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ABSTRACT

Spatial rainfall data is an essential input to parametrically distributed hydrological models and is a main contributor to hydrological model

uncertainty. Two important issues should be addressed before the use of satellite and reanalysis rainfall product at the basin level: (1)

How useful are these rainfall estimates as forcing data for regional hydrological modelling? and (2) Which product should be selected at

high-flow and low-flow conditions? This paper presents the hydrological performance of satellite and reanalysis rainfall products (CHIRPSv8

and EWEMBI) at three hydrological stations in the Upper Tekeze River Basin (UTB), northern Ethiopia. Results showed that the daily rainfall

data from both CHIRPSv8 and EWEMBI are close to the rain gauge data, with relative errors 2.12 and 3.85%, respectively. The monthly stream-

flow simulated by the Soil and Water Assessment Tool (SWAT) model driven by CHIRPSv8 and EWEMBI had a Kling-Gupta Efficiency of 0.6–0.79

and 0.58–0.64, respectively. The hydrological performance during high-flow seasons is superior to low-flow seasons for both CHIRPSv8 and

EWEMBI. In particular, CHIRPSv8 showed a relatively better hydrological performance than EWEMBI. This study provides insights on the use-

fulness of gridded rainfall products for hydrological modelling and conditions under which they can be used over the UTB and other similar

basins.
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HIGHLIGHTS

• Hydrological performances of using satellite and reanalysis rainfall products are evaluated over three gauge stations.

• CHIRPSv8 and EWEMBI rainfall products are close to the rain gauge data.

• Hydrological simulation using CHIRPSv8 and EWEMBI shows better performances in high-flow season.

• The CHIRPSv8 and EWEMBI rainfall estimates can be used for ungauged basins such as the UTB, Ethiopia.
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GRAPHICAL ABSTRACT
INTRODUCTION

The hydrological process affects the water supply and demand for irrigation, drinking water, hydropower production, indus-

trial need, and ecosystems (Li et al. 2018). To a certain degree, this also affects the economic, agricultural, and ecological
development of a particular region. Hydrological models provide simplified and obstructed representations of the hydrologi-
cal processes (Singh et al. 2014; Ouermi et al. 2019). The development of a given hydrological model could be well defined in
physical theory basis and empirical justification. However, a hydrological model is likely to be subject to errors and fail to

produce an accurate hydrograph, particularly when input data is not sufficiently precise. Rainfall is a main input and a sub-
stantial contributor to hydrological model uncertainty (Meng et al. 2014; Sperna Weiland et al. 2015). Because the
variabilities of rainfall in space and time make its measurement difficult, an accurate estimate of spatial rainfall over a

region of interest is critical for hydrological modelling.
The primary means of measuring point rainfall is gauge stations. The areal precipitation can be estimated by means of

different interpolation methods (e.g., Thiessen polygons, geostatistical Kriging, and inverse distance weighting) and be

used as input to hydrological models (Zhao et al. 2015; Li et al. 2018). However, the reliability of the areal rainfall estimate
is highly dependent on gauge density. In many regions, rain gauge observations are sparse and unevenly distributed due to
topographic limitations and economic problems, especially in developing countries (Zeng et al. 2018). Such problems are

more pronounced in Ethiopia (Bayissa et al. 2017; Gebremicael et al. 2019) where it has a sparse and low-quality gauge
network.

To address the above issue, a number of satellite and reanalysis-based rainfall products with high spatial and temporal res-
olutions have been developed in recent years at continental and global levels. The rainfall products differ from each other in

terms of data source (satellite, gauge, radar, analysis, and reanalysis could be a combination of some of these), spatial resol-
ution (0.05°–2.5°), temporal resolution (30 min to monthly), design objective (instantaneous accuracy or temporal
homogeneity), and spatial and temporal coverages (continental to fully global and nearly 1 year to 115 years) (Beck et al.
2017a, 2017b). These products have been used as meteorological forcing in hydrological process modelling, climatic research,
and water resource management (Kneis et al. 2014). Easy access and the ability to mimic point-scale measurements and their
spatial grid and constant time step have favoured the widespread use of these products (Raimonet et al. 2017). Hence, these
://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf
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satellite and reanalysis rainfall estimates provide alternative sources of input data for hydrological modelling in regions where

rain gauge observations are sparse. Xue et al. (2013) validate the application of Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) products (3B42V6 and 3B42V7 algorisms) for an ungauged catchment in
Bhutan. The recent improvement in spatial and temporal resolutions has largely increased their applicability to large-scale

distributed hydrological models at both global and regional conditions. For example, Beck et al. (2017a, 2017b) evaluated
global runoff using WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset-driven hydrological models.
Others used for global draught analysis (Herrera-Estrada et al. 2017; Wang et al. 2021). At the regional level, Schuol et al.
(2008) estimated fresh water availability in West African sub-continent, Haile et al. (2020) identified spatio-temporal patterns

of drought in east Africa, and Faramarzi et al. (2013) modelled fresh water availability in response to climate change in Africa
using satellite and reanalysis rainfall products.

However, the performance of different precipitation products varies across regions. For instance, the magnitude of 30

different annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products (Sun
et al. 2018). Bayissa et al. (2017) also showed the performance of five satellite rainfall products varied across the upper
Blue Nile. The adequacy of using these rainfall products to drive hydrological models at a specific basin level is as yet less

well understood, which needs a thorough evaluation (Hu et al. 2017; Li et al. 2018; Awange et al. 2019).
Many recent studies have evaluated the adequacy of using satellite and reanalysis rainfall products in driving hydrological

models for water balance analysis over different regions of the globe (Tan et al. 2017; Roy et al. 2018; Awange et al. 2019;
Azimi et al. 2020). The results showed that hydrological performances driven by satellite and reanalysis rainfall products
vary with region, season, and elevation. There are no regions on which all precipitation datasets show a consistent and stat-
istically significant trend in precipitation seasonality (Tan et al. 2020). These inconsistent changes in precipitation seasonality
within various precipitation datasets imply the importance of choosing the dataset when studying changes in regional precipi-

tation seasonality and its implications in hydrological conditions. In general, one rainfall product that performs reasonably
well in driving the hydrological process in one region may not result in adequate simulation over other regions. In addition,
the source of uncertainty in hydrological modelling is not only limited to the forcing rainfall data but also the models, i.e.,

model structure and model parameters.
Because of these limitations in rainfall products and hydrological models, their use in hydrological regime simulation

should be evaluated before any application in a particular region. Most previous studies focused on validating input rainfall

data and comparison of models. In the Upper Tekeze River Basin (UTB), Northern Ethiopia, the applicability of rainfall pro-
ducts to drive a hydrological model is not sufficiently tested due to lack of data. Validating rainfall products are either through
ground observations or model-based applications. Some studies have been conducted using the first approach over the Nile
river basin catchments, Ethiopia (Bayissa et al. 2017; Lakew et al. 2017). The second approach is based on hydrological mod-

elling performance within target applications. For instance, satellite and reanalysis rainfall products can be evaluated based
on their ability in reproducing observed hydrograph referred to as hydrological evaluation. Only a few studies using the first
approach are available (e.g., Gebremicael et al. 2019), but rainfall products have not yet been assessed using the second

approach in the UTB.
In view of the above considerations, this study aimed at assessing the suitability and adequacy of one satellite-based rainfall

product, namely, Climate Hazards Group InfraRed Precipitation with Stations (CHIRPSv8), and one reanalysis product

called the EartH2Observe, WFDEI and ERA-Interim reanalysis data Merged and Bias-corrected for the Inter-Sectoral
Impact Model Intercomparison Project (EWEMBI) rainfall product (Lange 2016) for simulating regional water balance
over the UTB. CHIRPSv8 and EWEMBI products were selected based on our previous study (Reda et al. 2021). These
two products showed good performances out of nine gridded global rainfall products in representing daily and monthly pre-
cipitation under the UTB. The CHIPRSv8 is the latest high-resolution rainfall dataset that combines satellite and gauge
observations, which could be promising data for regional hydrological applications. The EWEMBI is a new bias-corrected
global dataset at the half-degree resolution and has been used for both global and regional hydrological evaluations (Frieler

et al. 2017; Chawanda et al. 2020). In this study, a physically based hydrological model, the Soil and Water Assessment Tool
(SWAT) model, was used to evaluate the hydrological performance of the two global datasets applied in the UTB. The SWAT
is a popular model for many studies at sub-basins under the Nile river where it is overall poorly gauged (Griensven et al. 2012;
Akoko et al. 2021). The evaluation would also provide useful information for hydrological simulations using the global data-
sets in other regions where limited meteorological observations are available.
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STUDY AREA AND DATA

Study area

With an area of 45,695 km2, the UTB is the northern part of the Nile river basin in Ethiopia (Figure 1). It is located at 37.5°–

39.8°E longitude and 11.5°–14.3°N latitude. The Tekeze River is a major tributary of the Nile River and is exploited for hydro-
power production and irrigation in Ethiopia (Zenebe 2009). The mean sea level elevation varies from 830 to 4,529 m, with a
complex topography consisting of mountains, highlands, and lowlands with terrains of gentle slopes. The mean annual flow of

the UTB at the Emba Madre gauge station (located at 12.6°N latitude and 39.19°E longitude) is around 6.9 billion m3/year.
Generally, the basin covers semi-arid (North part) and semi-humid (South part) regions. The mean annual temperature is

17 °C, and the annual rainfall is ∼800 mm. Its climate is characterized by a short rainy season (June–September) concentrat-

ing 60–70% of annual rainfall and a long dry season (October–May). The spatial variation of rainfall over the UTB is high
(Belete 2007; Gebremicael et al. 2017). Farmland is the dominant land use in the UTB. It covers more than 70% of the
land within the basin. The farmland is dominated by rainfed agriculture, with main crops such as ‘Teff’, wheat, barley,

maize, sorghum, and pulses. The rest of the basin is mainly grassland and residential areas. The main soils of the Tekeze
basin as per the FAO classification are Eutric Cambisols and Calcric Cambisols. Eutric Vertisols are mainly found in the high-
land and lowland areas of the watershed, and Eutric Leptosols are in the central part of the basin. The dominant soil texture
groups are sandy and clay loam, which in total account for 70% area coverage of the basin (Gebremeskel et al. 2018).

Gauge rainfall and streamflow data

Daily rainfall, maximum and minimum temperature, humidity, wind speed, and solar radiation data at the 21 rain gauge
stations (Figure 1) were collected for the period of 2006–2015 from the National Meteorological Agency of Ethiopia

(NMAE). Homogenization and outlier processing were implemented in a quality control procedure. The homogeneity of
monthly rainfall was tested using the standard normal homogeneity test, which compares the observations at each rain
gauge station with the average of observations at the four nearest gauge stations (see section 1 in Supplementary Information

for details). Outliers were tested through comparing with the neighbouring four gauge stations to cross-check if similar
extreme values are observed. No homogenization and outlier problems were detected at the rain gauge stations. Hence,
the ground rainfall observation datasets were found to be reliable for analyses following screening criteria. Finally, a spatial

rainfall distribution from the rain gauge data was estimated using the ordinary Kriging interpolation technique, which is
regarded as an accurate interpolation technique, that produces more reliable estimates than other interpolation techniques
for daily average rainfall data (Guyot et al. 2015; Yue et al. 2016). All the rain gauge stations in our study area are not
part of the Global Precipitation Climatology Centre (GPCC) network used for the calibration of satellite products.

Furthermore, daily measured flow data at the Emba Madre, Geba, and Werie gauging stations during the period 2006–2015
were collected from the hydrology department of the ministry of water, energy and irrigation of Ethiopia. The drainage areas
covered by the Emba Madre, Geba, and Werie gauge stations are 45,694, 4,342, and 1,770 km2, respectively.

CHIRPSv8 and EWEMBI rainfall products

CHIRPS is a quasi-global rainfall dataset developed by the Climate Hazards Group and the US Geological Survey (USGS) at
the University of California at Santa Barbara (Funk et al. 2015). CHIRPS has 0.05° spatial and daily temporal resolutions with

a 50°S–50°N global coverage. It is produced from the global telecommunications system (GTS) through a combination of
gauge observations, satellite observations, and global climatology (Funk et al. 2014; Gebremicael et al. 2019). This product
has been used in east Africa in many studies and commonly showed good performance (e.g., Bayissa et al. 2017; Dinku

et al. 2018; Lemma et al. 2019).
EWEMBI is a newly compiled reference dataset (Lange 2018). EWEMBI has a daily temporal frequency and 0.5° spatial

resolution with a global coverage. In this study, the EWEMBI dataset was downscaled to 0.05° spatial resolution through the
statistical downscaling method. The elevation–precipitation relationship, which better predicts the precipitation distribution

in the areas with complex terrain, was used (Jia et al. 2011; Chen et al. 2020). The coefficient of determination (R2) for the
linear regression analysis result between the daily EWEMBI precipitation and elevation, from 2006 to 2015, ranges from
0.053 to 0.79, with an average value of 0.672. The EWEMBI dataset is produced from the WATCH forcing data methodology

applied to ERA-Interim reanalysis data (WFDEI) and Global Precipitation Climatology Centre (GPCC v5) over the land sur-
face, while EartH2Observe forcing data (E2OBS) over the ocean (Lange 2016). GPCCv5 and v6 monthly precipitation totals
were used for bias adjustment. The WFDEI precipitation products included in E2OBS were bias-adjusted with Climatic
://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf
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Research Unit Time Series (CRU TS3.101/TS3.21) monthly precipitation. The detail about EWEMBI and its data sources can
also be found in Dee et al. (2011) and Weedon et al. (2014). The EWEMBI dataset was compiled to support bias correction of
climate input data for the ISIMIP2b.
METHODOLOGY

Evaluation of CHIRPSv8 and EWEMBI rainfall

The total rainfall bias of the CHIRPSv8 and EWEMBI rainfall products was separated into three independent error com-
ponents following the methodology used by Li et al. (2018) and Habib et al. (2009). Specifically, (1) the bias due to
missed rainfall (missed bias), (2) the bias due to false detection (false bias), and (3) the bias of successful detection (hit

bias). The missed bias is that the rainfall products fail to detect the rainfall events indicated by the reference dataset
(gauge-based rainfall event) and its value is negative. On the other hand, false bias is that rainfall occurrence is detected
by the satellite and reanalysis products but the gauge-based observations indicate no rainfall event. The value of a false

bias is positive. In the hit bias case, both the reference and the satellite and reanalysis data detect a rainfall event but with
different rainfall amounts. The value of hit bias could be positive, negative, or zero. The monthly average error of the two
rainfall products was analysed using the temporal error trend analysis for each bias component.
om http://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf
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In addition, daily average (mm/day), standard deviation (std) (mm), maximum daily rainfall (mm/1day), and maximum 5-

day rainfall (mm/5day) from CHIRPSv8, EWEMBI, and gauge datasets were compared with an annual basis at both the grid
and basin levels. Finally, the daily rainfall distribution and their corresponding contributions to the total rainfall as a function
of rainfall intensity bins for each dataset was analysed.

Hydrological model

The applicability of the global rainfall data in driving the hydrological model was tested using the 2012 version of the SWAT
model. The SWAT is a temporally continuous and semi-distributed model developed to predict the impact of land manage-

ment practices in watersheds and river basins on runoff, sediment, and agricultural chemical yields (Neitsch et al. 2012). The
main SWAT model components include weather, hydrology, soil temperature, plant growth, nutrients, pesticides, land man-
agement, bacteria, and pathogens (Francesconi et al. 2016). The model is often used to estimate runoff and its pollutant

concentrations at various timescales, and it is widely used worldwide. The SWAT has been applied in different watersheds
and river basins of Ethiopia and demonstrated satisfactory results (Gebremicael et al. 2013; Welde & Gebremariam 2017;
Nadew 2018).

The SWAT simulates the hydrological process of a river basin through disaggregating it into sub-basins and hydrological
response units (HRUs). Spatial inputs required for delineating sub-basins and HRUs include a land use land cover (LULC)
map, soil map, and digital elevation model (DEM). A 30 m� 30 m DEM was used in this study. The LULC (Figure 1) and

soil maps were collected from the Ministry of Agriculture and natural resource management of Ethiopia.

Hydrological model and simulation

To evaluate the suitability of different rainfall data for hydrological simulation, experiments based on the SWAT model were

conducted using data from rain gauge stations, CHIRPSv8, and EWEMBI datasets in the UTB, while the other forcings such
as temperature, relative humidity, wind speed, and solar radiation were from the stations and kept the same for all the mod-
elling experiments. The SWAT model contains parameters that are not physically measurable and need to be obtained using

conceptualization and calibration through adapting the model output to the observed data. Before calibration, sensitive par-
ameters were identified and prioritized using the procedure of SWAT sensitivity analysis. Then, these sensitive parameters
were calibrated using sequential uncertainty fitting (SUFI-2) algorithm capabilities of SWAT CUP. SUFI-2 is a commonly

used tool for calibration and uncertainty analysis of the SWAT model (Wu& Chen 2015). Even though SWAT CUP has differ-
ent calibration methods like particle swarm optimization (PSO), generalized likelihood uncertainty analysis estimation
(GLUE), parameter solution (ParaSol), and Markov chain Monte Carlo (MCMC), previous studies (Wu & Chen 2015;
Abbaspour et al. 2017; Mengistu et al. 2019) have stated that the SUFI-2 method can provide more reasonable and balanced

predictions than the others.
Because different rainfall datasets result in different calibration results, the following three scenarios were applied in evaluat-

ing the hydrological processes. Scenario I, the daily gauge rainfall data, was first used to calibrate the parameters in the SWAT.

Then, the daily CHIRPSv8 and EWEMBI rainfall products were used to run the model using the calibrated parameters.
The SWAT model uses point rainfall data from the gauges and changes them into areal rainfall using ordinary kriging or

Thiessen polygon. The kriging method was used to obtain areal rainfall from station data in the SWAT model in this study,

which was reported to be more efficient than the Thiessen polygon method in mountainous areas (Mair & Fares 2011). For
CHIRPSv8 and EWEMBI, grid-level rainfall estimates were used to better capture the spatial varied information. Finally, the
simulated runoff from the three model runs (using the rain gauge, CHIRPSv8, and EWEMBI) was compared with the stream-

flow observations at the three stations. In scenario II, the daily CHIRPSv8 rainfall product was utilized to calibrate the SWATmodel,
and then the EWEMBI and rain gauge rainfall products were used subsequently to drive the model. In scenario III, the EWEMBI
rainfall product was used first to optimize the model parameters in calibration, and the CHIRPSv8 and rain gauge rainfall data were
used to drive the SWAT model. In all the scenarios, the SWAT model is calibrated using the Nash–Sutcliffe coefficient of efficiency

(NSCE) index as the objective function. The runoff simulations were evaluated by comparison with measurements at three hydro-
logical stations at daily and monthly time scale, during full time series, and high-flow and low-flow seasons.

Model simulation uncertainties were estimated using the 95% prediction uncertainty (95PPU) capabilities of SUFI-2. In

SUFI-2, uncertainty in parameters, expressed as ranges (uniform distributions), considers all uncertainty sources including
model structure, parameters, driving variables (e.g., temperature and rainfall), and the measured data. Propagation of the
uncertainties in the parameters leads to uncertainties in the model output simulations, which are expressed as the 95%
://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf
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probability distributions. These are estimated at the 97.5 and 2.5% levels of the cumulative distribution of an output variable

using Latin hypercube sampling, referred as the 95PPU (Abbaspour et al. 2007). These 95PPUs are the model outputs result-
ing from a stochastic calibration approach, indicating that there is no single signal representing model output, but an envelope
of solutions represented by the 95PPU, produced by certain parameter ranges. Two statistics (i.e., P-factor and R-factor) were

used to quantify the fit between simulation result (expressed as 95PPU) and observation (expressed as a single signal). P-factor
is the percentage of observed data enveloped by the modelling result, the 95PPU. R-factor is the thickness of the 95PPU
envelope.

Model performance evaluation

To evaluate the hydrological model performance using the gauge, CHRPSv8, and EWEMBI rainfall products, four commonly

used statistical criteria were applied, including the correlation coefficient (CC), NSCE, percent of bias (Pbias), and Modified
Kling-Gupta Efficiency (KGE). The mathematical definitions of these metrics are listed in Table 1. The evaluation was for low-
flow, peak-flow, and all time-series flows daily and monthly time scales. NSCE is a normalized statistical metric and evaluates

the relative magnitude of the residual variance compared with the observed variance and demonstrates how well observed vs.
simulated data plots fit the 1:1 line through the entire period. A match of timing and shape of the hydrograph is reflected by
the CC. Pbias assesses the systematic error that indicates the average tendency of the simulated data deviates from their

observed counterparts. Finally, the model performance on hydrological simulation for the CHIRPSv8, EWEMBI and
gauge rainfall was assessed using the KGE. The KGE is a recently developed performance indicator, which takes into account
equal weighting of three metrics, such as the coefficient of determination (R2), the bias ratio (β), and the variability (γ),
between observed (obs) and simulated (sim) discharges (Kling et al. 2012). Mathematically, β and γ are defined as follows:

b ¼ msim

mobs
(1)

g ¼ dsim=msim

dobs=mobs
¼ CVsim

CVobs
(2)

where μ and σ are the mean and standard deviation of discharge (m3/s), respectively. CV is the coefficient of variation. KGE is
dimensionless and its optimal value is unity. According to Thiemig et al. (2013), hydrological performance can be categorized
using the KGE as follows: very poor (KGE� 0), poor (0,KGE, 0.5), intermediate (0.5�KGE, 0.75), and good (KGE�
0.75).
Table 1 | Statistical indexes and their mathematical definition

Metric Name Function

Pearson’s CC CC ¼

Pn
i¼1

(Qi,obs � �Qobs)(Qi, sim � �Qsim)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1
(Qi,obs � �Qobs)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i
(Qi,sim � �Qsim)

2

s

Percentage of bias Pbias ¼

Pn
i¼1

Qi,sim � Pn
i¼1

Qi,obs

Pn
i¼1

Qi,obs

0
BBB@

1
CCCA�100

Nash–Sutcliffe coefficient of efficiency NSCE ¼

Pn
i¼1

(Qi,obs � �Qobs )
2 � Pn

i¼1
(Qi,obs � Qi,sim)

2

Pn
i¼1

(Qi,obs � �Qobs )
2

Modified Kling-Gupta Efficiency KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R2 � 1)2 þ (b� 1)2 þ (g� 1)2

q
Qobs and Qsim are the observed and simulated discharges for the ith day, respectively, and �Qobs and �Qsim are the average values of the observed and simulated discharges for the

entire period under consideration.
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Water balance analysis

In addition to the flow hydrograph comparisons, the water balance component result can be another important indicator for
evaluating the different rainfall products’ validity in driving the hydrological model. The SWAT model divides precipitation

into evapotranspiration, surface runoff, groundwater recharge, and baseflow. Hence, the comparison was also conducted for
these components of these simulation results using the CHIRPSv8, EWEMBI, and gauge rainfall data.

RESULTS

Comparison between gridded rainfall and rain gauge data

Table 2 summarizes statistics of the CHIRPSv8, EWEMBI, and areal-averaged gauge rainfall products. The estimates of areal-
averaged rainfall during 2006–2015 were 1.69–2.47 mm day�1 (rain gauges), 1.79–2.5 mm day�1 (CHIRPSv8), and 1.72–
2.93 mm day�1 (EWEMBI). The maximum daily rainfall occurred in 2006 for the rain gauge rainfall and the CHIRPSv8

data, whereas it occurred in 2012 according to the EWEMBI rainfall data. The annual average rain gauge rainfall data indi-
cates that 2009 was the driest year, but CHIRPSv8 and EWEMBI overestimate rainfall in 2009 by 6.8 and 6.5%, respectively.
The bias of EWEMBI (�4.4 to 31.1%) was larger than that of CHIRPSv8 (�15 to 9.8%) compared with the rain gauge data.

The absolute averages of positive bias were higher than those of the negative bias in both CHIRPSv8 (5.44 vs. �2.63) and
EWEMBI (11.38 vs. �2.45). The standard deviations (std deviations) of the rainfall are higher than the average rainfall
according to the three rainfall datasets.

The observed maximum daily rainfall (mm day�1) and maximum 5-day rainfall (mm 5-day�1) show large variability among

different rainfall datasets (Table 2). Particularly, the maximum daily rainfall was 18.72–42.11 mm (gauge data), 19.51–
49.66 mm (CHIRPSv8), and 17.72–40.13 mm (EWEMBI). The maximum 5-day rainfall was 47.13–92.11 mm (gauge data),
47.3–105.57 mm (CHIRPSv8), and 50.75–82.06 mm (EWEMBI). The capability of CHIRPSv8 and EWENBI to detect par-

ticular heavy rain events is weakened. This shows that the CHIRPSv8 and EWEMBI rainfall products are not able to
capture the occurrence of maximum daily and maximum 5-day rainfall accurately. This result is consistent with Rajulapati
et al. (2020), which indicates that global precipitation products generally cannot provide a consistent representation of the

magnitude and frequency of extreme events. The results indicated that while the range of the data during the time period
of interest was similar, the days of the rainy season months (July–September) with the maximum daily and maximum 5-
day rainfall occurrences were different. Hence, the differences between the maximum daily and maximum 5-day rainfall
from different data sources were large in these months.

Temporal and spatial distributions

Figure 2 shows the trends of average monthly time series of the CHIRPSv8 and EWEMBI data error components (missed,
false, hit, and total bias). The CHIRPSv8 product displays a lower total bias range (�1.69, 2.02) as compared with the EWEM-

BI’s product (�1.82, 3.75). In addition, the missed bias was higher in CHIRPSv8 than EWEMBI, but the reverse was for false
Table 2 | Comparison of statistical indexes between areal-averaged CHIRPSv8 and EWEMBI vs. rain gauge rainfall

Year

Areal average (mm day�1) (bias, %) Std deviation (mm day�1)
Maximum daily rainfall
(mm day�1)

Maximum 5-day rainfall
(mm 5-day�1)

Gauge CHIRPSv8 EWEMBI Gauge CHIRPSv8 EWEMBI Gauge CHIRPSv8 EWEMBI Gauge CHIRPSv8 EWEMBI

2006 2.47 2.5 (�3.6) 2.54 (2.9) 4.44 5.3 4.22 42.11 49.66 33.53 79.78 77.85 71.44

2007 2.32 2.43 (6.4) 2.18 (�1.6) 4.41 5.1 3.76 39.9 34.9 28.38 78.2 84.43 64.94

2008 1.95 2.11 (8.7) 2.18 (11.8) 3.07 4.3 3.83 15.46 36.97 39.29 47.13 80.31 82.06

2009 1.69 1.84 (6.8) 1.72 (6.5) 3.45 4.6 2.87 23.84 27.4 36.12 47.16 75.76 50.75

2010 2.22 2.26 (0.9) 2.2 (�1) 3.67 4.5 3.75 22.96 27.26 27.76 60.32 86.51 62.83

2011 1.97 2.21 (9.8) 1.92 (�2.8) 3.67 4.8 3.25 36.47 39.71 17.72 92.11 105.57 56.06

2012 2.23 2.21 (0.02) 2.93 (31.1) 3.98 4.4 5.52 26.01 31.99 40.13 67.01 64.81 81.12

2013 2.00 2.07 (�1.5) 2.24 (11.8) 3.57 4.1 4.51 29.37 30.27 39.77 50.25 67.57 80.82

2014 2.28 2.25 (�3.9) 2.49 (9.2) 3.36 4 3.87 18.72 28 17.73 58.36 66.71 64.98

2015 2.05 1.79 (�1.5) 1.97 (�4.4) 3.08 3.1 3.58 20.15 19.51 21.53 53.83 47.3 63.6
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Figure 2 | Time series of error components for CHIRPSv8 and EWEMBI rainfall products over the UTB.
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bias. For both the rainfall products, the error components are dominated by hit bias which ranges from �1.54 to 2.02 for
CHIRPS and from �1.82 to 3.28 for EWEMBI. CHIRPSv8 and EWEMBI show similar error patterns and both display

high false bias in the dry season from January to March and hit bias in the rainy season from June to September.
Figure 3 presents an intercomparison for the CHIRPSv8 and EWEMBI daily rainfall against the gauge observation under

the rainy and dry seasons using the CC. The spatial distribution of CC showed that both CHIRPSv8 and EWMBI show rela-
tively better agreement with the gauge rainfall for the rainy season than the dry season period.

The CHIRPSv8 and EWEMBI daily rainfall data and gauge rainfall data were further compared at the grid and basin scales.
Figure 4 displays the scatter plots of the CHIRPSv8 and EWEMBI data vs. rain gauge data at the two spatial scales. For the
basin-scale comparison, the average value of all the gauge stations was compared with their respective average of CHIRPSv8

and EWEMI data at the grid cells where the gauge stations are located (Figure 4(a) and 4(b)). For the grid-scale comparison,
the values of 21 gauge stations were compared with the grid value of CHIRPSv8 and EWEMBI data at each station at a daily
time scale (Figure 4(c) and 4(d)). CHIRPSv8 showed better agreement with the gauge data compared with EWEMBI at both

the grid and basin scales with the CC values of 0.58 and 0.73, respectively. Similarly, a moderate agreement is found between
EWEMBI and gauge rainfall data at grid and basin levels with CC values of 0.53 and 0.62, respectively. The CHIRPSv8 and
EWEMBI products slightly overestimate rainfall of the basin with bias of 0.6 and 5.5%, respectively (Figure 4). Since the accu-
racy of satellite and reanalysis-based rainfall products often improves with increased time-scale aggregation (Lo Conti et al.
2014; Li et al. 2018), the CHIRPSv8 and EWEMBI performances are expected to be improved at a monthly scale. Hence, the
two products could be utilized for seasonal and annual water balance simulation at the UTB.
Rainfall intensity distribution

Figure 5 shows the daily rainfall intensity distributions for different rainfall sources and their relative contributions to the total
rainfall in each year during the period 2006–2015. The rainfall intensity class [0, 1 mm) was the most frequent for the rain
gauge rainfall (48.5–63.3%), CHIRPSv8 (53.7–64.4%), and EWEMBI (51.8–60.5%). The second most frequent daily rainfall
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Figure 3 | Spatial distribution of correlation coefficient for the seasonal daily rainfall over the UTB. (a) CHIRPSv8 for the rainy season (June–
September); (b) CHIRPSv8 for the dry season (October–May); (c) EWEMBI for the rainy season; (d) EWEMBI for the dry season. The colour of the
circles indicates the values of Pearson’s CC between gauge data and the gridded data.
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class was [1,5 mm) for all the three rainfall datasets, occurring in about 21–34.5% (gauge rainfall), 21.4–29.9% (CHIRPSv8),

and 24.7–30.4% (EWEMBI) of the total number of days. It indicates that more days of slight rain or no rain [0, 1 mm) were
recorded in all the CHIRPSv8, EWEMBI, and rain gauge than days of heavier rainfall.
Figure 4 | Scatterplots of daily rainfall from the CHIRPSv8 and EWEMBI vs. the rain gauge data: at the basin level (a and b) and at the grid
scales (c and d).
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Figure 5 | Distribution and relative contribution to the total rainfall for different daily rainfall bins during different years of the period
2006–2015.
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Even though the frequencies of daily rainfall within [0, 1 mm) and [1,5 mm) were high in all the rainfall datasets, their con-

tributions to the total rainfall amount were trivial compared with the other rainfall bins (Figure 5). The [5,10 mm) daily
rainfall had the largest contributions to the total rainfall, which were 30.1–45.5%, 21.4–38.4%, and 22.3–44.3% for the
gauge, CHIRPSv8, and EWEMBI rainfall, respectively. The highest rainfall class ‘rainfall �30 mm/day’ contributed an
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average (range parentheses) of 1.5% (0, 4.7%), 6.1% (0, 16.2%), and 2.8% (0, 10.7%) of the total rainfall in the case of gauge,

CHIRPSv8, and EWEMBI rainfall data, respectively. Both the occurrence and contribution of this intensive rainfall class for
the CHIRPSv8 and EWEBI datasets were larger than the gauge data. In general, based on the monthly time-scale error com-
ponents and the temporal and spatial analyses of the products, the CHIRPSv8 and EWEMBI rainfall estimates were able to

capture the rainfall structure compared with the rain gauge rainfall data over the UTB.
EVALUATION OF HYDROLOGICAL PERFORMANCE

Calibration of model parameters

Many parameters of the SWAT model are physical in nature and should, in principle, be estimated from field surveyed data,

such as land cover, soil, vegetation coverage, and channel characteristics. However, in many large basins, particularly in
Africa (Thiemig et al. 2013), it is difficult to estimate model parameters from field data. Hence, model performances need
to be optimized to determine their parameters through calibration. Prior to model calibration, a sensitivity analysis was
implemented to identify the most sensitive parameter using SWAT sensitivity analysis capabilities, and the most sensitive par-

ameters are listed in Table 3. These parameters include the surface runoff, groundwater, evaporation soil, precipitation, and
channel components of the basin hydrological process. In this study, SUFI-2, which is commonly used as a tool for the com-
bined calibration and uncertainty analysis (Yang et al. 2008; Zhou et al. 2014) of the SWAT model, was used. Fifteen flow

parameters of the hydrological process were calibrated for the three scenarios, and their numerical parameter optimization
results are shown in Table 3. The calibration result indicates that the optimum parameter values vary across the scenarios.
This variation directly and indirectly contributes to the performance of the rainfall data in driving the SWAT model for simu-

lating the hydrological process. This implies that the model parameters were sensitive to the input rainfall data (CHIRPSv8,
EWEMI, and rain gauge data).
Table 3 | Calibrated sensitive model parameters and their optimal values for the three scenarios (v and r are parameter change qualifiers
representing change existing with ‘α’ and multiply existing with ‘1þ α’, respectively)

Parameter Description Process
Lower
bound

Upper
bound

Calibrated value

Scenario
I

Scenario
II

Scenario
III

v_PLAPS.sub Precipitation lapse rate (mm H2O/km) Precipitation 0 500 98.2 76.5 58.3

v_TLAPS.sub Temperature lapse rate (°C/km) Temperature �8 �4 �0.05 �0.05 �0.05

r_CN2.mgt Initial Soil Conservation Service (SCS) runoff
curve number for moisture condition II

Runoff �0.4 0.4 0.25 0.19 0.06

v_Alpha_Bf.gw Baseflow alpha factor–baseflow recession
constant

Runoff 0 1 0.56 0.53 0.54

v_Gwqmn.gw Threshold depth of water required for return
flow to occur

Groundwater 0 2,000 1,050 982.7 800.23

r_Sol_Z.sol Soil depth (mm) Soil �0.3 0.3 �0.23 �0.15 �0.11

v_Esco.bsn Soil evaporation compensation factor Evaporation 0.01 1 0.31 0.29 0.4

r_Sol_Awc.sol Available water capacity of soil layer (mm H2O/
mm soil)

Soil �0.6 0.6 �0.015 0.03 �0.002

v_Revapmn.gw Threshold depth of water in shallow aquifer for
‘revap’ to occur (mm)

Groundwater 0 300 186 159.2 185.3

v_Ch_K2.rte Effective hydraulic conductivity in main channel
alluvium (mm/h)

Channel 0 250 88 116.9 115.1

v_Gw_Revap.gw Groundwater ‘revap’ coefficient Groundwater 0.02 0.2 0.073 0.14 0.09

v_Epco.hru Plant uptake composition factor Crop 0.01 1 0.56 0.5 0.49

r_Sol_K Saturated hydraulic conductivity Soil �0.24 0.25 0.13 0.01 0.01

v_Gw_Delay Groundwater delay time (days) Groundwater 40 450 49.3 45.14 35.67

v_Ch_N2 Manning’s ‘n’ value for the main channel Runoff 0.01 0.3 0.06 0.09 0.16
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Evaluation of hydrological simulations based on different rainfall data

Table 4 presentsmodel performance results formonthlyflowsimulations considering the three scenarios at the three stations. In
the case of scenario I, the SWAT model using gauge rainfall data showed good simulations of monthly streamflow with NSCE

values 0.85, 0.76, and 0.62 forWerie,Geba, andEmbaMadre stations, respectively. The relativemonthly streamflowerrorswere
19.3% (Emba Madre), 2.8% (Geba), and �3.7% (Werie). The CC values were high at Werie (0.92) and relatively low at
Emba Madre (0.82). The model was considered applicable and provided a sound basis for evaluating the adequacy of using
CHIRPSv8 and EWEMBI to drive the model in scenario I. However, the subsequent performance of the SWAT model using

CHIRPSv8 and EWEMBI data was not as good as the gauge-driven performance. The NSCE values were decreased to 0.37–
0.66 for CHIRPSv8 and 0.32–0.61 for EWEMBI rainfall forced simulated streamflow. The relative simulated monthly flow
errorswerebetween�1.9 and14.3% (CHIRPSv8) and4.72 and21.1% (EWEMBI) across the three streamflowstations (Table 4).

For the case of scenario II, the model performance using CHIRPSv8 rainfall data was slightly improved compared with
scenario I. The NSCE values at the three streamflow stations ranged from 0.58 to 0.69. The relative monthly streamflow
bias was between �2.1 and 23.4%, and the CC ranged from 0.8 to 0.83. For the case of scenario III, Table 4 shows that

model performance based on calibration using EWEMBI is almost similar to its performance in scenarios I and II, with
NSCE ranging between 0.53 and 0.55, and relative bias ranging between 14 and 23.6%.

Figure 6 illustrates observed and simulated monthly streamflow hydrographs, driving by CHIRPSv8 and EWEMBI rainfall
datasets, based on a model calibrated using corresponding rainfall. The simulated streamflow driven by gauge rainfall data

showed a better agreement with streamflow observations than model simulations driven by the CHIRPSv8 and EWEMBI rain-
fall. The average values of KGE for gauge rainfall-driven simulations were 0.63, 0.73, and 0.88 for Emba Madre, Geba, and
Werie stations, respectively. Considering the classification of KGE, the SWAT simulations driven by the CHIRPSv8 and

EWEMBI rainfall showed intermediate to good hydrological performance, and CHIRPSv8 is better than EWEMBI. The
streamflow peaks were often overestimated in the simulations driven by EWEMBI and CHIRPSv8 at all the three stations.

Figure 7 depicts the hydrological performance during low-flow and high-flow seasons when rainfall data-specified calibra-

tions were used. With the exception of using gauge rainfall data at the Emba Madre gauge station, all the rainfall estimates
(EWEMBI, CHIRPSv8, and gauge rainfall data) achieve a better hydrological performance during the high-flow season than
the low-flow season (Figure 7(a)). The KGE scores in hydrological performance range from 0.6 to 0.79 (gauge rainfall), 0.59–

0.68 (CHIRPSv8), and 0.53–0.58 (EWEMBI) for high-flow seasons across the three streamflow stations. The high CCs indi-
cate that the timing and shape of the hydrograph were well reproduced during the high-flow season (Figure 7(b)). This is
consistent with the seasonal daily rainfall intercomparison of the rainfall products over the basin. The CC between the
CHIRPSv8 (or EWMBI) and gauge rainfall data implies relatively better agreement of the rainfall datasets for the wet

season, and this enables a better hydrological performance during the high-flow season (Figure 3). A higher absolute bias
(36.1%) in simulated monthly flow was showed in the high-flow season at the Emba Madre gauge station by the EWEMBI
rainfall (Figure 7(c)).

The hydrological performance of the model driven by gauge rainfall, CHIRPSv8, and EWEMBI rainfall estimates was rela-
tively poor during low-flow seasons. The low correlation in timing and magnitude of the observed and simulated hydrographs
by the three rainfall estimates is the key limiting factor in relatively poor performances in the low-flow seasons. This can be

explained by the fact that the calibration process which optimizes the model parameters is often dominated by the high-flow
spectrum rather than the low-flow spectrum.

We further inspected model accuracy using the gauge rainfall, CHIRPSv8, and EWEMBI rainfall data at the main outlet of
the basin (Emba Madre) for daily streamflow simulation during 2006–2015 (Figure 8). Figure 8 indicates daily streamflow

hydrograph and the model performance statistics. A satisfactorily model performance result is obtained using gauge-
based rainfall, with the coefficient of determination (R2) of 0.65, Pbias of 4.2%, and NSCE of 0.57. Similarly, the
SWAT model based on CHIRPSv8 and EWEMBI rainfall data showed a satisfactory result, although with performance

indicator values a bit lower than those of the gauge-based data-driven model. Even though the R2 values are close to that
of the gauge rainfall-driven model, a relative increment in Pbias is shown for the simulations by CHIRPSv8 (21.9%) and
EWEMBI (29.7%). All the model hydrological simulations using gauge rainfall, CHIRPSv8, and EWEMBI data overes-

timated the daily discharge of the basin. Generally, from the above results, CHIRPSv8 and EWEMBI rainfall can be
used for hydrological simulation purposes in the area of interest and then can be further used to estimate hydrological
budget for the basin.
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Table 4 | Results for the hydrological modelling of the UTB using the SWAT

Scenario Station

Gauge observed CHIRPSv8 EWEMBI

NSCE Bias CC

95PPU

NSCE Bias CC

95PPU

NSCE Bias CC

95PPU

P-factor R-factor P-factor R-factor P-factor R-factor

1 Emba Madre 0.62 19.3 0.82 0.63 0.92 0.37 14.3 0.71 – – 0.32 21.1 0.64 – –

Geba 0.76 2.8 0.87 0.76 1.05 0.66 �1.9 0.74 – – 0.59 11.74 0.53 – –

Werie 0.85 �3.7 0.92 0.82 1.14 0.59 2.7 0.66 – – 0.61 4.72 0.67 – –

2 Emba Madre 0.35 23.3 0.77 – – 0.58 22.1 0.83 0.58 0.67 0.28 25.14 0.59 – –

Geba 0.73 3.19 0.86 – – 0.69 23.4 0.87 0.69 0.94 0.52 23.8 0.63 – –

Werie 0.83 �4.22 0.91 – – 0.63 �2.1 0.80 0.77 1.12 0.49 1.32 0.74 – –

3 Emba Madre 0.38 23.9 0.72 – – 0.34 24.7 0.58 – – 0.53 23.6 0.77 0.67 0.77

Geba 0.73 2.96 0.84 – – 0.59 19.7 0.70 – – 0.51 14.0 0.82 0.71 1.25

Werie 0.79 �2.6 0.87 – – 0.61 2.7 0.64 – – 0.55 20.4 0.85 0.75 0.98
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Figure 7 | Hydrological performance during high-flow and low-flow seasons at monthly time scale: (a) KGE, (b) correlation coefficient and
(c) percent bias (%).

Figure 6 | Comparison of observed vs. simulated monthly hydrographs driven by CHIRPSv8 and EWEMBI rainfall estimates and the rain gauge
rainfall data with their respective calibrated model parameter values at the Emba Madre, Geba and the Werie stations.
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Figure 8 | Comparison of observed vs. simulated daily hydrographs at the Emba Madre station, model driven by the three rainfall estimates
during 2006–2016.
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Evaluation of water balance

Table 5 presents the yearly averaged depth of water balance components (precipitation, evapotranspiration, surface runoff,
and baseflow) in the UTB. The simulated water balance difference is slight. The estimated annual rainfall was 963.3,
949.5, and 1,060.9 mm year�1 for gauge rainfall, CHIRPSv8, and EWEMBI, respectively. In regard to the gauge rainfall-

driven simulations, 49.9% of the rainfall was exhausted through evapotranspiration, whereas in the case of CHIRPSv8
and EWEMBI rainfall estimates, the corresponding evapotranspiration rate was 50.3 and 41.1%, respectively. The proportion
of the rainfall changed to groundwater recharge was about 15.2% (gauge rainfall), 22.1% (CHIRPSv8 rainfall), and 16.4%
(EWEMBI rainfall). Because the groundwater recharge is a determinant factor that influences the amount of base flow in

the hydrological regime, the base flow component was higher in CHIRPSv8 (38.6%), corresponding to its larger simulated
ground water recharge rather than simulation by the other two rainfall products. With regard to the simulated total runoff
component, proportionally higher rainfall was transformed into runoff in the CHIRPSv8 rainfall-driven simulation

(576.3 mm, 60.7% of its annual rainfall). A total runoff of 596.63 mm (EWEMBI) and 554.07 mm year�1 (gauge rainfall)
were produced, which comprised 56.2 and 57.5% of annual rainfall, respectively. In general, CHIRPSv8 and EWEMBI
are also useful for general water budget calculations and other similar applications.
DISCUSSION AND IMPLICATIONS

In this study, we assessed the hydrological simulation performances using the model calibrated with CHIRPSv8, EWEMBI,
and gauge rainfall (i.e., scenarios I, II, and II). In addition, we examined the performance of the CHIRPSv8 and EWEMBI
rainfall products during low- and high-flow seasons separately at monthly and daily time scales over the UTB.

The SWAT model performance in simulating monthly streamflow driven by CHIRPSv8, EWEMBI, and gauge rainfall data

at three streamflow gauge stations was good. Under the full time-series analysis, results from the hydrological evaluation indi-
cates that the CHIRPSv8 and EWEMBI have the potential to be used as driving forcing for hydrological modelling over the
UTB. According to Arnold et al. (2012), Thiemig et al. (2013), and Li et al. (2018), hydrological models are considered
Table 5 | The mean simulated hydrological components using the gauge-, CHIRPSv8-, and EWEMBI-based modelling during 2006–2015

Hydrological regimes

Gauge-based modelling CHIRPSv8-based modelling EWEMBI-based modelling

Depth
(mm/yr)

Precipitation
(%)

% from
total runoff

Volume
(mm/yr)

Precipitation
(%)

Total
runoff (%)

Volume
(mm/yr)

Precipitation
(%)

% from
total runoff

Precipitation 963.3 949.5 1,060.9

Evapotranspiration 480.69 49.9 477.69 50.3 436.0 41.1

Groundwater
recharge

146.23 15.2 209.46 22.1 173.6 16.4

Total runoff 554.07 57.5 576.30 60.7 596.63 56.2

Surface runoff 214.82 22.3 38.77 190.42 20.1 33.04 209.96 19.8 35.19

Base flow 339.82 35.3 61.33 366.34 38.6 63.57 386.67 36.4 64.81
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satisfactory if the NSCE and KGE are greater than 0.5 and the absolute Pbias is less than 25% for monthly streamflow simu-

lations. In addition, this can be supported spatially by the fact that two of the rainfall products achieve sufficiently satisfactory
hydrological performances over the three gauge stations located over the lowland (Emba Madre station), midland (Geba
station), and highland (Werie station) parts of the basin. And this is sufficiently comparable to the gauge rainfall-driven hydro-

logical simulation result. This outcome is highly desirable, especially for data-sparse and ungauged basins.
Even though the overall hydrological performance through the entire study period is sufficiently satisfactory for hydrolo-

gical applications, some hydrological and water management applications need high performance for a certain flow
condition. For example, for drought and flood analysis, good performance during low-flow and high-flow periods is important.

To this end, we analysed the hydrological performance during high-flow (June–September) and low-flow (October–May) sea-
sons separately. The results indicate the potential of the products used as forcing data in flood management, dam reservoir
storage modelling, and other hydrological applications that require accurate forecasting of high-flow conditions. The better

hydrological performance using satellite rainfall products was also shown by Thiemig et al. (2013) in high-flow periods
than low-flow periods. The rainfall over the UTB is highly seasonal with greater than 70% of annual rainfall received from
June to September (Fentaw et al. 2018; Gebremicael et al. 2019). CHIRPSv8 and EWEMBI also showed a better hydrological

performance during high-flow periods. CHIRPSv8 performs well even during the low-flow seasons. This implies, for our study
areas, that the use of CHIRPSv8 could be advisable for hydrological applications that need accurate reproduction of low-flow
conditions, for example, in meteorological and hydrological drought monitoring and management.

Beside the daily and monthly streamflow hydrograph comparisons examined above, hydrological water balance com-
ponent modelling delivers additional important indicators for evaluating rainfall data adequacy in driving hydrological
models (Xu et al. 2013; Wang et al. 2020). Hence, based on rain gauges, CHIRPSv8, and EWEMBI rainfall-driven simulated
monthly streamflows, we examined the discrepancy of the simulated water balance components of the basin. The simulated

water balance difference is slight among the rainfall datasets. Hence, the two rainfall datasets can be used in the applications
that need water balance analysis in the UTB, and then water balances will help to characterize, in a coherent manner, the
hydrological functioning of the basin.

Finally, this study could be important for planners, decision-makers, and researchers in the water resources sector in
ungauged regions. Our study indicates that satellite and reanalysis-based rainfall products with high spatio-temporal resol-
utions can be used as an alternative data sources for meteorological forcing in hydrological process modelling in the

ungauged basins. For instance, the recommended rain gauge density is one station per 600–900 km2 for flatlands and 100–
250 km2 for topographically rugged areas (Zeng et al. 2018). Africa has only 744 stations and only a quarter of them meet
the international standards which is far below the recommended to capture its spatio-temporal climate variabilities (Satgé
et al. 2020). Hence, this study could be helpful as a reference for other mountainous regions in Africa. Even in gauged catch-

ments, the quality and stability of climatic data from ground meteorological stations may not be sufficient due to limited
numbers of stations, uneven spatial distribution, and vulnerability to human and environmental factors. Under such con-
ditions anywhere in the globe, our study is an indicator how the satellite and reanalysis rainfall products are very

important to represent ground observations.
CONCLUSIONS

This study compared the daily rainfall from two rainfall products CHIRPSv8 and EWEMBI with rain gauge data and assessed
the adequacy of hydrological process modelling using CHIRPSv8 and EWMBI rainfall as forcing data at the UTB, northern
Ethiopia. The following conclusions can be drawn.

I. Compared with the rain gauges, the biases of rainfall estimate from the CHIRPSv8 and EWEMBI dataset are within an
acceptable range. In both the CHIRPSv8 and EWEMBI rainfall products, the hit bias error component is dominant as

compared with the missed and false error components. In addition, both CHIRPSv8 and EWMBI show relatively better
agreement with the gauge rainfall for the wet season than the dry season period. The differences of maximum daily and
maximum 5-day rainfall between CHIRPSv8 or EWEMBI and rain gauges are large.

II. The SWAT-simulated hydrological performance for the monthly and daily streamflow simulations driven by both
CHIRPSv8 and EWEMBI rainfalls is close to streamflow simulation driven by gauge-based rainfall, implying that the
satellite-based and reanalysis data, although suffering biases, are applicable for hydrological application over the
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UTB. The hydrological simulations driven by CHIRPSv8 rainfall perform relatively better than EWEMBI rainfall in the

area of interest.
III. In general, the hydrological simulation shows better performance during the high-flow season than the low-flow season

using both CHIRPSv8 and EWEMBI rainfall products.

IV. The estimated CHIRPSv8 and EWEMBI rainfall data can be used as an alternative meteorological forcing for hydrolo-
gical modelling and applications, especially for data-sparse and ungauged basins such as the UTB, Ethiopia.
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Jia, S., Zhu, W., Lű, A. & Yan, T. 2011 A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the
Qaidam Basin of China. Remote Sensing of Environment 115 (12), 3069–3079.

Kling, H., Fuchs, M. & Paulin, M. 2012 Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal
of Hydrology 424–425, 264–277.

Kneis, D., Chatterjee, C. & Singh, R. 2014 Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi). Hydrology and
Earth System Sciences 18 (7), 2493–2502.

Lakew, H. B., Moges, S. A. & Asfaw, D. H. 2017 Hydrological evaluation of satellite and reanalysis precipitation products in the Upper Blue
Nile Basin: a case study of Gilgel Abbay. Hydrology 4 (3), 39.

Lange, S. 2016 EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI). GFZ Data Services.
https://doi.org/10.5880/pik.2019.004.

Lange, S. 2018 Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth System Dynamics
9 (2), 627–645.

Lemma, E., Upadhyaya, S. & Ramsankaran, R. 2019 Investigating the performance of satellite and reanalysis rainfall products at monthly
timescales across different rainfall regimes of Ethiopia. International Journal of Remote Sensing 40 (10), 4019–4042.

Li, D., Christakos, G., Ding, X. & Wu, J. 2018 Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment
(Taihu lake basin, China). Journal of Hydrology 556, 1139–1152.

Lo Conti, F., Hsu, K.-L., Noto, L. V. & Sorooshian, S. 2014 Evaluation and comparison of satellite precipitation estimates with reference to a
local area in the Mediterranean Sea. Atmospheric Research 138, 189–204.
om http://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf

4

http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1002/qj.3244
http://dx.doi.org/10.1002/qj.3244
http://dx.doi.org/10.1016/j.jhydrol.2012.12.016
http://dx.doi.org/10.1016/j.jhydrol.2012.12.016
http://dx.doi.org/10.1007/s41101-018-0057-3
http://dx.doi.org/10.1007/s41101-018-0057-3
http://dx.doi.org/10.1016/j.jhydrol.2016.01.034
http://dx.doi.org/10.1016/j.jhydrol.2016.01.034
http://dx.doi.org/10.5194/gmd-10-4321-2017
http://dx.doi.org/10.5194/gmd-10-4321-2017
http://dx.doi.org/10.3133/ds832
http://dx.doi.org/10.3133/ds832
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1016/j.jhydrol.2012.12.023
http://dx.doi.org/10.1016/j.jhydrol.2012.12.023
http://dx.doi.org/10.5194/hess-21-2127-2017
http://dx.doi.org/10.5194/hess-21-2127-2017
http://dx.doi.org/10.1016/j.jaridenv.2017.12.002
http://dx.doi.org/10.1016/j.jaridenv.2017.12.002
http://dx.doi.org/10.1080/01431161.2018.1562585
http://dx.doi.org/10.1080/01431161.2018.1562585
http://dx.doi.org/10.5194/hess-16-3371-2012
http://dx.doi.org/10.1175/JHM-D-14-0197.1
http://dx.doi.org/10.1175/JHM-D-14-0197.1
http://dx.doi.org/10.1016/j.jhydrol.2009.05.010
http://dx.doi.org/10.1016/j.jhydrol.2009.05.010
http://dx.doi.org/10.1016/j.scitotenv.2019.135299
http://dx.doi.org/10.1016/j.scitotenv.2019.135299
http://dx.doi.org/10.1002/2016GL071768
http://dx.doi.org/10.1007/s11442-017-1392-6
http://dx.doi.org/10.1007/s11442-017-1392-6
http://dx.doi.org/10.1016/j.rse.2011.06.009
http://dx.doi.org/10.1016/j.rse.2011.06.009
http://dx.doi.org/10.1016/j.jhydrol.2012.01.011
http://dx.doi.org/10.5194/hess-18-2493-2014
http://dx.doi.org/10.3390/hydrology4030039
http://dx.doi.org/10.3390/hydrology4030039
http://dx.doi.org/10.5194/esd-9-627-2018
http://dx.doi.org/10.1080/01431161.2018.1558373
http://dx.doi.org/10.1080/01431161.2018.1558373
http://dx.doi.org/10.1016/j.jhydrol.2017.01.006
http://dx.doi.org/10.1016/j.jhydrol.2017.01.006
http://dx.doi.org/10.1016/j.atmosres.2013.11.011
http://dx.doi.org/10.1016/j.atmosres.2013.11.011


Hydrology Research Vol 53 No 4, 603

Downloaded from http
by guest
on 25 April 2024
Mair, A. & Fares, A. 2011 Comparison of rainfall interpolation methods in a mountainous region of a Tropical Island. Journal of Hydrologic
Engineering 16 (4), 371–383.

Meng, J., Li, L., Hao, Z., Wang, J. & Shao, Q. 2014 Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the
source region of Yellow River. Journal of Hydrology 509, 320–332.

Mengistu, A. G., van Rensburg, L. D. &Woyessa, Y. E. 2019 Techniques for calibration and validation of SWATmodel in data scarce arid and
semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies 25, 100621.

Nadew, B. 2018 Stream flow and sediment yield modeling: a case study of Beles watershed, Upper Blue Nile Basin. Irrigation & Drainage
Systems Engineering 07 (03), 216.

Neitsch, S. L., Arnold, J. R., Kiniry, J. R. & Williams, J. R. 2012 Soil and Water Assessment Tool (SWAT) Model Version 2012, Texas Water
Resources Institute, Technical Report No. 406. Texas A&M University System, Collage Station, TX, USA.

Ouermi, K. S., Paturel, J.-E., Adounpke, J., Lawin, A. E., Goula, B. T. A. & Amoussou, E. 2019 Comparison of hydrological models for use in
climate change studies: a test on 241 catchments in West and Central Africa. Comptes Rendus Geoscience 351 (7), 477–486.

Raimonet, M., Oudin, L. & Thieu, V. 2017 Evaluation of gridded meteorological datasets for hydrological modeling. Journal of
Hydrometeorology 18 (11), 3027–3041.

Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., Razavi, S., Tang, G. & Pomeroy, J. W. 2020 Assessment of extremes in global precipitation
products: how reliable are they? Journal of Hydrometeorology 21 (12), 2855–2873.

Reda, K. W., Liu, X., Tang, Q. & Gebremicael, T. G. 2021 Evaluation of global gridded precipitation and temperature datasets against gauged
observations over the Upper Tekeze River Basin, Ethiopia. Journal of Meteorological Research 35 (4), 673–689.

Roy, A., Thakur, P. K., Pokhriyal, N., Aggarwal, S. P., Nikam, B. R., Garg, V. & Choksey, A. 2018 Intercomparison of different rainfall products
and validation of WRF modelled rainfall estimation in N-W Himalya during monsoon period. In: ISPRS TC V Mid-Term Symposium
Geospatial Technology – Pixel to People 4-5 (Kumar, A. S., Saran, S. & Padalia, H., eds), ISPRS, Hannover, Germany, pp. 351–358.

Satgé, F., Defrance, D., Sultan, B., Bonnet, M.-P., Seyler, F., Rouché, N. & Paturel, J.-E. 2020 Evaluation of 23 gridded precipitation datasets
across West Africa. Journal of Hydrology 581, 124412.

Schuol, J., Abbaspour, K. C., Srinivasan, R. & Yang, H. 2008 Estimation of freshwater availability in the West African sub-continent using the
SWAT hydrologic model. Journal of Hydrology 352 (1–2), 30–49.

Singh, A., Imtiyaz, M., Isaac, R. K. & Denis, D. M. 2014 Assessing the performance and uncertainty analysis of the SWAT and RBNNmodels
for simulation of sediment yield in the Nagwa watershed, India. Hydrological Sciences Journal 59 (2), 351–364.

Sperna Weiland, F. C., Vrugt, J. A., van Beek, R. P. H., Weerts, A. H. & Bierkens, M. F. P. 2015 Significant uncertainty in global scale
hydrological modeling from precipitation data errors. Journal of Hydrology 529, 1095–1115.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S. & Hsu, K. L. 2018 A review of global precipitation data sets: data sources, estimation,
and intercomparisons. Reviews of Geophysics 56 (1), 79–107.

Tan, G., Philip, W. & Cracknell, A. P. 2017 Assessment of three long-term gridded climate products for hydro-climatic simulations in Tropical
River Basins. Water 9 (3), 229.

Tan, X., Wu, Y., Liu, B. & Chen, S. 2020 Inconsistent changes in global precipitation seasonality in seven precipitation datasets. Climate
Dynamics 54 (5–6), 3091–3108.

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M. & De Roo, A. 2013 Hydrological evaluation of satellite-based rainfall estimates over the Volta
and Baro-Akobo Basin. Journal of Hydrology 499, 324–338.

Wang, J., Liu, G. & Zhu, C. 2020 Evaluating precipitation products for hydrologic modeling over a large river basin in the Midwestern USA.
Hydrological Sciences Journal 65 (7), 1221–1238.

Wang, T., Tu, X., Singh, V. P., Chen, X. & Lin, K. 2021 Global data assessment and analysis of drought characteristics based on CMIP6.
Journal of Hydrology 596, 126091.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J. & Viterbo, P. 2014 The WFDEI meteorological forcing data set: WATCH
Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research 50 (9), 7505–7514.

Welde, K. & Gebremariam, B. 2017 Effect of land use land cover dynamics on hydrological response of watershed: case study of Tekeze Dam
watershed, northern Ethiopia. International Soil and Water Conservation Research 5 (1), 1–16.

Wu, H. & Chen, B. 2015 Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by
GLUE, SUFI-2, and ParaSol methods. Ecological Engineering 76, 110–121.

Xu, H., Xu, C.-Y., Chen, H., Zhang, Z. & Li, L. 2013 Assessing the influence of rain gauge density and distribution on hydrological model
performance in a humid region of China. Journal of Hydrology 505, 1–12.

Xue, X., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I. & Chen, S. 2013 Statistical and hydrological evaluation of TRMM-
based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7
ready for use in ungauged basins? Journal of Hydrology 499, 91–99.

Yang, J., Reichert, P., Abbaspour, K. C., Xia, J. & Yang, H. 2008 Comparing uncertainty analysis techniques for a SWAT application to the
Chaohe Basin in China. Journal of Hydrology 358 (1–2), 1–23.

Yue, T. X., Wang, Y. F., Du, Z. P., Zhao, M. W., Zhang, L. L., Zhao, N. & Wilson, J. P. 2016 Analysing the uncertainty of estimating forest
carbon stocks in China. Biogeosciences 13 (13), 3991–4004.

Zenebe, A. 2009 Assessment of Spatial and Temporal Variability of River Discharge, Sediment Yield and Sediment-Fixed Nutrient Export in
Geba River Catchment, Northern Ethiopia. PhD, Stoch. Env. Res. Risk. A., KU Leuven, Belgium.
://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000330
http://dx.doi.org/10.1016/j.jhydrol.2013.11.049
http://dx.doi.org/10.1016/j.jhydrol.2013.11.049
http://dx.doi.org/10.1016/j.crte.2019.08.001
http://dx.doi.org/10.1016/j.crte.2019.08.001
http://dx.doi.org/10.1175/JHM-D-17-0018.1
http://dx.doi.org/10.1175/JHM-D-20-0040.1
http://dx.doi.org/10.1175/JHM-D-20-0040.1
http://dx.doi.org/10.1007/s13351-021-0199-7
http://dx.doi.org/10.1007/s13351-021-0199-7
http://dx.doi.org/10.1016/j.jhydrol.2019.124412
http://dx.doi.org/10.1016/j.jhydrol.2019.124412
http://dx.doi.org/10.1016/j.jhydrol.2007.12.025
http://dx.doi.org/10.1016/j.jhydrol.2007.12.025
http://dx.doi.org/10.1080/02626667.2013.872787
http://dx.doi.org/10.1080/02626667.2013.872787
http://dx.doi.org/10.1016/j.jhydrol.2015.08.061
http://dx.doi.org/10.1016/j.jhydrol.2015.08.061
http://dx.doi.org/10.1002/2017RG000574
http://dx.doi.org/10.1002/2017RG000574
http://dx.doi.org/10.3390/w9030229
http://dx.doi.org/10.3390/w9030229
http://dx.doi.org/10.1007/s00382-020-05158-w
http://dx.doi.org/10.1016/j.jhydrol.2013.07.012
http://dx.doi.org/10.1016/j.jhydrol.2013.07.012
http://dx.doi.org/10.1080/02626667.2020.1737868
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.1016/j.iswcr.2017.03.002
http://dx.doi.org/10.1016/j.iswcr.2017.03.002
http://dx.doi.org/10.1016/j.ecoleng.2014.05.014
http://dx.doi.org/10.1016/j.ecoleng.2014.05.014
http://dx.doi.org/10.1016/j.jhydrol.2013.09.004
http://dx.doi.org/10.1016/j.jhydrol.2013.09.004
http://dx.doi.org/10.1016/j.jhydrol.2013.06.042
http://dx.doi.org/10.1016/j.jhydrol.2013.06.042
http://dx.doi.org/10.1016/j.jhydrol.2013.06.042
http://dx.doi.org/10.1016/j.jhydrol.2008.05.012
http://dx.doi.org/10.1016/j.jhydrol.2008.05.012
http://dx.doi.org/10.5194/bg-13-3991-2016
http://dx.doi.org/10.5194/bg-13-3991-2016


Hydrology Research Vol 53 No 4, 604

Downloaded fr
by guest
on 25 April 202
Zeng, Q., Chen, H., Xu, C.-Y., Jie, M.-X., Chen, J., Guo, S.-L. & Liu, J. 2018 The effect of rain gauge density and distribution on runoff
simulation using a lumped hydrological modelling approach. Journal of Hydrology 563, 106–122.

Zhao,H., Yang, S.,Wang, Z., Zhou,X., Luo, Y.&Wu, L. 2015Evaluating the suitability of TRMMsatellite rainfall data for hydrological simulation
using a distributed hydrological model in the Weihe River catchment in China. Journal of Geographical Sciences 25 (2), 177–195.

Zhou, J., Liu, Y., Guo, H. & He, D. 2014 Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction
and uncertainty analysis for the Lake Dianchi Basin, China. Hydrological Processes 28 (3), 521–533.

First received 1 December 2021; accepted in revised form 17 February 2022. Available online 10 March 2022
om http://iwa.silverchair.com/hr/article-pdf/53/4/584/1043618/nh0530584.pdf

4

http://dx.doi.org/10.1016/j.jhydrol.2018.05.058
http://dx.doi.org/10.1016/j.jhydrol.2018.05.058
http://dx.doi.org/10.1007/s11442-015-1161-3
http://dx.doi.org/10.1007/s11442-015-1161-3
http://dx.doi.org/10.1002/hyp.9605
http://dx.doi.org/10.1002/hyp.9605

	Hydrological evaluation of satellite and reanalysis-based rainfall estimates over the Upper Tekeze Basin, Ethiopia
	INTRODUCTION
	STUDY AREA AND DATA
	Study area
	Gauge rainfall and streamflow data
	CHIRPSv8 and EWEMBI rainfall products

	METHODOLOGY
	Evaluation of CHIRPSv8 and EWEMBI rainfall
	Hydrological model
	Hydrological model and simulation
	Model performance evaluation
	Water balance analysis

	RESULTS
	Comparison between gridded rainfall and rain gauge data
	Temporal and spatial distributions
	Rainfall intensity distribution

	EVALUATION OF HYDROLOGICAL PERFORMANCE
	Calibration of model parameters
	Evaluation of hydrological simulations based on different rainfall data
	Evaluation of water balance

	DISCUSSION AND IMPLICATIONS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	COMPETING INTEREST
	AUTHOR CONTRIBUTION
	DATA AVAILABILITY STATEMENT
	REFERENCES


