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Water geochemical markers allow estimation of the impact of climate

change on the hydrological regime of an Alpine river (River Arve, France,

Switzerland)
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Abstract

The impact of climate change upon the hydrological regimes of streams has become an issue of major concern
that requires adapted tools to detect and follow the scale of possible changes. In this study, we use a geochem-
ical approach that exclusively relies on measurements of chemical concentrations in order to investigate the
effect of climate change on the hydrological regime of the River Arve, a Franco-Swiss river running from
the Alps to the River Rhône. Our method relies on the use of a dimensionless parameter, the ratio of uranium
and barium concentrations in river waters. This marker has the advantage of not needing the measurement of
river discharges. Its application to 25 years of data collected in the River Arve by Canton Geneva, Switzerland,
leads to the conclusion that the glacio-nival signature is appearing earlier in the year and lasts for longer periods.
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Highlights

• Given the increasing concern for the possible impact of rising temperature on water supplies, we believe that

the findings presented in our paper will be of value to readers.

• After initially researching geochemical tracers allowing determination of water geological print, we examined

the use of a geochemical approach to establish the impact of climate change on the freshwater hydrological

regime.

• Our approach relies on a long-term survey and can valorise databanks.
INTRODUCTION

The impact of climate change upon hydrological regimes and water quality has become a major issue,
raising the need of adequate tools to detect both the existence and magnitude of changes (Delpla et al.
2009; Blöschl et al. 2017, 2019). Climate change does not only affect the magnitude and frequency of
floods but also water quality, biodiversity, and landscape and human activities (Schmutz & Sendzimir
2018).
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Chemical signatures might provide a useful tool to follow the potential impact of climate change
upon hydrological regimes because the processes controlling the chemical composition of a given
water body are dependent upon bioclimatic variables (e.g., temperature, frequency and amplitude
of rainfall, type and abundance of microflora). In practice, however, understanding chemical signa-
tures is far from straightforward because, on the one hand, they are also dependent on properties
of the physical environment (e.g., porosity and hydraulic conductivity) (Garrels & Mackenzie
1967; Meybeck 1987) and, on the other hand, many factors aggregate giving a complex signature
which is difficult to disentangle. In spite of these difficulties, a large number of chemical parameters
have been used in order to characterise the water composition according to its origin such as isotopes,
the presence of (organic and inorganic) pollutants, radioactive and radiogenic elements. Although
these approaches have proven their efficacy, they often rely on the use of concentrations which, in
rivers, require to be associated with corresponding water discharges in order to be meaningful.
Streamflow measuring and monitoring is a challenging and time-consuming task due to technical
difficulties and metrological issues.
The use of chemical signatures to identify possible climate-associated changes requires access to

long-term, coherent data. Such data sets are scarce because few institutions ensure long-term monitor-
ing. The Canton of Geneva, Switzerland, has controlled water quality data for several decades with
major elements having been analysed on a regular basis since the 1960s, dissolved trace elements
since 1994 and discharge from the beginning of the 20th century (https://www.hydrodaten.admin.
ch/fr/2170.html). This data set has been used for detecting temporal trends in Lake Geneva’s trace
element concentrations (Rodríguez-Murillo et al. 2018) and for the establishment of a methodology
for water typisation according to a geochemical signature based on the concentration ratio of two
chemical elements, barium and uranium (Filella et al. 2014). The use of elemental ratios – a dimen-
sionless parameter – has the unique advantage of suppressing the need for knowing water
discharge. In Filella et al. (2014), the possibility of using the U/Ba ratio to identify hydrological
regimes in an Alpine river, the River Arve, was sketched. This work is extended here. The River
Arve is not only a major tributary of the River Rhône but is also a source of drinking water; conse-
quently, it receives special attention with at least 12 sampling campaigns per year in Canton
Geneva. This river presents a mixed hydrological regime: pluvial in the winter and glacio-nival in
summer following the melting of snow and upstream glaciers.
METHODS

Study area

The River Arve (France, Switzerland) is an Alpine river having a drainage basin of 2,080 km2 and a
mean annual flow of 77 m3 s�1. About 140 km2, or 6% of the basin, are covered by glaciers. Its sources
are on the northern side of the Mont Blanc massif (Figure 1). Catchment elevations span a very wide
range from 4,810 m a.s.l. at the top of the Mont Blanc to 370 m a.s.l. at the confluence with the Rhône
River in Geneva. Mean catchment elevation is 1,370 m a.s.l. and 60% of the drainage basin has an
elevation above 1,000 m a.s.l. Precipitation, distributed quite evenly throughout the year is enhanced
over complex terrain, with mean annual precipitation ranging from 950 mm/y in the low-lying areas
to over 2,000 mm/y in high-elevation part of the basin.
The main tributaries are Arveyron d’Argentière, Arveyron de la Mer de Glace, Bon Nant,

Sallanches, Foron du Reposoir, Giffre, Borne, Menoge, Foron, Seymaz, and Aire. The only tributary
entirely in Switzerland is the Seymaz.
The upper part of the river flows through a plutonic basement before reaching alluvial terrains

(limestone, marl, sandstone, and glacial till).
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Figure 1 | The River Arve and tributaries with location of sampling sites (numbered 1 to 20): 1, Menoge at Bonne; 2, Risse at St
Jeoire; 3, Foron at Taninges; 4, Giffre upstream Taninges; 5, Giffre upstream Sixt; 6, Giffre south; 7, Arve at Mont-Roc; 8, Lognon;
9, Arveyron; 10, Arve at Les Houches; 11, Bon Nant at St Gervais; 12, Arve at Sallanches; 13, Foron du Reposoir; 14, Giffre at
Marignier; 15, Bronze; 16, Bonne; 17, Foron de la Roche; 18, Berny at la Fornasse; 19, Arve at Arthaz; 20, Arve at Geneva.
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Sampling

Concentration data used in this study were collected as part of a water-quality monitoring programme
(1994–2018) set-up by the Service de l’Ecologie de l’Eau (SECOE; Service for Water Ecology) of the
Canton of Geneva, Switzerland. The survey network comprises six sampling sites on the River Arve,
but we will only use data from one sampling site (site ‘Arve’, #20 in Figure 1) with 289 samples.
A complementary campaign on the River Arve watershed was planned in order to check the tributaries’

influence on the water composition of River Arve. These sampling campaigns took place in May and
August 2016 and January 2017 in order to cover a wide range of hydrological regimes. Twenty stations
were sampled (Menoge at Bonne, Risse at St Jeoire, Foron at Taninges, Giffre upstream Taninges,
Giffre upstream Sixt, Giffre south, Arve at Mont-Roc, Lognon, Arveyron, Arve at Les Houches, Bon
Nant at St Gervais, Arve at Sallanches, Foron du Reposoir, Giffre at Marignier, Bronze, Bonne, Foron
a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf
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de la Roche, Berny at la Fornasse, Arve at Arthaz, and Arve at Geneva); the locations are shown in
Figure 1. The total number of samples was 59 (one sample was lost during the January campaign).

Sample collection and treatment

Individual water samples were hand-collected in polyethylene vials that had previously been soaked
in 10% v/v nitric acid (Suprapur®, Merck) and thoroughly rinsed with MilliRo-Milli Q water®

(Millipore). Samples were filtered within a few hours after sampling through 0.45 μm filters
(Millex Durapore, Millipore), acidified with 2% v/v nitric acid (Suprapur®, Merck) and preserved
at 2+ 2 °C until analysis. Thus, this study is based on so-called dissolved concentrations.

Analytical method

Concentrations were measured by ICP-MS on a Fisons PQ2þ before 2006 and on a Thermo-Fisher X7
II from 2006 to 2018, both in their standard configurations at the Service de l’Ecologie de l’Eau
(SECOE) of the Canton of Geneva, Switzerland. The analytical accuracy was followed by analysing
certified reference materials CRM SLRS-4 and SLRS-5 (National Research Council Canada). SLRS-4
was used until 2010, results on 134 measurements are Ba: 13.23+ 0.54 before 2006, 12.99+ 0.52 after
2006 and U: 0.051+ 0.007 before 2006, 0.046+ 0.002 after 2006 (certified values: Ba: 12.2+ 0.6 and
U: 0.05+ 0.003). From 2011, SLRS-5 was used (n¼ 56) and measured Ba: 14.46+ 0.46 and U:
0.085+ 0.004 (certified value: Ba: 14.0+ 0.5 and U: 0.093+ 0.006). All values in μg L�1 units. The
increase of accuracy linked to the change of ICP-MS does not affect our study. Detection limits
(μg L�1) are Ba: 0.3 and U: 0.01. The analytical laboratory is accredited for the analysis of the trace
elements in freshwaters (accreditation number: STS245; ISO norm 17025).

Data treatment

Non-parametric methods are required to analyse temporal trends in water because data are usually
non-normally distributed. Thus, temporal trends have been studied by applying the Mann–Kendall
(MK) method (Helsel & Hirsch 2002). This method calculates a parameter S, the sign of which indi-
cates whether the concentration trend vs time is generally decreasing (negative S value) or increasing
(positive S value). The statistical significance of the trend is obtained in MK methods using the Z-stat-
istic test of the sum of signs of the differences between every pair of values; Z shows a normal
distribution, and therefore, the statistical significance of the temporal trend can be evaluated by the
p-value. The average change over time was calculated using Sen’s slopes (Sen 1968). A Sen slope is
the median of the slopes between all possible pairs of temporal data (N(N� 1)/2), where N is the
number of pieces of data in the series.
We used two classification methods in order to ascertain the transition point between two different

hydrochemical signatures (U/Ba ratios) of the Arve River at Geneva, one characteristic of winter low-
flows (January, February, and March) and the other one of summer high-flows (June, July, and
August). For this analysis, we retained only the water samples collected in the 6 months cited
above. Samples collected in the winter season were labelled as ‘W’, while those collected in the
summer months were labelled as ‘S’. We use Classification Trees (Breiman et al. 1984) for finding
the U/Ba value that splits the set in two, such that each of the two resulting sub-sets is as homo-
geneous as possible. The criterion used for selecting the optimal split value is the Gini impurity
(see Breiman et al. 1984). The second classification method uses a binary logistic model (see, e.g., Per-
lich et al. 2003), with the label (‘W’ and ‘S’) as the dependent variable and the U/Ba ratio as the
independent variable. The two parameters of the logistic model were estimated by minimising the
sum of squares of the residuals using the Solver functionality of Excel®. The estimated parameters
a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf
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allow calculating the value of U/Ba for which the probability of ‘S’ in the logistic model is higher than
0.5, which is a sensible choice for the transition point.
RESULTS AND DISCUSSION

Hydrological regimes

The hydrological regime at the Arve River outlet integrates a wide range of within-basin hydrological
regimes. There is a very close relationship between elevation and the hydrological regime, which is
explained by the influence that elevation has on climate, and as a consequence on snow and ice
accumulation and melt processes. Therefore, mountainous areas are characterised by minimum
flows in winter when incoming precipitation accumulates at the catchment surface as snow and maxi-
mum flows in late spring or summer when snow and ice melt. The high-elevation Mont Blanc and
Aiguilles Rouges Massifs are characterised by glacial or glacio-nival hydrological regimes, with high
flows in late summer, while the mid-elevation mountainous areas have nival or nivo-pluvial hydrolo-
gical regimes with maximum flows in late spring or early summer. Low-lying areas have a pluvial
regime, with minimum flows in late summer and early fall and maximum flows in winter.
As argued elsewhere in this paper, there is also a close association between elevation and the hydro-

chemical signature of outflow explained by the geological setting of the catchment. Therefore, a good
relationship, mediated by elevation, between sub-catchment hydrological regime and its hydrochemi-
cal signature should be expected.
At the catchment outlet, the areas with glacio-nival regimes dominate the discharge and imprint to

the Arve River an overall nival regime. During the late spring-early summer high-flows, the discharge
is dominated by snow and ice melt from the higher elevation areas of the catchments, with low-lying
areas making a small contribution. However, during the cold season, the absolute and relative contri-
bution of sub-basins having a pluvial hydrological regime is much more important and shifts the
hydrochemical signature closer to the fingerprint of low-lying areas. This succession is illustrated in
Figure 2 by the variation of the monthly Pardé coefficients of the Arve River at Geneva as well
as for three sub-basins having distinct hydrological regimes: Arve at Chamonix, Borne at St Jean-
de-Sixt, and Aire at Thairy. Monthly Pardé coefficients are the ratio between mean monthly flows
and the mean annual flow.
Use of U/Ba ratio as a water regime indicator

A methodology for stream water classification according to its geochemical signature, based on the
calculation of the U/Ba concentration ratio, was developed in a previous study (Filella et al. 2014).
Uranium is enriched in plutonic rocks/crystalline minerals (Mason & Moore 1982; Garnier–Laplace
et al. 2010), whereas barium is mostly associated with sedimentary rocks (Mason & Moore 1982).
Both uranium and barium are geogenic elements subject to relatively little influence from human
activities (Seyler & Boaventura 2003; Féraud et al. 2009; Roeske et al. 2012).
The application of a concentration ratio to follow the hydrological regime requires that the elements

behave in a conservative way along the river. Uranium behaves conservatively in rivers (Windom
et al. 2000). Ba is present mostly in the particulate fraction in rivers (Coffey et al. 1997). Thus, changes
in water chemistry might be expected if Ba is released from the particulate phase, but this has been
observed only in estuaries (Edmond et al. 1985; Santos et al. 2011). On the other hand, the well-
known non-conservative behaviour of Ba in oceans is due to the formation of barite which is
linked to productivity (Carter et al. 2020), but these processes have not been described in freshwaters.
a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf



Figure 2 | Hydrological regime of the Arve River at Geneva and of three sub-watersheds that illustrate distinct hydrological
regimes glacio-nival (Arve at Chamonix), pluvial (Aire at Thairy), and nivo-pluvial (Borne at Saint-Jean-de-Sixt). From upstream to
downstream: Arve at Chamonix, Borne at St Jean-de-Sixt, Aire at Thairy, and Arve at Geneva. Hydrological regime is expressed
through the evolution of the Pardé coefficients throughout the year.
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Here, the application of the same U/Ba ratio to River Arve water concentration values along the
year in Geneva (Figure 3) shows that this ratio is related to the hydrological regime of the Arve
River and its sub-basins, River Arve at Chamonix in particular (Figure 2).
Low U/Ba values correspond to the winter months, when the low-lying parts of the basin having a

pluvial regime make a significant contribution to the discharge, while high U/Ba are characteristic to
high flows in summer and early autumn, when the discharge is dominated by glacier melt. One can
also note that the rise in discharge during spring precedes that of the U/Ba ratio, which might be an
indication of early snowmelt in the mid-elevation parts of the basin as the increase of dispersion
(beginning in May) may depict. In autumn and early winter, both discharge and U/Ba ratio decrease,
with the shift in discharge again preceding that in the U/Ba ratio. Apparent outliers correspond to
Figure 3 | Box plot of the monthly U/Ba ratio measured at the River Arve in Geneva from 1994 to 2018 (n ¼ 288). Monthly
values have been assigned to the middle week of the month.
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extreme events such that, for instance, the heat wave in the summer of 2003 with U/Ba¼ 0.558 on 26
August. During this period, intense melt occurred in the glaciered part of the basin that produced a
significant flood at Chamonix (Station 8, Figure 1), while the lower part of the catchment experienced
a severe drought.
When applied to the Arve River data, the two classification methods described in the Methods sec-

tion give similar results (see Supplementary Material) and suggest that a U/Ba ratio of 0.055 can be
used as a meaningful transition point between the two hydrochemical characteristic behaviours
described above.
Confirmation of the U/Ba ratio as a water regime indicator

Figure 4 shows the result of the application of the U/Ba threshold value of 0.055 to the data obtained
in three sampling campaigns along the River Arve and major tributaries covering the whole range of
hydrological conditions over the year (January, May, and August). The stations presenting glacio-nival
characteristics are tagged in orange in the Figure. As expected, the U/Ba ratios obtained in the differ-
ent locations reflect the geological composition of the underlying basement (i.e., mostly crystalline at
the head and limestone, marl, sandstone, and glacial till in the alluvial plain): upstream stations, fed by
snowmelt and glaciers (5, 6, 7, 8, 9, 10, and 12), systematically have glacio-nival U/Ba ratios (note that
sample 9 was lost in January), while stations located in the plain (1, 2, 3, 4, 13, 14, 15, 16, 17, and 18)
systematically show pluvial U/Ba values.
Figure 4 | Sampling sites and hydrological regime type in the sampling campaigns of 17 May and 23 August 2016 and 23
January 2017. Glacio-nival signature is highlighted in orange.

a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf



H2Open Journal Vol 3 No 1
351 doi: 10.2166/h2oj.2020.016

Downloaded from http://iw
by guest
on 19 April 2024
Comparison of values of discharges and U/Ba ratios (for three locations along the river, one in the
head area (Chamonix, #8) and two in the alluvial plain (Arthaz, #19 and Geneva, #20, close to the
mouth of the river) confirms that U/Ba ratios in downstream locations follow the water mixing
along the river, and its dependency on the succession of hydrological conditions along the year
(Table 1). In effect, the percentage of the final discharge in Geneva waters from Chamonix (which
follow a glacio-nival regime all the year) represent 11% in January, 9% in May, but 47% in August.
It is in August when the U/Ba chemical signature of a glacial regime is usually found in Geneva.
The glacial fingerprint observed in January is an unusual event related to a very severe drought in
December 2016 and January 2017 that greatly reduced the contribution of the pluvial part of the
basin. The corresponding sample appears as an outlier in Figure 3. This means that the U/Ba ratio
is an efficient tool allowing investigators to follow the hydrological regime without the need for
measuring discharge values along the river.
Table 1 | Discharges (m3 s�1), percentages of the discharges with respect to the mouth of the river (%) and U/Ba ratios in differ-
ent locations of the River Arve during our sampling campaigns

Glacio-nival type highlighted in green, corresponding discharges in orange.
aSwiss Confederation: https://www.hydrodaten.admin.ch/fr/2170.html13.
bBanque hydrologique française: http://hydro.eaufrance.fr/presentation/procedure.php.
Temporal trends of the U/Ba ratio

The glacio-nival dominated period is assumed to start when, for the first time in the year, two or more
successive samples have a U/Ba ratio above the 0.055 threshold. When applied to the 1994–2018 con-
centration data value of the Geneva sampling station, a tendency for the period to start earlier in the
year is observed (Figure 5). This trend is confirmed by a negative MK S value, with an estimated decrease
of ∼1.3 days per year (Sen’s slope¼�0.190 week y�1) over the period considered. The decrease is stat-
istically significantly (Z¼�2.32, p¼ 0.020 (two-tailed)). The glacio-nival dominated period is assumed
to end when, for the last time in the year, two or more successive samples have a U/Ba ratio above the
0.055 threshold. The last among these successive samples defines the end date. The length of the glacio-
nival dominated period is simply defined as the difference between its end and its start. This length
shows an increase from 1994 to 2018 (Figure 6), confirmed by a positive MK Z-value. This trend is
also statistically significant (Z¼ 3.37, p¼ 0.0008 (two-tailed)). The system studied is subject to a
linear increase of the duration of the melting season, with an average increase of ∼9.3 days per year
over the period considered (Sen’s slope¼ 1.326 week y�1). A plateau-type response can be expected
once the current phase of depletion of the water stocked in glaciers is completed.
Both the early start and the longer duration of the glacio-nival regime can be safely attributed to cli-

mate change. Alpine ecosystems are particularly sensitive to climatic changes (Beniston 2003, 2005);
with rising temperatures expected strongly to affect runoff regimes via the impact on snow cover and
ice melting. These general predictions are mostly based on simulation approaches (e.g., Zierl & Bug-
mann 2005; Horton et al. 2006) and in line with our evaluation based on measured parameters.
a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf

https://www.hydrodaten.admin.ch/fr/2170.html13
https://www.hydrodaten.admin.ch/fr/2170.html13
http://hydro.eaufrance.fr/presentation/procedure.php
http://hydro.eaufrance.fr/presentation/procedure.php


Figure 6 | Duration between first and last occurrence in the year having a glacio-nival signature (U/Ba ratio.0.055) in the River
Arve between 1994 and 2018 in the River Arve at Geneva between 1994 and 2018.

Figure 5 | Temporal evolution between 1994 and 2018 of the start of the glacio-nival dominated period, as defined in the text,
in the River Arve.
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CONCLUSION

Our goal was to extend available tools allowing the evaluation of the impact of climate change upon
the hydrological cycle. Current approaches mostly rely on the measurement of water discharges on a
long timescale which is neither straightforward nor flexible and more affected by measurement uncer-
tainties than the measurement of chemical concentrations. Since our approach is based on
concentration ratios, it gets rid of discharge measurements.
On the basis of previous studies (Filella et al. 2014), we figured out the best candidate elements –

uranium and barium – to characterise the water composition fingerprint. Their application to an
a.silverchair.com/h2open/article-pdf/3/1/344/863300/h2oj0030344.pdf
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Alpine river with a complex temporal and spatial hydrological configuration allowed us to test and
confirm the capacity of the method to discriminate between the periods of the year that are dominated
by distinct hydrological regimes (high vs low discharge periods; glacio-nival vs pluvial regimes). Even
if the approach is better suited to contrasted systems, it is applicable to any existing long-term data-
base. As a result, we expect it to be a useful complementary tool for identifying the impact of
changing climate on both hydrological regime and, eventually, water quality.
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.
REFERENCES

Beniston, M. 2003 Climatic change in mountain regions: a review of possible impacts. Climatic Change 59, 5–31. doi:10.1023/
A:1024458411589.

Beniston, M. 2005 Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure and
Applied Geophysics 162, 1587–1606. doi:10.1007/s00024-005-2684-9.

Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M.,
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