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Abstract

The modified topographic index (TIm) based on digital elevation models (DEMs) was employed to delineate flood-
prone areas in Mahanadi basin, India. TIm and flood inundation maps were compared to obtain the threshold (t)
beyond which the area is assumed to be inundated by flood and the exponent of the TIm. Scale dependence was
also investigated to evaluate the sensitiveness of spatial resolution of the DEMs. DEMs of five resolutions,
namely, ASTER global, SRTM, GMTED2010 (30 arc-seconds), GMTED 2010 (15 arc-seconds), and GMTED 2010
(7.5 arc-seconds), were used and ASTER global was preferred due to its low error compared to the remainder.
Flood frequency analysis was conducted to obtain the relationship between flood-prone areas and flood magni-
tude. It was observed that (i) the exponent in the TIm showed little variation, (ii) t is reduced with reducing spatial
resolution of the DEM, and (iii) error is also reduced as the DEMs’ resolution is reduced.

Key words: digital elevation models, flood-prone area, frequency analysis, Mahanadi basin, modified
topographic index
INTRODUCTION

Flooding is the most frequent hazard worldwide and occurs due to continuous heavy rainfall and fail-
ure of hydraulic structures. The impact of floods has increased due to an increase in urbanization and
climate change. With the increase in floods, it is important to have effective flood control mechanisms
such as afforestation, reduction of deforestation, building flood warning systems. This alarming situ-
ation necessitates the creation of flood hazard maps. Clubb et al. (2017) opined that hydraulic/
flood modeling, even though expected to be informative and helpful, is computationally a burden
to the modelers. This is mainly due to the enormous input data requirement, tedious calibration pro-
cedures of parameters, and lack of observed data in most of the situations, making the preparation
and maintenance of precise flood mapping difficult and expensive. In addition, Sharma et al.
(2018), as part of their studies on Northeast India, opined that reliance on satellite products is increas-
ing due to insufficient hydrologic gauge stations. These restraints and opportunities suggest simple but
effective digital elevation model (DEM)-based approaches that facilitate extraction of topographic-
based indices to compute flood inundation area/mapping (Liu & Gupta 2007; Manfreda et al. 2008).
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The easy availability of surface elevation data has increased the use of DEM-based hydro-
geomorphic models. Consequently, more DEM-based methods for delineation of floodplains are
used. Elevation of a region, surface slope of the area, distance from the stream, and drainage area
are some of the parameters employed to predict the extent of flood inundation. Spatial distribution
of the soil moisture and landscape processes can be described by the topographic index (TI).
Manfreda et al. (2008) observed that a strong correlation exists between flood inundation areas and
TI. Higher TI indicates the most susceptible flood-prone areas. Keeping this in mind, the spatial res-
olution of DEMs is found to be important in obtaining the TI (Mukherjee et al. 2013; Schumann &
Andreadis 2016; Ettritch et al. 2018).
The present paper covers a literature review, a brief description of TI and modified topographic

index (TIm), study area, analysis of data and methodology, results and discussion, summary and
conclusions. The proposed methodology is applied to the Mahanadi River basin, India.
LITERATURE REVIEW

In recent times, many researchers have studied flood modeling, flood simulation, flood management,
and flood damage evaluations. With climate change and the increasing impact of floods in urban
areas, it becomes important to assess the risk due to natural hazards for planning mitigation measures
and management. Hence, the delineation of areas prone to flood inundation is essential. A brief
literature review follows.
Flood-prone areas using topographic index

Manfreda et al. (2008) evaluated the flood exposure by using morphological indices, namely, local
slope, drainage area, curvature, and TI for the Arno River basin, Italy. It was observed that the TI
and local slope show maximum dependency on the flood inundation exposure. TIm was proposed
and used for flood-prone area delineation by identifying the areas which exceeded a given threshold
t. They suggested higher resolution DEMs. Manfreda et al. (2011) tested the sensitiveness to DEM
spatial resolution by using DEMs of different spatial resolutions for the Arno River basin. It was
found that 100 m cell size yielded good performance. Mukherjee et al. (2013) carried out TI studies
on four small watersheds, positioned over the Himalayan terrain. They also explained in detail
the computational procedure of specific catchment area, slope, and TI. They found that DEM grid
spacing significantly affected mean TI. Cooper (2014) examined two approaches for Chao Phraya
River basin and Bangkok Metropolitan region, Thailand. The first approach handled an up-to-date
composite flood hazard map whereas the second explored TIm for delineating flood-prone areas.
He concluded that TIm is promising. Manfreda et al. (2014) employed linear binary classifier, TIm,
and hydrogeomorphic methods to ascertain the potentiality of geomorphic algorithms for preliminary
flood hazard graduation and hydraulic risk mapping for two sub-catchments of the Tiber River,
central Italy. Simulated flood areas were compared with standard flood maps and it was concluded
that the hydrogeomorphic method is effective for ungauged basins. Di Leo et al. (2011) emphasized
the role of GRASS and QGIS add-ons including r. hazard flood, that uses a TIm for the flooding
delineation.
De Risi et al. (2014) studied DEM as well as a probabilistic framework for Ouagadougou, Burkina

Faso, Africa for the year 2009. They concluded that the Bayesian updating procedure was useful for
computing the topographic wetness index (TWI) threshold. Aksoy et al. (2016) assessed flood-prone
areas in a Turkish watershed and explored the topographical and automated geoscientific analysis of
wetness indices. Mattivi et al. (2019) compared different open source GIS software for computation of
TWI for a case study of the Rio Sinigo basin, in northern Italy. Similar studies are reported by Kazakis
a.silverchair.com/h2open/article-pdf/3/1/58/863545/h2oj0030058.pdf
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et al. (2015) for Rhodope-Evros region, Greece and two specific sites, Cottonwood Lake Study area
and Nelson Eddy in Prairie Pothole region, USA.
Marthews et al. (2015) expanded upon the importance, necessity, and advantages of TI and the

limitations. Schumann & Andreadis (2016) discussed the associated economic impacts/benefits
achieved in flood prediction in detail and its relevance to society.
Flood-prone areas using other related approaches

Cook & Merwade (2009) evaluated maps from LiDAR data with those obtained by using different
geometry, topography, and modeling aspects for Strouds Creek, North Carolina and the Brazos
River in Texas. The inundation area was found to be reduced with vertical accuracy in the topographic
data and improved with horizontal resolution. Kourgialas & Karatzas (2011) determined flood hazard
areas in the Koiliaris River basin, Greece. Rainfall intensity, slope, flow accumulation, geology, land
use, and elevation were considered. Degiorgis et al. (2013) explored threshold binary classifier tech-
niques for the Tanaro River, Italy for insurance purposes and Samela et al. (2016) employed linear
binary classifiers to identify flood-prone areas in Africa.
Papaioannou et al. (2015) studied a multicriteria perspective for delineation of potential flood-

prone areas for the Xerias River watershed, Greece. Zheng et al. (2018) performed similar studies
on high-resolution terrain analysis for Onion Creek watershed, central Texas.
Distribution functions

Mujere (2011) employed Gumbel distribution for carrying out flood frequency analysis in the
Nyanyadi River basin in Zimbabwe. It was hypothesized that the Gumbel distribution would fit the
flood flows in the region. An χ2 test was performed and the recorded and predicted flows provided
a good match. The estimates of 100-year and 200-year floods were obtained. Thirty years of maximum
instantaneous flood flow data were used for the analysis. Ilorme et al. (2014) demonstrated regional
rainfall frequency analysis and analysis of ungauged basin to compute discharges in the Gonaives
basin, Haiti. Guru & Jha (2015) used peak over threshold flood series and annual maximum (AM)
flood series to conduct flood frequency analysis at Kesinga and Kantamal, Tel basin, Mahanadi,
India for 1972–2009. Generalized Pareto distribution was found to be suitable for AM flood data
series. Kamal et al. (2017) conducted frequency analysis for the Ganga River at Haridwar and
Garhmukteshwar. Lognormal and Gumbel EV1, respectively, were found suitable for the two
locations. Similarly, Bhuyan et al. (2010) and Kiran et al. (2015) studied the Subernarekha River,
India and Gaume (2018) used a Bayesian choice in his study.
In line with the Introduction and literature review, the following objectives were formulated:

• efficacy of TIm for delineating flood-prone areas;

• evaluate the sensitiveness of the resolution of the DEM data;

• establish relationship between the flood inundated area and the magnitude of the flood.
MODIFIED TOPOGRAPHIC INDEX AND FLOOD-PRONE AREAS’ DELINEATION

The topographic index is:

TI ¼ Log
ad

tan b

� �
(1)
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where ad and tanb are, respectively, drained area/unit contour length and local slope (Kirkby 1975).
Manfreda et al. (2011) modified the TI as:

TIm ¼ Log
an
d

tan b

� �
(2)

where n is an exponent with value �1.7.
TIm allows delineation of the flood-prone area considering that it is the area characterized by the

TIm exceeding a chosen threshold t. The TIm map was compared with a flood inundation map for
flood-prone areas’ delineation by identifying the areas which had the value of TIm . t. To estimate
t and the value of n, two error functions are defined (Manfreda et al. 2008, 2011):

ER1 ¼ 100� SSim >NSTI
Ssim

(3)

ER2 ¼ 100�NSSim > STI
NSsim

(4)

where Ssim and STI are sets of territory predicted as flooded and by TI. NSsim and NSTI are non-flooded
regions predicted by hydraulic model and TI. ER1 is related to precise identification of flood areas
whereas ER2 is related to error occurring due to overestimation. The objective function is minimiz-
ation of (ER1þ ER2) which can be solved iteratively for estimation of τ and n (Manfreda et al. 2011).
STUDY AREA

The area of interest considered for the present work is the Mahanadi basin (Figure 1). The study area
lies between longitude 80° 300 and 86° 500 E and latitude 19° 150 and 23° 350 N. The length of the
river and the catchment area are 900 km and 141,600 km2, respectively. Mahanadi flows through
Jharkhand, Orissa, Maharashtra, and Chhattisgarh states in an easterly direction. It originates at a
place located 6 km from Pharsiya village, Chhattisgarh. The monsoon season starts during the first
week of June and continues until October and contributes 90% of the total annual rainfall. Average
rainfall is 1,438.1 mm. The climate is sub-tropical. The mean summer and winter temperatures are
around 29 °C and 21 °C. More details about Mahanadi River basin are available in Baliarsingh
(2000) and Shastry (2013).

Analysis of data and methodology

Data used for the present study are as follows:

1. ASTER global DEM, SRTM DEM, GMTED2010 (30 arc-seconds), GMTED 2010 (15 arc-seconds),
GMTED 2010 (7.5 arc-seconds) with respective spatial resolutions of 30.35 m, 92.28 m, 911.19 m,
455.59 m, and 227.80 m.

2. The flood inundation maps for lower portions of Mahanadi basin from National Remote Sensing
Centre (NRSC) for flood events of 2006, 2008, and 2011.

3. 68 peaks of inflow hydrograph as well as outflow from reservoir for 1958–1995. More information
about data is available in Patri (1993), Baliarsingh (2000), and Nagesh Kumar et al. (2010).

Geographical information system (GIS) operations were carried out on the DEMs to obtain all
relevant information required for flood inundation maps. Figure 1 was used to obtain the outline of
the Mahanadi basin. The map was georeferenced with the help of the Georeferencing toolbar in
ArcMap. The latitudes and longitudes on the map were used as the reference for georeferencing.
a.silverchair.com/h2open/article-pdf/3/1/58/863545/h2oj0030058.pdf
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Once the map was georegistered, a shape-file of the catchment area was created with the help of the
georeferenced map by using the Editor toolbar in ArcMap. The shapefile is of polygon type.
The flood inundation maps for three flood events of 2006, 2008, and 2011, were georeferenced

using the Georeferencing toolbar in ArcMap. The latitudes and longitudes on the map were used as
the reference for carrying out the georegistration. The georegistered maps were classified into
two classes, i.e., of flooded areas and non-flooded areas. After classification, the areas corresponding
to the catchment area present on the maps were selected by superimposing the flood inundation maps
over the shape file. The selected area was extracted by using the spatial analyst tool. Once classified
maps were obtained, each of these maps was resampled such that the output cell sizes were equal to
those of all the DEMs considered in the study, i.e., each of the maps was resampled to have cell sizes
911.19 m, 455.59 m, 227.80 m, 92.28 m, and 30.35 m. Nearest neighbor algorithm was used for
resampling such that the flood inundation and TIm maps would be of the same size for comparison.
The DEMs were processed using ArcMap and MapWindow GIS. To cover the entire Mahanadi

basin, a number of DEM tiles of SRTM and ASTER global had to be joined. This was done in
ArcMap and processing was done to all the DEMs, i.e., GMTED2010, SRTM, and ASTER global.
First, the area corresponding to the flood inundation maps in the Mahanadi basin was extracted
using the Arc Toolbox. The extracted flood inundation maps were used to mask and obtain the
new image. The DEMs were filled and the filled DEMs were then used to calculate the flow directions.
This process takes one input raster, i.e., the filled DEM and produces two output rasters, i.e., Dinf
Flow Direction Grid and the Dinf Slope Grid. Specific catchment area is also calculated. The
contribution at each grid cell is taken as the grid cell length. This process takes one input raster,
the Dinf Flow Direction Raster and produces the specific catchment area raster as the output. The
specific catchment area raster and slope raster are used to calculate the TIm. Iterations are continued
a.silverchair.com/h2open/article-pdf/3/1/58/863545/h2oj0030058.pdf
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for each value of the exponent to obtain the TIm. The calculated TIm is compared to the flood inunda-
tion map to calculate ER1 and ER2. The exponent and the threshold which gives the minimum of the
sum of errors ER1 and ER2 are recorded. Figure 2 presents the procedure involved in arriving at the
minimum error, its corresponding exponent and the threshold.
Figure 2 | Procedure for obtaining minimum error, ‘n’ and ‘t’.
The specific catchment area map, slope map, and the flood inundation map are studied, and from
the flooded area map, the count of the number of pixels of flooded area and non-flooded area are cal-
culated. Varying the exponent from 0.01 to 1, TIm is calculated. Each case of the TIm is compared with
the flood inundation map to obtain a threshold, such that minimum error is obtained while classifying
the TIm map into flooded and non-flooded areas. This is performed by taking a value of TIm, and clas-
sifying all values greater than or equal to it, and if the corresponding pixel in the flood inundation map
is flooded area, as correctly identified flooded area, and if the corresponding pixel in flood inundation
a.silverchair.com/h2open/article-pdf/3/1/58/863545/h2oj0030058.pdf
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map is non-flooded area, as wrongly identified non-flooded area. The wrongly identified flooded and
non-flooded area values are used to calculate the error. This procedure is repeated for each value of
the TIm (with an interval of 0.01). The exponent and threshold which produce the minimum error are
obtained. They are used to obtain the flood inundation map using ArcMap. While obtaining the flood
inundation maps, it is assumed that the entire basin has similar characteristics to that of the test area
used in each case of the flood events. The process used to obtain the TIm map is as follows. The
specific catchment area map is first raised to the power of the exponent obtained. Then this image
is divided by the slope. The threshold value obtained is used to classify the map into flooded and
non-flooded regions. From the created inundation maps, the number of pixels having flooded
and non-flooded areas are obtained. Accordingly, the area under flood inundation is calculated
and tabulated for all three flood events.
RESULTS AND DISCUSSION

Delineation of flood-prone areas

Table 1 shows the values of n, τ and the corresponding error (ER1þ ER2) for the three flood events
for all the DEMs.

• It can be seen from Table 1 that the value of n is very low (ranging from 0.01 to 0.04), indicating that
the error is minimum when the upslope catchment area has less weightage compared to the down-
slope. n value of 0.01 is observed for 2011 and 2008 floods for all resolutions.

• The threshold value t shows a reasonably good trend. These vary from 6.24 to 3.22, 5.49 to 3.22,
and 5.27 to 2.87 for 2006, 2011, and 2008 flood events, respectively. The threshold reduced with
the reduction in the spatial resolution of the DEM. It can also be seen that as the flood magnitude
increased, the threshold has reduced, indicating that a larger area will be under inundation.

• Table 1 also shows the total error. The error also shows a good trend and reduces as spatial resol-
ution of the DEM reduces. It is in agreement with the results that the ideal scale for TI in the case of
application in hydrological applications is 10–25 m (Zhang & Montgomery 1994). However, it does
not match with the findings of Manfreda et al. (2011), where it was found that this method did not
provide much improvement with error when the resolution was reduced below 100 m. It was also
noted that ER1 (the overestimation) was significantly larger than ER2 in all the cases and as the
DEM resolution is reduced to 30 m, the error reduces drastically.

• Table 1 presents the extent of area inundated by flood in the catchment obtained with the present
method for all the five DEMs used. It is observed that ASTER global DEM (30 m) shows a high
Table 1 | Information about three flood events

DEM resolution (m)

n t ER1þ ER2 Inundation area (km2)

2006 2011 2008 2006 2011 2008 2006 2011 2008 2006 2011 2008

900 0.01 0.01 0.01 6.13 5.49 5.27 43.63 37.23 38.70 35,455.73 60,152.03 51,369.46

450 0.04 0.01 0.01 6.24 5.21 5.08 42.63 43.09 39.88 29,045.02 51,366.88 42,633.29

225 0.04 0.01 0.01 5.61 4.78 4.09 39.96 43.97 21.84 35,373.07 75,606.00 48,473.67

90 0.03 0.01 0.01 5.28 4.38 4.32 32.42 37.98 35.51 28,867.16 48,479.82 48,475.09

30 0.01 0.01 0.01 3.22 3.22 2.87 17.40 18.51 18.39 63,670.27 67,251.25 63,670.27

Lowest value among DEMs 0.01 0.01 0.01 3.22 3.22 2.87 17.40 18.51 18.39 28,867.16 48,479.82 42,633.29

Highest value among DEMs 0.04 0.01 0.01 6.24 5.49 5.27 43.63 43.97 39.88 63,670.27 75,606 63,670.27

Difference in highest and
lowest values

0.03 0 0 3.02 2.27 2.4 26.23 25.46 21.49 34,803.11 27,126.18 21,036.98
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inundation area as compared to other DEMs for 2006 and 2008 flood events and GMTED2010
(225 m) for the 2011 event. It is also noted that GMTED2010 (900 m) and GMTED2010 (225 m)
provide approximately the same inundation areas with little difference and, similarly,
GMTED2010 (450 m) and SRTM DEM (90 m) for the 2006 event. Similar inferences can be
drawn for other events. The differences in the highest and lowest inundation areas obtained by
DEMs are also presented in Table 1 and the magnitude of these values are 34,803.11 km2,
27,126.18 km2, and 21,036.98 km2, respectively, which clearly indicates that spatial resolution
plays a major role.

The relationships established between discharge (Q in m3/s) and inundation area (A in km2) for
GMTED 2010 (900), GMTED 2010 (450), GMTED 2010 (225), SRTM, and ASTER, respectively,
are A¼�265.94þ 1.234 Q, A¼ 551.29þ 1.013 Q, A¼ 38,337.13þ 0.371 Q, A¼�3,239.45þ
1.87 Q, and A¼ 69,494.74� 0.116 Q with corresponding R2 values 0.1834, 0.1533, 0.006173,
0.5153, and 0.05942. We observed that R2 value is low for the three inundation maps considered.
However, we wish to bring attention to the fact that on a relative scale, SRTM performed much
better compared to all other DEM sources. Note that only three flood inundation maps are used
for establishing the relationship for demonstration. We believe that R2 value will improve if a greater
number of flood events are considered in order to develop a robust and sustainable relationship, and
this is targeted for further studies.
Flood frequency analysis

All extreme value distribution functions are considered. Among them Gumbel is found to fit well
(Odry & Arnaud 2017; Onen & Bagatur 2017; Kobierska et al. 2018). Accordingly, the Gumbel
method is used for the comparison of flood magnitude and area under flood inundation. It is noted
that irrespective of the flood, sufficient and effective infrastructures are required for handling the
recurring floods of this magnitude in the catchment. Infrastructure initiatives such as stabilization
of slopes, channel regulation, and protection of riverbank and non-structural initiatives such as catch-
ment land management, awareness about insurance facilities, preparedness of emergency
management and evacuation, and public education are required and should be implemented in a sus-
tainable manner.
Figure 3 presents the flood inundation map for the year 2011 obtained by incorporating the expo-

nent n and τ with reference to ASTER global for representative purposes. The parameters were
computed using a part of the catchment area, and it was assumed that the entire catchment area is
similar in behavior. This was performed because the flood inundation map was available only for cer-
tain parts of the catchment area. Dark and light shading represent non-flooded area and flooded area,
respectively. Figures related to the other four DEMs are not presented here due to the limitation of
space. It is a very common phenomenon to study flood magnitude of different recurrence intervals.
The flooded area and the non-flooded area on the flood maps provide insight to the officials respon-
sible for flood plain management for remedial/mitigation measures.
SUMMARY AND CONCLUSIONS

In this study, DEMs are used to calculate the TIm on the basis of which the flood-prone areas are deli-
neated. It was observed that (i) the exponent in the TIm showed little variation, (ii) τ reduced with
reducing spatial resolution of the DEM, and (iii) error also reduced as the DEMs’ resolution was
reduced. The ASTER provided the best results, and the error is considerably reduced from SRTM
a.silverchair.com/h2open/article-pdf/3/1/58/863545/h2oj0030058.pdf
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to ASTER. This is in agreement with the available literature which has found that 10–25 m scale is the
best scale for hydraulic applications using the topographic index (Quinn et al. 1995).
The present study has a number of similarities and dissimilarities as compared to Manfreda et al.

(2011). They preferred SRTM for 11 sub-basins of the Arno River basin with 12 cell sizes, whereas
the authors of this study suggested ASTER for the Mahanadi River basin in India with five cell
sizes by considering three flood events. The highest and lowest values of n, t, and ER1þ ER2
obtained, respectively, are 0.48 and 0.02 (range 0.46), 7.9 and 2.3 (range 5.6), 53.6 and 7.5 (range
46.1) whereas these values obtained by the authors are 0.04 and 0.01 (range 0.03), 6.24 and 2.87
(range 3.37), 43.97 and 17.4 (range 26.57). Compared to the findings of the authors, the ranges
obtained by Manfreda et al. (2011) are wider, which may be due to the large number of sub-basins
and more cell sizes.
To prove the philosophy and to confirm the potentiality of our work, we are using the gauged Maha-

nadi basin. We want to develop a suitable exponent as a function of basin area and flood magnitude.
By analyzing a large number of river basins with the number of flood inundation maps with satisfac-
tory relationship, such a developed relation can be extended to any ungauged basins seamlessly with
more confidence.
However, this is an approximate method and cannot be considered as an alternative to detailed

hydrologic and hydraulic studies. In our opinion, this is the first case study where potentiality of
the methodology suggested by Manfreda and his team is explored for similar Indian conditions.
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