeneous clusters, namely, cluster 1, cluster 2, cluster 3, and cluster 4, with seven, six, seven, and five

Figure 5 | Homogenous climate region and spatiotemporal variability of rainfall across the basin using a PCA plot of the first two components
(PC1 and PC2) accounting for more than 90% of the variance.
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watersheds, respectively; climate homogeneous region II comprises of three homogeneous clusters, namely, cluster 1, cluster
2, and cluster 3. These clusters consist of seven, four, and four watersheds, respectively; and climate homogeneous region III
comprises of two homogeneous clusters, namely, cluster 1 and cluster 2, consisting of 20 and 16 watersheds, respectively. The

Figure 7 | Plot of variable reduction and grouping of variables into components using the scree plot with the consideration of average
contribution of variables.

Figure 6 | Optimum number of component analysis using eigenvalue (green) and Elbow method (blue).
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cluster membership information presented in Table 2 provides insight into the grouping of watersheds based on their simi-
larities. This information can be valuable for designing effective water management strategies and decision-making

processes for the Upper Blue Nile Basin.

Validation of cluster analysis

The K-means clustering method resulted in four clusters in the homogenous climate region I, which were validated against
watershed characteristics such as annual rainfall variability, temperature, elevation, slope, NDVI, and NDMI. Cluster 1

watersheds have the lowest elevation (2,020.47–2,512.04 m) and rainfall (1,335.94–1,427.86 mm/year) among all clusters
in region I. These watersheds are located downstream in the eastern part of the Blue Nile Basin and have minimal vegetation
cover (NDVI range 0.27–0.31), indicating that they are mainly covered by agricultural land. On the other hand, Cluster 2

watersheds are situated in the southeastern portion of the basin and have intermediate elevation (2,666.45–2,769.77 m),

Figure 8 | Optimal cluster for K-means clustering algorithm using the Elbow (a) and Average Silhouette (b) methods. RI is climate hom-
ogenous region I, RII is climate region II, and RIII is climate region III.

Table 2 | Homogenous watersheds of the Upper Blue Nile Basin

Climate
region

Homogenous watersheds

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Region I Aleltu, Boreda, Desso, Gebreguracha,
Jemma, Mechela, and Wenchit

Chacha, Gorfo, Mugher, Roba, Robi-
Jida, and Robi-gumero

Beressa, Gerado,
Jogola, Kelina,
Selgi, Shy, and
Wizer

Debis, Guder,
Huluka, Tilku
Duber, and
Tinshu Duber

Region
II

Adiya, Angar, Dabana, Dabus, Little Ang,
Uke, and Wama

Didessa, Tamsa, Urgessa, and Yebu Indris, Neshi, Sifa,
and Tato

Region
III

Abahim, Andassa, Azuari, Bogena,
Chemoga, Chena, Dirma, Gemero,
Gumara, Megech, Muga, Ribb, Sedie,
Shina, Suha, Teme, Tigdar, Tul, Wenka,
and Yeda

Abbay, Birr, Chereka, Dondor, Dura,
Fettam, Gelgel Abay, Gilgel Beles,
Gudla, Jedeb, Koga, Lah, Leza,
Main Beles, Missini, and Temcha
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moderate rainfall (1,456.74–1,476.06 mm/year), and moderate to high vegetation cover (NDVI range 0.3–0.33), indicating

that they are primarily covered by forest and vegetation. Cluster 3 watersheds are located in the upland of climate hom-
ogenous region I, with high elevation (2,544.39–2,984.89 m), abundant rainfall (1,433.91–1,516.28 mm/year), and excellent
vegetation cover (NDVI range 0.28–0.34), suggesting that they are covered by forest and natural vegetation. Cluster 4 water-

sheds are found in the southern region of the Blue Nile Basin and have intermediate elevation (2,278.68–2,557.78 m),
moderate rainfall (1,384.22–1,436.41 mm/year), and moderate to high vegetation cover (NDVI range 0.33–0.4), indicating
that they are also mainly covered by forest and vegetation. The spatial distribution of the clusters within region I shows
that cluster 1 watersheds are mainly located in the downstream eastern part of the Blue Nile Basin, while cluster 2 watersheds

are situated in the southeastern portion of the basin. Cluster 3 watersheds are located in the upland areas of the region, and
cluster 4 watersheds are primarily found in the southern region of the basin (Figure 9). The clustering results provide insights
into the variability of hydrological conditions across the region, with watersheds in the eastern and southern parts of the basin

having relatively lower elevations and moderate rainfall, while those in the upland areas have higher elevations and abundant
rainfall (Figure 10). Moreover, the variation in vegetation cover across the clusters highlights the importance of land use and
land cover in influencing hydrological processes in the region.

In homogenous climate region II, the K-means clustering analysis resulted in three distinct clusters of watersheds. Cluster 1
of this climate zone includes watersheds with elevation ranges from 1,561.55 to 1,784.32 m, the lowest of the three clusters;
rainfall ranges from 1,250.12 to 1,291.78 mm/year, and NDVI values range from 0.45 to 0.5. The second cluster includes

watersheds with elevation range from 1,823.03 to 1,825.48 meters, rainfall ranges from 1,299.47 to 1,364.40 mm/year, and
NDVI values range from 0.38 to 0.56, indicating moderate vegetation cover. Finally, cluster 3 includes watersheds with
elevation ranges from 2,172.68 to 2,367.43 m, rainfall ranges from 1,299.02 to 1,400.82 mm/year, and NDVI values range
from 0.37 to 0.42, indicating relatively low vegetation cover. These three clusters are spatially distributed in the downstream

of the upper Blue Nile Basin. Figure 11 showed that cluster 3 has high rainfall as a result of its watersheds being situated at
higher elevations where atmospheric moisture is more likely to condense and precipitate. Nonetheless, the cluster’s compara-
tively low vegetation coverage could imply that the plants are not taking full advantage of the heavy rainfall, leading to

erosion and runoff. Multiple factors such as soil type, land use practices, and vegetation type could contribute to this phenom-
enon. Furthermore, the prevalence of bare land and degraded soil in the area could cause reduced vegetation coverage and
soil moisture. To comprehend these trends, more research would be necessary.

In homogeneous climate region III, the watershed classification based on K-means clustering method resulted in two clus-
ters. Cluster 1 includes watersheds with elevation ranges from 2,097.66 to 2,727.18 m, rainfall ranges from 1,350.37 to
1,468.09 mm/year, and NDVI ranges from 0.29 to 0.37. These watersheds are mainly located in the eastern part of the
Upper Blue Nile Basin. On the other hand, cluster 2 includes watersheds with elevation ranges from 1,471.52 to

2,572.94 m, rainfall ranges from 1,233.28 to 1,439.25 mm/year; and NDVI values range from 0.36 to 0.48 (Figure 12).
These watersheds are mainly located in the central part of the Upper Blue Nile Basin (Figure 9). The moderate vegetation
cover in cluster 1 may be due to the combined effect of climate and land use, as areas with higher rainfall tend to have

more vegetation cover. The watersheds in Cluster 2 have a wider range of elevations, which may result in a more varied
hydrological response compared to cluster 1. The higher NDVI values in cluster 2 suggest that these watersheds may have
more vegetation cover than cluster 1. The lower NDVI values in cluster 1 are despite higher rainfall and elevation ranges

in the presence of bare land and degraded soil. Areas with agricultural land and degraded soil are more susceptible to erosion
and runoff, which can lead to loss of topsoil and reduced soil moisture content. These factors can make it more difficult for
vegetation to grow and thrive, resulting in lower NDVI values. In contrast, cluster 2 may have a higher NDVI value due to a

combination of factors such as more favorable soil conditions, better land use practices, and a wider range of elevations,
which can support a greater variety of vegetation types in compared to cluster 1.

The spatial distribution of the clusters within each region provides important insights into the hydrological conditions of
the Blue Nile Basin. For instance, the presence of cluster 2 in all three regions indicates that there are areas with moderate

elevation, abundant rainfall, and good vegetation cover throughout the basin. This suggests that these areas may play a critical
role in the hydrology of the basin, such as in the generation of runoff and the maintenance of water quality. In addition, the
spatial distribution of cluster 1 in the eastern part of the basin across all three regions suggests that this area may be more

prone to water scarcity and drought conditions, while the presence of cluster 2 in the western part of the basin across all
three regions suggests that this area may be more resilient to water scarcity due to the presence of moderate rainfall and veg-
etation cover. From this, we observed that the K-mean clustering algorithm has successfully divided the watershed into nine
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groups that are relatively similar in terms of physiographic and meteorological variability. This is beneficial for better under-

standing the overall condition of the watersheds, as it allows for more targeted and specific management practices to be
implemented in each group based on their particular characteristics. Therefore, watersheds in homogenous climate region
I are characterized by steep topography and low vegetation cover; we may want to implement management practices that

Figure 9 | Map of homogenous watersheds of the Upper Blue Nile Basin within the three homogenous climate regions.
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focus on controlling erosion and sedimentation; for homogenous climate region II with gentle topography and high veg-

etation cover, we may want to implement practices that focus on water conservation and increasing soil moisture
retention, while for homogenous climate region III with intermediate elevation and medium rainfall, we may want to
implement both water conservation practice and practices that focus on controlling erosion and sedimentation. This water-

shed clustering approach may also have been considered to improve problems of runoff prediction in the ungauged
watersheds.

Vegetation dynamics in three homogenous climate regions

The upper Blue Nile Basin exhibits significant spatial variability in NDVI values within the three identified regions
(Figure 13). In region II, for example, there are areas of high NDVI values, particularly in the western part of the basin,

Figure 10 | Spatial distribution of hydrological similarity identifying parameter (mean annual rainfall, temperature, elevation, slope, NDVI, and
NDMI) in homogenous climate region I contains four clusters.
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where forests and grasslands are dominant. However, there are also areas of low NDVI values, particularly in the eastern and
southern parts of the basin, where cropland and grazing land use dominate. In region III, there is also significant spatial varia-
bility in NDVI values, with the highest values observed in the irrigated agricultural areas in the central and western parts of
the basin. However, there are also areas of lower NDVI values in the eastern and southern parts of the basin, where rain-fed

agriculture and grazing land use are dominant. In region I, there is less spatial variability in NDVI values compared to the
other two regions, with the lowest values observed in the barren upland areas and the highest values observed in the south-
eastern cropland areas. Overall, the spatial variability in NDVI values within the three regions reflects the complex

interactions between land use, topography, and environmental factors that influence vegetation growth in the upper Blue
Nile Basin. These findings have important implications for sustainable land use management, particularly in the context
of climate change and other environmental challenges.

Figure 11 | Spatial distribution of hydrological similarity identifying parameter (mean annual rainfall, temperature, elevation, slope, NDVI, and
NDMI) in homogenous climate region II contains three clusters.
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NDVI values were also analyzed for the three identified climate regions in the upper Blue Nile Basin for the years 2000,

2010, and 2020 to investigate trends in vegetation cover (Figure 14). In region II, NDVI values showed a relatively stable
trend across the study period, with a slight increase from 2000 to 2010 and a slight decrease from 2010 to 2020 (Figure 14).
This indicates that vegetation cover in this region has remained relatively stable over the past two decades. In Region III,

NDVI values showed a clear increasing trend across the study period (2000–2010) and a more slightly decrease from 2010
to 2020 (Figure 14); this may be due to overgrazing or other environmental stressors. This indicates that agricultural land
use in this region has intensified over the past two decades, leading to a decrease in vegetation cover. In region I, NDVI
values showed a slight decrease from 2000 to 2010, but a stable trend from 2010 to 2020 (Figure 14). This indicates that

vegetation cover in region I showed a stable trend over the past decade than region II and region III. Overall, the trend
analysis of NDVI values within the three regions highlights the dynamic nature of land use change in the Blue Nile
Basin. While vegetation cover has remained relatively stable in region I, there has been significant intensification of agri-

cultural land use in region III and a decline in vegetation cover in region II. These findings have important implications
for sustainable land use management in the basin, particularly in the face of climate change and other environmental
challenges.

Figure 12 | Spatial distribution of hydrological similarity identifying parameter (mean annual rainfall, temperature, elevation, slope, NDVI, and
NDMI) in homogenous climate region III contains two clusters.
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Figure 13 | The Upper Blue Nile Basin spatiotemporal distribution map of NDVI.

Figure 14 | Vegetation cover dynamics map in the Upper Blue Nile Basin for two time periods from 2000 to 2010 and from 2010 to 2020.
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CONCLUSION

In this study, a clustering algorism was used to identify hydrologically homogenous watersheds of the upper Blue Nile Basin,
Ethiopia. To achieve the goal, the physiographic parameters (area, longitude, latitude, elevation, and slope), metrological par-
ameters (rainfall and temperature), and remote sensing indices (NDVI, SAVI, EVI, NDMI, and NDWI) were used. For

watershed classification, a linear dimensionality reduction technique, PCA followed by K-means clustering, was used to clas-
sify 76 watersheds of the basin. The number of primary PCs was determined using the plot of the percentage of variance
arranged from largest to smallest (scree plot). In the analysis, 10 parameters were taken into account for the first two PCs,

which were then used for conducting K-means clustering. In addition to the PCA, the Elbow and Average Silhouette methods
were employed to determine the optimal value of K for K-means clustering. After determining the optimal number of regions
using the Elbow and Average Silhouette methods, the 76 Upper Blue Nile Basin watersheds of the three homogenous climate

regions were also classified into nine watershed clusters using the K-means clustering algorithm. The results of the clustering
analysis conducted in this study aligned with the existing physiographic and meteorological patterns that are known to exist
in the Blue Nile Basin. The upper region of the basin (region I) is distinguished by low vegetation coverage, which can be

attributed to the area’s high percentage of agricultural land use and dense population. Conversely, the lower region of the
basin (region II) is recognized for its relatively flat terrain and greater water resources, which fosters a greater abundance
of vegetation and more extensive agricultural practices. The central part of the basin (region III) possesses intermediate fea-
tures, making it suitable for a mix of land uses. Overall, the findings of this study have important implications for sustainable

management of water resources in the Upper Blue Nile Basin and other similar basins. The results highlight the need to con-
sider the spatial variability and heterogeneity of land use and environmental factors in hydrological modeling and decision-
making. Future studies could further explore the use of clustering analysis and additional remote sensing indices and hydro-

logical parameters to improve the accuracy and applicability of regionalization models in similar watersheds.
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