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Development and evaluation of an extended inverse

distance weighting method for streamflow estimation at

an ungauged site

Muhammad Waseem, Muhammad Ajmal, Ungtae Kim

and Tae-Woong Kim
ABSTRACT
In spatial interpolation, one of the most widely used deterministic methods is the inverse distance

weighting (IDW) technique. The general idea of IDW is primarily based on the hypothesis that the

attribute value of an ungauged site is the weighted average of the known attribute values within the

neighborhood, and the ‘weights’ are merely associated with the horizontal distances between the

gauged and ungauged sites. However, here we propose an extended version of IDW (hereafter, called

the EIDW method) to provide ‘alternative weights’ based on the blended geographical and

physiographical spaces for estimation of streamflow percentiles at ungauged sites. Based on the

leave-one-out cross-validation procedure, the coefficient of determination had a value of 0.77 and

0.82 for the proposed EIDW models, M1 and M2, respectively, with low root mean square errors.

Moreover, after investigating the relationship between the prediction efficiency and the distance

decay parameter (C), the better performance of the M1 and M2 resulted at C¼ 2. Furthermore, the

results of this study show that the EIDW could be considered as a constructive way forward to

provide more accurate and consistent results in comparison to the traditional IDW or the dimension

reduction technique-based IDW.
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INTRODUCTION
Streamflow data records are very important for efficient

water resource management. However, in many instances,

streamflow series are too short to allow for reliable esti-

mation of extreme events at the site of interest. Numerous

methodologies have been applied for streamflow estimation

at ungauged sites or at sites with short streamflow series

(Razavi & Coulibaly ). These methods, which are used

to transfer hydrological information from gauge sites to

the ungauged site, are generally called regionalization

(Chokmani & Ouarda ; Farmer & Vogel ). Regiona-

lization techniques frequently used in practice are generally

based on deterministic rainfall–runoff models or
hydrological model-independent (hydro-statistical) methods

(Razavi & Coulibaly ; Farmer & Vogel ). Razavi &

Coulibaly () provided a brief review of the merits and

demerits of these two different regionalization categories.

Since there is no universally acceptable unique regionaliza-

tion method (Arsenault & Brissette ), we focused on

the relatively simple methods, i.e., hydrological model-

independent regionalization techniques.

In the current era of hydrological model-independent

regionalization study, spatial interpolation techniques are

divided into deterministic and geostatistical approaches

based on both geographical and physiographical space
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https://crossmark.crossref.org/dialog/?doi=10.2166/nh.2015.117&domain=pdf&date_stamp=2015-12-08


334 M. Waseem et al. | Extended inverse distance weighting method for streamflow estimation Hydrology Research | 47.2 | 2016

Downloaded fr
by guest
on 25 April 202
(Castiglioni et al. ). Numerous studies of regionalization

using spatial interpolation techniques have been reported in

the scientific literature (Razavi & Coulibaly ). The most

widely used deterministic and geostatistical spatial inter-

polation approaches include the inverse distance method

(IDW) and the kriging method, respectively. According to

Chokmani & Ouarda (), Skøien et al. (), Castiglioni

et al. (), and Archfield et al. (), a geostatistical

approach such as kriging can be considered a reliable bench-

mark for regionalization. In particular, Castiglioni et al.

() reported that geostatistical interpolation methods out-

perform deterministic methods. Generally, the kriging

method is reliant on the appropriateness of the theoretical

semivariogram. However, identification of the appropriate

theoretical variogram for the given data is critical. In general,

the level of spatial autocorrelation decreases as spatial lag

increases, and the changes in spatial autocorrelation level

over various spatial lags are measured and represented by a

variogram. Unfortunately, the spatial structure of data

might not follow the general structure in practical studies

due to many reasons, such as poor data quality or presence

of spatial heterogeneity or neighbor structures (Chokmani

& Ouarda ; Lu & Wong ). More specifically, if the

variogram does not sufficiently provide the spatial structure

of the data, then kriging might not reflect accurate results

(Lu & Wong ). In addition, the original data points in

kriging are seldom honored, and efficiency can be affected

by the number of donor sites (gauged sites), location (head-

water, presence of pits and spikes), and spatial distribution

of input sample points (Skøien et al. ; Lu & Wong ).

In contrast, the assumption of IDW is simple, and there

is no need to identify a theoretical distribution of the data.

This method does not contain computationally intensive

measures, such as inverting the covariance matrix, as

needed in kriging. Through comparison of four different

interpolation methods, Dirks et al. () demonstrated

that the kriging method does not provide any significant

improvement over the simple IDW method. Zhuang &

Wang () and Zhang et al. () provided similar argu-

ments. The IDW method is univariate with a single

influence factor of horizontal distance. The obvious draw-

backs associated with poor performance of the IDW are a

direct application of the interpolation method in geographi-

cal space and abrupt changes in the adjacent site
om http://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
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configuration (e.g., elevation changes) (Chang et al. ).

Some studies have also verified that direct application of

the interpolation method in geographical space might

cause unrealistic results (Chokmani & Ouarda ; Sauquet

; Lu &Wong ). Numerous forms of inverse distance

weights have been suggested in order to alleviate the limit-

ations of using the simplistic inverse distance weights (Lu

& Wong ). In addition, several studies have provided

extensions of the IDW method, using physiographical

space, by introducing the distance-elevation ratio space, or

by changing the distance decay parameter (power function)

of the traditional IDW (Chokmani & Ouarda ; Chang

et al. ; Lu & Wong ; Castiglioni et al. ). Chang

et al. () briefly discussed the need to consider the effects

of multiple factors (physiographical space) in addition to

horizontal distance, and Chokmani & Ouarda () and

Castiglioni et al. () reported that physiographical space

might have real potential for interpolation of streamflow.

The idea behind the physiographic space-based inter-

polation approach is innovative, as it allows one to

interpolate the hydrometric descriptors without necessarily

defining the homogeneous regions (Castiglioni et al. ).

With physiographical space-based interpolation, any given

site (gauged or ungauged) can be represented as a point in

XY space. The two-dimensional XY space (climatic and

physiographic descriptors) is generally derived using multi-

variate dimension reduction methods (principal component

analysis (PCA) or canonical correlation analysis) (Chokmani

& Ouarda ; Castiglioni et al. ). The empirical

values of the quantity of interest (e.g., low flow or 100-

year flood) can be characterized along the third dimension

Z for each gauged site and can be spatially interpolated

using any suitable standard interpolation algorithm (Casti-

glioni et al. ). However, the limitations of PCA are

primarily associated with assumptions, i.e., linearity in

data transformation, most of the information lies in the

direction of the maximum variance in the data inputs, and

the desired number of principal components (PCs). In

addition, the scales of the original descriptors are not

always comparable, and the variable with high absolute var-

iance will dominate the first principal component, which

might cause unrealistic results. A plethora of multivariate

dimension reduction methods, e.g., kernel PCA, kernel

entropy component analysis, and kernel partial least
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square, have been developed in order to overcome the limit-

ations associated with PCA (Jiang & Shi ; Rajsekhar

et al. ). In addition, the selection of an appropriate

method from the plethora of dimension reduction methods

requires a strong mathematical background and expertise

in statistical analysis.

Estimation of streamflow at ungauged sites using physio-

graphic space-based interpolation, without taking into

consideration any dimension reduction method, could be a

step to avoid limitations associated with dimension

reduction methods. Therefore, the simplest IDW method

was intended to modify using geographical and physio-

graphic space without using any dimension reduction

method. The core concept of the proposed method is to

modify the ‘weights (w)’ associated with the traditional

IDW method, by introducing the aggregated weights of geo-

graphical and physiographical space, instead of merely

basing the weights on geographical space or synthetic vari-

ables (PCs). The basic idea of the method is to define

alternative weighting strategies that represent the relative

importance of the individual donor site based on the joint

effects of physiographical space and horizontal distance

rather than the strategies of traditional IDW prediction.
STUDY AREA

The study area is located in the Han River basin, South

Korea, as shown in Figure 1. The study area selection was

primarily based on the appropriate accuracy of observations

(continuity and absence of missing values), significant

record length (>15 years), and independency of selected

sites. Two types of datasets were collected for analysis: (1)

hydrological attributes and (2) geomorpho-climatic charac-

teristics of the site. The data were collected from the

Water Management Information System (http://www.

wamis.go.kr/) of Korea.

The geomorpho-climatic attributes considered for the

analyses included mean annual precipitation, basin average

slope (BASL), basin average elevation (BAE), drainage area

(DA), drainage perimeter (DP), maximum altitude of the

basin (MAB), elongation ratio (ER) (the ratio of the diameter

of a circle of the same area as the basin to the maximum

basin length), form factor (FF) (the ratio of basin area to
://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
square of basin length), and relief ratio (ReR) (the ratio

between basin relief and basin length) as explanatory

predictors. Similarly, the hydrological attributes included

in this study constituted mean annual runoff (MAR) and

runoff ratio (RR). The detailed information regarding the

geomorpho-climatic and hydrological attributes is shown

in Table 1.
METHODOLOGY

Traditional IDW method

The IDW is a straightforward, non-computationally inten-

sive method. It is based on Tobler’s first law or the law of

geography (generally stated as ‘everything is related to every-

thing else, but near things are more related than distant

things’), and it applies geographical space for interpolation.

It has been used as one of the standard spatial interpolation

procedures (Longley ; Burrough et al. ) and has

been effectively used in various geographic information

system (GIS) software packages. Its general idea is based

on the assumption that the attribute value of an unsampled

point is the weighted average of the known values within the

neighborhood (Lu & Wong ). This method involves the

process of assigning values to unknown points using values

from a scattered set of known points. The value of an

unknown point is a weighted sum of the values of the

known points (Chen & Liu ).

From a hydrological point of view, if m source sites (i.e.,

known points) transfer information to an unknown point

(i.e., ungauged site), the required streamflow value at the

ungauged site can be computed as the weighted average of

the estimates of the m source sites. The computation of

the required streamflow value for an ungauged site can be

obtained using the IDW equations as follows:

QP(x) ¼
Xm
k¼1

wk

Pm
k¼1

wk

QP(xk) (1a)

wk ¼ 1

(DIDW(x,xk))
C (1b)

http://www.wamis.go.kr/
http://www.wamis.go.kr/
http://www.wamis.go.kr/


Table 1 | Statistical summary of the selected explanatory variables

DA DP BAE BASL
FF ER ReR

MAB
(km2) (km) (m) (%) (m)

Minimum 351.34 166.76 55.31 10.86 0.07 0.31 0.01 810.00

1st quartile 1,502.56 227.39 282.98 33.62 0.12 0.38 0.01 1,144.75

Median 1,600.88 258.54 417.30 39.59 0.18 0.48 0.02 1,237.50

Mean 1,611.38 252.33 395.66 36.66 0.31 0.58 0.02 1,282.95

3rd quartile 2,017.55 286.67 563.69 45.02 0.54 0.83 0.02 1,567.75

Maximum 2,483.82 348.71 749.32 57.88 0.78 1.00 0.03 1,585.00

Note: For detailed description see http://www.wamis.go.kr/eng/main.aspx.

Figure 1 | Study area map (while the numbers in the figure denote the arbitrary assigned number to selected individual catchment).
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DIDW(x,xk) ¼ dDWS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xk � x)2 þ (yk � y)2

q
(2)

where the distance between any two sites is DIDW(x,xk), the

IDW in subscript stands for the method used, dDWS is the
om http://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
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distance based on the geographical distance weighted

scheme (DWS), and QP(x) is the hydrological variable at

the ungauged site located at point (x, y). QP(xk) is the hydro-

logical variable at the neighboring donor site k located at

point (xk, yk) in the region, m is the total number of donor

http://www.wamis.go.kr/eng/main.aspx
http://www.wamis.go.kr/eng/main.aspx
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sites, c is the power parameter, and wk is the interpolation

weight assigned to the kth donor site.
Extension of inverse distance weighting method

The new proposed approach (i.e., extension of inverse dis-

tance weighting (EIDW)) is based on the interpolation of

the hydrological variables of interest (i.e., flow duration

curve (FDC) percentiles) over normalized geographical and

physiographical space rather than only geographical space

(i.e., as in the traditional IDW). It was assumed that the differ-

ence in the hydrological variable was influenced by the

difference in site configuration. To assess the ability of the pro-

posed method to predict the desired hydrological variables

(the selected 15 percentiles), we used a comprehensive

leave-one-out cross-validation (LOOCV) approach for the

entire study area (Samuel et al. ). A brief summary of the

proposed and comparative studies is illustrated in Figure 2.
Figure 2 | Study flow chart describing brief idea about the proposed and comparative studies

://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
Analysis procedure

Selection of hydrological variables of interest

In this study, we selected 15 different flow percentiles esti-

mated from the FDC at a gauged site. In order to construct

an FDC, the observed streamflow values (qj) were ranked in

descending order (q1 and qN were the largest and smallest

values, respectively). The ordered streamflow values were

then plotted against the corresponding Pj calculated from the

Weibull plotting position formula in Equation (3) as follows:

Pj ¼ j
N þ 1

× 100 (3)

where Pj is the probability that a given streamflow equaled or

exceeded qj, j is the rank assigned to each streamflow value in

the period of the record, and N is the total number of stream-

flow records.
.
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In addition, the high-flow segments (Q0.1, Q0.5, Q2, Q5,

and Q10), medium-flow segments (Q40, Q45, Q50, Q55, and

Q60), and low-flow segments (Q75, Q80, Q85, Q90, and Q99)

of the FDCs at the gauged sites were selected as the hydro-

logical variables (QP, where P is the selected percentile,

e.g., 0.1, 0.5,…, 99) to be transferred. The selection of

these groups of percentile flow was intended to provide

ease of reconstruction of the complete FDC and streamflow

time series (Yusuf ).

Normalization of the physiographical attributes

The selected site’s physiographical attributes (Table 1) con-

tained different scales, which were normalized using the

following relationship:

Nik ¼ (Xik)
Pm
k¼1

(Xik)
(4)

where Xik are the ith (i¼ 1, 2, …, n) physiographical attri-

butes (Table 1) of the kth (k¼ 1, 2, …, m) site, Nik is a

corresponding normalized value.

Extension of the IDW (M1)

To apply the M1 weighting strategy, it was assumed that

there were three independent weighting factors, controlling

the interpolation process, namely horizontal distance, area

difference, and physiographical characteristic variability.

Therefore, we applied an extension of the inverse distance

approach using three weighting schemes of similarities

measures: the geographical DWS given in Equation (2), the

basin area weighted scheme (AWS) given in Equation (5),

and the physiographical weighted scheme (PWS) given in

Equation (6):

dAWS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAk �DAð Þ2

q
(5)

dPWS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v1k � v1)

2 þ (v2k � v2)
2 þ . . . . . . . . . . . . (vnk � vn)

2
q

(6)

where DAk and DA are the areas of the kth donor site and
om http://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
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the ungauged site, respectively, and vik and vi are the corre-

sponding ith normalized physiographical attributes. The

physiographical attributes having a significant correlation

coefficient (Pearson correlation coefficient) with flow per-

centile were used in the PWS.

The method used to combine these weighting schemes

was significantly important. The effect trends of all of the

weighting schemes were the same and could be combined

into a single weight, so integration might be additive. There-

fore, the proposed EIDW model (M1) was primarily based

on the additive integration of the results obtained from the

DWS, AWS, and PWS schemes. The intention was to intro-

duce the aggregated weight of the three schemes noted

above, as given in Equation (7):

DM1(x,xk) ¼ dDWS þ dAWS þ dPWS (7)

In addition, the DM1(x,xk) weights obtained from

Equation (7) were promoted as a distance weight, i.e.,

wk ¼ 1

DM1(x,xk)
C in the traditional IDW method (Equation

(1)) for ungauged prediction, where M1 stands for extension

M1. The sequence of the equations used for model M1 was

Equations (2), (5), (6), (7), (1b), and (1a).
Extension of IDW (M2)

As mentioned earlier, the configuration variability of the

donor sites influences IDW efficiency for ungauged site pre-

diction. Therefore, the physiographical difference variability

was also considered when defining the weighting factor.

NDB was a normalized database (NDB) obtained from the

application of Equation (4) as follows:

NDB ¼
N11 � � � Nn1

..

. . .
. ..

.

N1m � � � Nnm

0
B@

1
CA (8)

where thematrix contains i (¼1, 2, 3,……, n) normalized phy-

siographical attributes corresponding to k (¼1, 2, 3, …, m)

donor sites.
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The entropy weights corresponding to each ith variable

were assigned (Equations (9)–(11)) based on the entropy of

the individual variable. Information entropy was first intro-

duced by Shannon () in order to estimate uncertainty.

The entropy weights were introduced in this study in order

to provide a balanced relationship among the various

selected attributes to account for data discrimination

(abrupt changes) and to provide unbiased relative weights

since entropy can provide a better characterization of the

data compared to the variance. The equations for the

entropy weights are as follows:

Hi ¼ � 1
ln (m)

Xm
k¼1

Nik ln (Nik) (9)

Di ¼ 1�Hi (10)

ei ¼ Di

Pn
i¼1

Di

(11)

where ei is the optimal entropy weight assigned to an ith

variable to account for its regional variability satisfying

Pn
i¼1

ei ¼ 1, and Di is the measure of divergence of each ith

variable.

The entropy optimal weight (ei) corresponding to the ith

variable was further utilized in order to determine the

‘alternative weight’ (Equation (12)). The primary difference

between the Euclidian distance and the result of Equation

(12) is the introduction of optimal objective entropy

weight and consideration of physiographical space instead

of only geographical space:

DM2(x,xk) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1(v1k � v1)

2 þ e2(v2k � v2)
2

q

þ . . . . . . . . . . . .þ en(vnk � vn)
2 (12)

Next, DM2(x,xk) was promoted as an alternative distance

weight, i.e., wk ¼ 1

(DM2(x,xk))
C in the traditional IDW

method (Equation (1)) for ungauged prediction, where M2
://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
stands for extension M2. The sequence of the equations

used for model M2 was Equations (11), (12), (1b), and (1a).

Power parameter (C)

During estimation of the streamflow percentiles of interest

QP(x) using M1 and M2, the critical parameters of EIDW,

such as power parameter (C), were taken into account.

The power parameter (C) is sometimes called a control par-

ameter, and it is generally assumed that C¼ 2. In the current

study, we experimented with variation in C, observing the

spatial distribution of the information. Several studies have

experimented with variation in C, generally 0∼ 5 (Chen &

Liu ). In the present study, seven different random

values of C, i.e., lower (0.1, 0.5, 1), average (2), and higher

(3, 4, 5), were used for analysis.

Cross-validation and performance assessment

The performance evaluation was carried out by comparing

EIDW with the traditional IDW and the modified IDW pro-

posed by Castiglioni et al. () based on physiographical

space using the dimension reduction method (hereafter

IDW-PC).

As indicated earlier, kriging and IDW are quite different

approaches, and the basic motivation of the EIDW method

is to offer a better predictive capability than the traditional

IDW method. Therefore, there were no means to compare

it with kriging. However, when the IDW is a logical alterna-

tive to kriging, e.g., the spatial correlation structure of the

data is not strong, or when the data are limited to apply kri-

ging, the EIDW offers a better alternative.

To assess the ability of the proposed method to predict

the selected 15 percentiles, we used a comprehensive

LOOCV approach for the entire study area (Samuel et al.

). McCuen () explained the advantage of the

LOOCV procedure and described that the model accuracy

obtained using the procedure was independent of the cali-

bration data. In the LOOCV method, the streamflow

record of one site in the study area was considered

‘ungauged’ and was omitted from the database. Then, the

streamflow percentiles for that site were obtained using

the calibration results from the remaining sites. To analyze

the model performance, deviations from the 15 percentiles
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were measured using the coefficient of determination (R2)

and root mean square error (RMSE) as follows:

R2 ¼ 1�

P99
P¼0:1

(QP � Q̂P)

P99
P¼0:1

(QP � �QP)
(13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X99
P¼0:1

(QP � Q̂P)
2

vuut (14)

whereN is the number of streamflow percentiles, QP and Q̂P

are the selected and the corresponding estimated percentiles

of streamflow, respectively (observed 15 percentiles), and
�QP is the averaged observed percentile value.
RESULTS

In order to regionalize the selected 15 percentiles using the

suggested IDW extensions (i.e., M1, and M2), the NDB was

used. Using the LOOCV procedure with rotation, every site

was assumed an ungauged site, and the performance of the

methods was evaluated for each assumed an ungauged site

with varying C based on the scatter plot, R2, and RMSE.

Preliminary selection of the physiographical attributes

was based on correlation with mean percentile Q50 and

runoff ratio (RR in Table 2). The correlation analysis indi-

cated that DA, DP, BAE, and MAB showed significant

correlation with mean percentile Q50 and runoff ratio, as

shown in Table 2. Therefore, these physiographical attri-

butes were used for further analysis.

In addition, for the IDW-PC proposed by Castiglioni et al.

(), the PCA was performed over the observed physiogra-

phical space. It was observed that the first two PC
Table 2 | Correlation of catchment attributes with mean percentile and runoff ratio

DA DP BAE

Q50 Pearson corr. 0.761 0.745 0.723
Sig. 0.002 0.002 0.003

RR Pearson corr. 0.748 0.770 0.737
Sig. 0.002 0.001 0.003

om http://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
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cumulatively represented approximately 63% of the data

input variance. Then, the two-dimensional space (i.e., x-y

space) for application of the IDW-PC was defined using the

first and second PCs, as mentioned by Castiglioni et al. ().

The scatter plots shown in Figure 3 indicate a higher

degree of accuracy for the proposed extensions (M1 and

M2) and relatively poor performances for the traditional

IDW and IDW-PC interpolation techniques. Using R2 as the

evaluation criterion, it was observed that the traditional

methods performed poorly (R2¼ 0.46 and 0.67 using the

IDW and IDW-PC, respectively) compared to the proposed

methods (M1 with R2¼ 0.77 and M2 with R2¼ 0.82). In

addition, Figure 3 clearly shows that, although there is some

underestimation and overestimation, the overall comparative

performance evaluation ofM1 andM2 exhibited better agree-

ment between the observed and estimated FDC percentiles.

In terms ofRMSE, the proposedM1andM2 interpolation

techniques demonstrated comparable performances. Figure 4

shows the average relative error of the proposed models (i.e.,

M1 andM2) and the comparativemodels (IDWand IDW-PC)

with varying values of distance decay (C), i.e., 0.1, 0.5, 1, 2, 3,

4, and 5. Figure 4 shows that the IDW produced a less accu-

rate prediction and reveals that the relative error resulting

from the IDW prediction was quite high in comparison to

that of the proposed models at any of the distance decay

values. In addition, the IDW-PC performance was compara-

tively better than that of the IDW, while it was relatively

worse than compared to those of M1 and M2. The RMSE

values of all of the models were comparatively low at C¼ 2

than at the rest of the C values. This result was expected

since a zero C value in the IDWmethod tends to produce be-

havior like that of the simple arithmetic mean, while higher C

values demonstrate behaviors, according to the Thiessen poly-

gons method, which are less efficient than the simple IDW

(Castiglioni et al. ). It was also observed that the proposed

model M2 offered more noteworthy results than those of
BASL FF ER ReR MAB

0.491 �0.428 �0.430 �0.378 0.717
0.075 0.127 0.125 0.183 0.004

0.533 �0.475 �0.476 �0.427 0.709
0.050 0.086 0.085 0.128 0.004



Figure 3 | Empirical values of observed percentile vs. estimated percentiles obtained by regionalization models: (a) IDW model, (b) IDW-PC, (c) suggested M1 model, and (d) suggested M2

model.
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other models, depicting the minimum average RMSE (i.e.,

8.66 at C¼ 2).

Individual site-based assessment (assumed ungauged

one by one) resulted in the comparatively poorest method

being the IDW, followed by the IDW-PC method. In com-

parison to the IDW-PC, the M1 provided overall

significant results for the study area, except for sites 1, 2,

6, and 13, while the IDW-PC resulted in slightly better per-

formance, as shown in Figure 5. In comparison to the

studied models, it was noted that the M2 model produced

a significantly accurate prediction by exhibiting a
://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
comparatively lower RMSE for the entire study area. Simi-

larly, employing the overall mean RMSE as the

performance indicator, the worst method was the IDW, fol-

lowed by the IDW-PC method (Table 3). The suggested

models performed better than the contender methods.

Among the suggested models, the performance of M2

based on overall mean RMSE for varying C was found to

be the highest, followed by M1, having values of 10.20 and

11.28, respectively. These results verified that consideration

of a large number of influential factors (physiographical

space-based weights) reduced the estimation error.



Figure 4 | Average RMSE value for proposed model (M1, M2) and comparative models

(IDW and IDW-PC) at different C values.

Table 3 | Overall average interpolation error| (RMSE) resulting from proposed and

contender methods

IDW IDW-PC M1 M2

Average RMSE 14.09 11.65 11.28 10.20
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CONCLUSIONS

Since the emphasis of current studies in spatial interp-

olation is placed on increasing the prediction efficiency,

the primary objective of this study was to provide an

enhanced version of the traditional IDW method. Our

study focused on improvement of IDW by considering

the joint effects of site configuration variability and hori-

zontal distance. More specifically, the current study

exclusively introduced alternative weights (Equations (7)

and (12)) in order to increase the prediction capability

of the IDW. The results provided some insights in terms

of strength and applicability of the EIDW method.
Figure 5 | Average RMSE value at individual catchment by using comparative interpolation mo

om http://iwaponline.com/hr/article-pdf/47/2/333/368841/nh0470333.pdf
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The concept of the EIDW method was used to perform

interpolation based on both geographical and physiographi-

cal space rather than solely on geographical space. The

performances of the EIDW models were evaluated with var-

ious distance decay constants (C), demonstrating the better

performance of the EIDW using C¼ 2. The comparative

performances of the proposed EIDW models (M1 and M2)

and the contenders, i.e., the IDW and IDW-PC, were evalu-

ated using the LOOCV procedure and other evaluation

criteria, such as RMSE and R2. The comparable perform-

ances resulted in values of 0.46, 0.67, 0.77, and 0.82 of R2

for the IDW, IDW-PC, EIDW (M1), and EIDW (M2),

respectively. In addition, comparatively lower RMSE values

in the cases of M1 and M2 also provided evidence of the effi-

cacy of the EIDW. It was expected as direct transformation

of information in a merely geographical space, significant

variation in the site geometric configuration could result in

less significant outputs using the IDW, and the limitations

of the dimension reduction techniques (i.e., PCA) could

hinder the high predictability using the IDW-PC. Since the

deterministic and geostatistical techniques use quite different
dels (e.g., IDW, IDW-PC, M1, and M2).



343 M. Waseem et al. | Extended inverse distance weighting method for streamflow estimation Hydrology Research | 47.2 | 2016

Downloaded from http
by guest
on 25 April 2024
approaches, the basic idea of proposing the EIDW method

was to offer a better predictive capability than the traditional

IDW method. Therefore, there were no means to compare

these methods. However, when the IDW is a logical alterna-

tive to kriging, e.g., the spatial correlation structure of the

data is not strong, or when the data are limited for appli-

cation of kriging, the EIDW might be a better alternative.

Based on the performance assessment, it was concluded

that a blended geographical and physiographical space-

based EIDW is a step forward for providing more accurate,

consistent, and unbiased results in comparison to the tra-

ditional IDW and IDW-PC methods. Although the results

are necessarily related to the study area considered in this

study, they still offer useful and somewhat general indi-

cations that can help the experts in the selection of a

significant methodology for the problem at hand.
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