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Abstract

The present understanding of how changes in climate conditions will impact the flux of natural organic matter
(NOM) from the terrestrial to aquatic environments and thus aquatic dissolved organic carbon (DOC) concen-
trations is limited. In this study, three machine learning algorithms were used to predict variations in DOC
concentrations in an Australian drinking water catchment as a function of climate, catchment and physical
water quality data. Four independent variables including precipitation, temperature, leaf area index and turbid-
ity (n¼ 5,540) were selected from a large dataset to develop and train each machine learning model. The
accuracy of the multivariable linear regression, support vector regression (SVR) and Gaussian process
regression algorithms with different kernel functions was determined using adjusted R-squared (adj. R2),
root-mean-squared error (RMSE) and mean absolute error (MAE). Model accuracy was very sensitive to the
time interval used to average climate observations prior to pairing with DOC observations. The SVR model
with a quadratic kernel function and a 12-day time interval between climate and water quality observations
outperformed the other machine learning algorithms (adj. R2¼ 0.71, RMSE¼ 1.9, MAE¼ 1.35). The area
under the receiver operating characteristic curve method (AUC) confirmed that the SVR model could predict
92% of the elevated DOC observations; however, it was not possible to estimate DOC values at specific
sampling sites in the catchment, probably due to the complex local geological and hydrological changes in
the sites that directly surround and feed each sampling point. Further research is required to establish potential
relationships between climatological data and NOM concentration in other water catchments – especially in the
face of a changing climate.
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Highlights

• The application of different machine learning algorithms to quantify NOM in an Australian catchment.

• Investigate potential relationships between climatological factors and water quality parameters.
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• The estimation of DOC concentration of water from simple measurable water quality and climatological

variables.

• The detection of high DOC concentration events using the machine learning technique.

Graphical Abstract
INTRODUCTION

A warming climate is driving a suite of changes in global surface waters, from nutrient, temperature
and sediment profiles in Chesapeake Bay, USA (Najjar et al. 2010) to the timing and intensity of mon-
soons in Southeast Asia (Loo et al. 2015). Higher temperatures impact water quality in lakes by
reducing oxygen concentrations, increasing the release of phosphorus from sediments (Arnell et al.
2015) and increasing the concentration of dissolved organic matter (El-Jabi et al. 2014). Intense,
but less frequent rainfall events will increase sediment loads while decreasing water security in drink-
ing water catchments. These changes will have profound effects on the potable water supplies of
current and future generations (Hansen et al. 2013).
The character and composition of natural organic matter (NOM) in freshwater ecosystems also

appears to respond to variations in climatic conditions (Hejzlar et al. 2003; Delpla et al. 2009; Zhu
et al. 2017; Gavin et al. 2018; Parr et al. 2019). This trend is also observed in Australian catchments
with deleterious consequences for the performance of existing treatment infrastructure on more
highly variable potable water supplies (Mohiuddin et al. 2014). Observed increases in dissolved
organic carbon (DOC) concentrations have been linked to changes in climatic conditions (Tranvik
& Jansson 2002; Freeman et al. 2004; Evans et al. 2006). Potential climatic drivers of the upward
trends in DOC concentrations have included temperature (Evans et al. 2006), soil moisture (SM)
(Hudson et al. 2003) and precipitation (Erlandsson et al. 2008). However, the present understanding
of how changes in climatic conditions will continue to impact the flux of NOM from the terrestrial to
aquatic environments and thus aquatic DOC concentrations is limited. Hence, establishing potential
relationships between climatological data and NOM concentration in water catchment will be critical
in planning for the delivery of potable water in a warmer climate.
The link between climate, catchment and water quality is dynamic, complex and with some excep-

tions not well understood. The expanded use of satellite-derived observations and increases in the
type and frequency of water quality measurements has created more data but not necessarily better out-
comes for the management of water quality. Consequently, there is an opportunity to apply advanced
data-driven modelling techniques to catalogue and interrogate these complex datasets to identify the
trends and interdependencies between the variables, and to perform dimensionality reduction of the
variables (Lary et al. 2016; Ruescas et al. 2018). Supervised data-driven machine learning algorithms
can potentially map DOC concentration in a catchment to climatological data without attempting to
accurately model underlying processes. Machine learning methods have been widely used and achieved
promising results in different environmental settings (Kim et al. 2014; Park et al. 2015; Granata et al.
2017; Ruescas et al. 2017), with the dataset size varying depending on the type of observation from n¼
63 (Kim et al. 2014) to n¼ 2,255 (Park et al. 2015) for analytical measurements and n. 20,000 for
remote sensing applications (Ruescas et al. 2017). The application of data-driven modelling techniques
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to estimate DOC concentrations has been demonstrated in other studies (Clair et al. 1999; Snauffer
et al. 2018). For example, a neural network model was developed to estimate DOC concentration
using hydrological, and climatic variables such as temperature, and total precipitation (Clair et al.
1999). In another application, the concentration of coloured dissolved organic matter was determined
from remote sensing signals by comparing different machine learning regression approaches such as
Gaussian process regression (GPR), support vector regression (SVR), random forest and kernel ridge
regression (Ruescas et al. 2017, 2018).
The low computational cost and interpretability makes the multivariate linear regression (MLR)

algorithm desirable as there are clear trade-offs between model complexity and interpretability. In
many cases, particularly where limited data are available, more complex algorithms can achieve high
levels of generalisation and prediction accuracy (Khalil et al. 2005). Among non-linear approaches,
SVR is a nonparametric (i.e. not limited by a functional form) supervised learning algorithm that sim-
ultaneously can minimise prediction error and model complexity (Vapnik 2000). In contrast to linear
and non-linear machine learning algorithms that are trained from exact values for every parameter
in a function, GPR uses a (Gaussian) probability distribution over all possible values that fit the data.
Exponential kernel function and squared exponential are widely used choices for covariance kernel
functions (Jiang et al. 2019). GPR has been applied in regression problems in different environmental
fields of studies including prediction of stream water temperature (Grbić et al. 2013), groundwater sal-
inity (Lal & Datta 2018) or streamflow forecasting (Sun et al. 2014). However, the approach has not
been used to explore correlations between DOC and catchment and climate variables.
The prospective application of an appropriate machine learning algorithm to a sufficiently large data-

set may enable water utilities to predict what climate conditions are conducive to excursions in NOM in
water catchments. The first challenge is to select the appropriate machine learning algorithm and
develop a sufficiently large dataset to train and evaluate the performance of each machine learning
algorithm. In most cases, the data required can be sourced from routinely collected water quality
data, which are often fragmented by water utilities and catchment management authorities and tem-
porally disconnected. An ever-growing library of climatological data is freely available from multiple
weather and geographic satellite sources. However, as surface water is influenced by climate conditions
through the transfer of momentum and matter, a time gap exists between climatological and water qual-
ity data. Moreover, as the catchment area increases, the lag time (here the optimal lagged day) increases
(Rostami et al. 2018). Therefore, the second challenge is to explore the effects of different statistical pair-
ing of observed DOC concentrations with averaged climatological variables from multiple time steps
prior to the water quality observation. Thus, by combining and harmonising temporal differences
between fragmented datasets, and training and validating an appropriate machine learning algorithm,
it may be possible to identify potential relationships between the climatological and water quality data.
The objective of this paper was to evaluate three commonly used machine learning algorithms,

namely MLR, SVR and GPR for the estimation of DOC concentration of water from simple measur-
able water quality and climatological variables using datasets from an Australian catchment. The
secondary aim of this study was to establish new knowledge about the potential relationships between
climatological factors and water quality parameters by using the exhaustive feature selection tech-
nique. This may enable water utilities to minimise the impact of changes in climate conditions on
treatment plant performance and potable water quality.
METHODOLOGY

Study area

This study was conducted in the Nepean catchment in Australia (386 km2) over a spatial domain of
33.81°S to 35.09°S and 149.97°E to 151.16°E with an elevation of 130–720 m above sea level
a.silverchair.com/h2open/article-pdf/3/1/328/863652/h2oj0030328.pdf
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(Figure 1), The dominant climate class is temperate, characterised by no dry season, a warm summer
and 800–1,600 mm of annual rainfall. The major land cover are trees (82%) with the remaining areas
used for rural residential and agricultural purposes, including pasture and cropping (Peel et al. 2007b;
Sixsmith et al. 2015; Office of Environment and Heritage 2017).
Figure 1 | Nepean dam catchment and two sampling points (SP-1 and SP-2).
Dataset

The dataset (n¼ 5,540) was compiled from surface water quality observations and climatological and
catchment variables derived from satellites, and a land surface model with a temporal range of 15
years and 2 months (1 November 2002 to 1 January 2018) (Table S1, Supporting Information). A
pre-processing step was employed to remove inaccuracies, including reading errors, abnormal data
and missing values.

Water quality data

Water quality data were collected at the Burke River (SP-1), one of three main tributaries to Lake
Nepean and Lake Nepean (SP-2) in the Nepean catchment (Figure S1, Supporting Information).
Parameters obtained from routine water quality monitoring included pH, water temperature (°C),
turbidity (NTU), alkalinity (mg CaCO3/L), true colour (UTC) and DOC concentration (mg/L).

Catchment and climate data

The catchment boundary (DEM) was obtained from the Shuttle Radar Topography Mission (SRTM)
and the Hydrologically Enforced Digital Elevation Model (DEM-H) Version 1.0 (Read et al. 2011);
land cover (LC) was obtained from the Dynamic Land Cover Dataset Version 2.1 (Sixsmith et al.
2015) in 2012–2013, consisting of 22 LC classes; and climate class (CZ) was obtained from the
updated Köppen–Geiger climate classification (Peel et al. 2007a) (Table S1). Daily rainfall (mm/
day) and air temperature (°C) were obtained from the Australian Water Availability Project
a.silverchair.com/h2open/article-pdf/3/1/328/863652/h2oj0030328.pdf
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(AWAP) dataset, gridded at 0.05° (Raupach et al. 2009). Mean temperatures were expressed as arith-
metic averages of daily maximum and minimum temperatures.
Daily SM (%) and actual evapotranspiration (ET) (mm/day) were extracted from the Australian

Water Resource Assessment Landscape (AWRA-L) dataset, gridded at 0.05° (Frost et al. 2016).
Leaf area index (LAI) (m2/m2) defined as the one-sided green leaf area per unit ground surface
area was calculated from 8-day composite Moderate Resolution Imaging Spectroradiometer
(MODIS) measurements from Terra and Aqua satellites products (Didan et al. 2015). Raw LAI
data were re-projected and resampled to 0.05°� 0.05° grids (identical to the gridded rainfall data)
by using the MODIS re-projection tool (Dwyer & Schmidt 2006). Outliers were removed using the
Savitzky–Golay filter (Savitzky & Golay 1964) in the TIMESAT software package (Jönsson &
Eklundh 2004). The filtered 8-day LAI maps were linearly interpolated to a daily time scale for con-
sistency with the other parameters in the dataset.
Data processing

Water quality data were collected on different time steps, and the dates of sample collection were not
consistent. When multiple samples were taken within a day, the corresponding measurements were
averaged to produce a single representative daily value. The climatological data series was complete
and void of missing values, so additional data processing was not necessary. The climatological and
water quality data series were merged with each other such that only the dates with both climatolo-
gical and water quality data available could be considered for further data processing.
Establishing the machine learning algorithms

The workflow to establish, train and assess the machine learning algorithms is presented in Figure 2.
To evaluate predictive models, the original dataset was randomly partitioned into 10 equal size non-
overlapping subsets to enable the 10-fold cross-validation technique. Nine subsets were used for
Figure 2 | The overall machine learning framework to establish, train and assess the machine learning algorithms.
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training and one set for validation. The cross-validation process was repeated 10 times such that each
of the 10 subsets was used exactly once as the validation data. Simple regression analysis was used to
identify the potential correlations between the observed DOC concentrations (Target) and other
water quality, catchment and climate data (Predictors). After understanding the associations between
the predictors and the target, the three algorithms were programmed, trained and validated using
MATLAB 2018b (Mathworks, Inc.).
Algorithm 1. MLR
The MLR model learns the linear function to map the climatological parameters to the DOC con-

centrations in the catchment. Equation (1) represents the relationship between the predicted DOC for
the kth sample point, dDOCk, using the MLR model:

dDOCk ¼ a0 þ
XM
n¼1

(anxi) (1)

where a0 is the intercept and a linear term for each predictor (xi). The MLR is the simplest algorithm
and was used to establish the baseline response between target and predictors. The ordinary least
square approximation by QR decomposition was used to estimate the algorithm parameters.
Algorithm 2. SVR
The SVR can be expressed as Equation (2):

dDOCk ¼ a0 þ
XM
i¼1

(ai � a�i ) �K(xi, x) (2)

where K is the kernel function which transforms the data to map into a high-dimensional space. The
effectiveness of several kernel functions, including linear, quadratic and cubic, to estimate DOC con-
centration using climatological parameters were tested. MATLAB allows the setting of certain
parameters along with the kernel function as the SVR hyper parameters. Default MATLAB values
were used for building the model. Briefly, the epsilon parameter, which represents the half width
of epsilon-insensitive band and set to the interquartile range of DOC divided by 13.49 (i.e. an estima-
tor for 10% of the standard deviation). When training an SVR, no penalty is associated with the
training points inside the epsilon-insensitive band. The box constraint parameter, which controls
the penalty of misclassified training samples, hence limiting model complexity, was set to a multiple
of 10 times the epsilon value. Prior to training the model, the predictors were standardised, and the
kernel scale parameter was set automatically by MATLAB.
Algorithm 3. GPR
The exponential kernel function and the squared exponential kernel function were used in this

study, as they are widely used choices for covariance kernel functions (Jiang et al. 2019). The squared
exponential covariance function used in the GPR algorithm was expressed as Equation (3):

k(x, x0) ¼ s2 � e
�(x�x0 )2

2l2

h i
(3)

where σ is the noise standard deviation and l is the characteristic length-scale which controls the
effect of distance between x and x0. Intuitively, when x and x0 are very close, then k (covariance func-
tion) leads to a higher value, which means f(x) is highly correlated with f(x0). On the other hand, for
two distant points, k(x,x0) is near to zero. This property of the squared exponential function is also
highly desirable as for predicting the target variable at a new x, negligible effects from distant obser-
vations are anticipated.
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Time-lag function

As the system time lag was unknown, the performance of the machine learning algorithms as
measured by different statistical criteria (highlighted in this section) was evaluated as a function of
the lag (TD). Equation (4), where ŷ and u indicate the predicted value and model parameters, respect-
ively, summarises the dominant delay estimation process. Perf(ŷ, y) shows a performance metric
describing the accuracy of the model. As implied by Equation (4), the largest spike (arg max) in the
performance metric specified the dominant lag time.

argmax
TD

Perf(ŷ, y) where ŷ ¼ f(xi, u) (4)
Performance and accuracy assessment of the DOC models

Three summary statistics describing the accuracy of the models were used to assess the models’ per-
formances: adjusted R-squared (adj. R2), the root-mean-squared error (RMSE) and mean absolute
error (MAE). The adj. R2 indicates the proportion of the total sum of squares explained by each
model adjusted for the number of coefficients. To quantify the level of statistical significance in the
performance of selected machine learning algorithms, the paired t-test as a commonly used statistical
hypothesis test for comparing machine learning algorithms was applied into the 10-fold cross-vali-
dation results. The paired t-test results that are often a test statistic and a p-value can be interpreted
to confirm whether there is a real or statistically significant difference between the machine learning
algorithms (Nadeau & Bengio 2003; Bouckaert & Frank 2004). Although predicting the DOC as a
continuous variable is highly desirable, ultimately predicting the events with high DOC concen-
trations might be more useful in practice. To do so, thresholding the predicted DOC value to
produce a binary outcome was required.
To visualise and quantify the trade-off between the false alarms and missed events, the receiver oper-

ating characteristic (ROC) curve was generated for the best performing model (the classification process
in Figure 2). The ROC curve plots true positive rate (that is known as sensitivity) against false positive
rate (that is also known as one minus specificity), obtained by varying the probability threshold on the
predicted output (DOC concentration) (Fawcett 2006). The sensitivity measures the accuracy of the
model in predicting high DOC concentration events, while the specificity measures the accuracy of
the model in predicting instances with below-threshold DOC concentration. The probability threshold
was used to find out how accurately the model could determine if there exists a high DOC event or not.
Since increases by as much as 100% in DOC concentrations were observed during wet weather events
in other researches (Hinton et al. 1997; Schoenheinz & Grischek 2011; Whitworth et al. 2012; Dhillon
& Inamdar 2013), a high DOC event was defined in this study when the DOC concentration was two
times higher than the averaged observed historical DOC concentration in the dataset. To provide an
aggregate measure to quantify the model performance across all possible threshold values for dDOC,
the area under the ROC curve (AUC) was calculated. The AUC value of 1.0 indicates a perfect
model performance, while a value of 0.5 represents the chance-level (Kordestani et al. 2019).
RESULTS AND DISCUSSION

Removal of irrelevant data

Table 1 enumerates the basic statistics of the monitored water quality data at selected sampling points
(SP-1 and SP-2 in Figure 1) including the mean and standard deviation of each monitored water
a.silverchair.com/h2open/article-pdf/3/1/328/863652/h2oj0030328.pdf



Table 1 | Summary of the basic statistical assessments of selected measured water quality variables in selected sampling sites

Variable

SP-1 SP-2

Mean Standard deviation R2 with DOC Mean Standard deviation R2 with DOC

pH 6.53 0.50 0.00 7.31 0.38 0.00

Temperature (˚C) 16.00 5.30 0.26 14.81 3.52 0.17

Turbidity (NTU) 7.72 4.94 0.30 2.15 1.86 0.10

Alkalinity (mg CaCo3/L) 5.17 3.54 0.00 11.07 1.08 0.00

True colour (HU) 23.12 10.40 0.22 7.14 1.86 0.25

DOC concentration (mg/L) 4.30 1.81 1.00 3.7 0.99 1.00
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quality data and their R2 with DOC concentration for each site. pH and alkalinity were dropped from
the analysis, as they were variables exhibiting an insignificant relationship with DOC concentration. It
should be noted that some studies suggested rising DOC concentrations may have been linked
to increases in alkalinity or pH, associated with recovery from acidification (Evans et al. 2005;
Winterdahl et al. 2014). However, there are some studies that challenged the role of pH (Couture
et al. 2012; Pärn & Mander 2012). Although the temporal correlations were not strong between
pH and DOC concentrations in this dataset, the possibility that as pH increases the DOC concen-
trations increase in this catchment is not dismissed. True colour was infrequently measured in our
dataset (n¼ 1,758 compared with n¼ 10,761 for turbidity at SP-1), thus it was excluded as a par-
ameter in DOC modelling. Temperature and turbidity were retained as water quality variables for
the modelling of the DOC concentration.
Selection of correct predictor variables

Climatological data including precipitation (Pre.), temperature (Temp.), SM, ET and LAI measured at
SP-1 from November 2002 to January 2018 are shown in Figure S2. To select the correct climatolo-
gical variables for DOC estimation, Pearson’s correlation coefficient of each climatological variable
and selected water quality parameters with DOC concentration in selected sampling sites were deter-
mined (Table 2 and Table S2). Strong correlations were observed between SM and precipitation
data (r¼ 0.91 at SP-1) and between temperature and ET data (r¼ 0.80 at SP-1) (Table 2 and
Table S2). To ensure parameters used to estimate DOC concentration were independent from each
other, parameters with high correlation were excluded. Therefore, two pathways arise for potential
machine learning model input variables, one considering precipitation and temperature and the
other including SM and ET. The effects of including more input variables on estimated DOC concen-
tration were also studied by increasing the number of model input variables from only two variables
Table 2 | Pearson’s correlation coefficient of climatological variables and selected water quality parameters with DOC concen-
tration of SP-1 dataset

MP1 DOC Turb. Pre. Temp. SM ET LAI

DOC 1.00

Turb. 0.29 1.00

Pre. 0.45 0.19 1.00

Temp. 0.26 0.06 0.07 1.00

SM 0.41 0.18 0.91 0.07 1.00

ET 0.29 0.02 0.34 0.80 0.38 1.00

LAI 0.12 0.00 0.11 0.15 0.05 0.18 1.00
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(Pre. and Temp. versus SM and ET) to three and four input variables by adding turbidity and LAI,
respectively.

Impact of considering time lags for the climatological data on estimated DOC concentrations

To investigate the effects of considering time lags for the climatological data on estimated DOC concen-
trations, time lags of up to 20 days prior to water sampling for the climatological data were investigated
in this study. Adj. R2 and RMSE values of estimated DOC concentrations at SP-1 using MLR as well as
SVR and GPR with different kernel functions are presented in Figure 3(a)–3(f) and Figure S3(a)–S3(f),
Figure 3 | Adj. R2 values of estimated DOC concentration at SP-1 using MLR, SVR and GPR with different kernel functions.
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respectively. Figure S4(a)–S4(f) represents how MAE values of estimated DOC concentration at SP-1
varied by increasing the time interval for consideration of climatological data prior to water sampling.
The results in Figure 3(a)–3(f) showed that increasing the number of inputs gave better results,
especially with the more sophisticated machine learning approaches. The model performance was
improved by considering turbidity and LAI as input variables, and the first scenario (Pre. and Temp.)
resulted better than the second one (SM and ET) (Figure 3(a)–3(f)). SVR with a linear kernel function
(Figure 3(b)) resulted in slightly better performance than MLR in adj. R2 values when the time lag
between climatological data and water quality data was increased. Changing the kernel function
from linear to quadratic also improved the model estimation results (adj. R2 of the model was increased)
(Figure 3(c)). However, applying SVR with a cubic kernel function was unsuccessful for this dataset for
DOC concentration estimation (Figure 3(d)). Similarly, GPR with kernel functions either exponential
(Figure 3(e)) or squared exponential (Figure 3(f)) exhibited poor performance with maximum adj. R2

values on average less than 0.5. The adj. R2 increased when the time lag between the climatological
data and the day of water sampling was increased from 1 to 12 days, beyond which it continued to
decrease (Figure 3(a)–3(d)).
Therefore, using SVR with a quadratic kernel function with Pre., Temp., LAI and Turb. as model

input variables with a 12-day time lag between climatological and water quality data outperformed
the other selected machine learning algorithms in this study in terms of statistical indices (adj.
R2¼ 0.71, RMSE¼ 1.9, MAE¼ 1.35). To estimate whether the differences between the performance
of SVR with a quadratic kernel function and other selected machine learning algorithms are true and
reliable or are just due to statistical chance, a paired t-test was conducted on 10-fold cross-validation
results, while a 12-day time lag between climatological and water quality data was considered. The
paired t-test results between SVR with a quadratic kernel function and other machine learning algor-
ithms rejected the null hypothesis at the 5% significance level, and the averaged p-value was 1.37%
which is smaller than the considered significance level (i.e. 5%). Hence, the results statistically pro-
vided convincing evidence that machine learning algorithms performed differently and any
observed difference in the performance of SVR with a quadratic kernel function is likely due to a
difference in the models. Therefore, the SVR showed a better capability than MLR and GPR to
handle the nonlinearity and complexity of climatological characteristics of the catchment. However,
it should be acknowledged that the performance of the GPR model was investigated with only two
kernel functions, the exponential and the squared exponential. Exploring other kernels could be a
potential future work to this study and might result in a higher performance metrics for the GPR.
The trend of RMSE (Figure S3(a)–S3(f)) was opposite to that of adj. R2, as the objective function

with RMSE was to minimise the estimation error. It should be noted that by using the entire dataset
in the hyperparameter selection process, a bias is introduced, which likely results in an overly optimis-
tic performance metrics. The hyperparameters were the best model types (i.e. SVR with quadratic
kernel function), the best set of features (Pre., Temp., LAI and Turb.) and the most appropriate
value time delay (i.e. 12 days). It should be noted that the 12-day time interval would not be a univer-
sal value for all the other catchments, as the time interval could be related to some physical
characteristics of the catchment such as catchment area/slope or the LC.

Machine learning model performance assessment

One potential avenue is to explore the performance of the best model for a completely blinded data-
set, which was not used for the feature and model selection. Therefore, a 12-day time lag was chosen
to consider the impacts of climatological data prior to water sampling, as it led to the highest adj. R2

value and lowest RMSE value in this study (Figure 3(c)). The measured and estimated DOC concen-
trations and their scatter plot using the SVR model with the quadratic kernel function at SP-1 are
presented in Figure 4. As seen from the figure, the plotted data points revealed a good agreement
a.silverchair.com/h2open/article-pdf/3/1/328/863652/h2oj0030328.pdf
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between measured and estimated DOC concentrations, as they generally correlated close towards the
1:1 sloped line.
ROC analysis

To investigate if the developed SVR model with a quadratic kernel function and a 12-day time lag
between climatological and water quality data could detect high DOC concentration events, the
ROC analysis was carried out. The averaged measured DOC concentration at SP-1 from November
2002 to January 2018 was 3.4 mg/L (Figure 4). In this study, the DOC concentration threshold for
such events was set to be two times higher than the averaged observed DOC concentrations over
the past 15 years (6.8 mg/L at SP-1). Figure 5 shows the ROC curve for the high DOC concentration
events using the SVR model with the quadratic kernel function with Pre., Temp., LAI and Turb. as
model input variables and a 12-day time lag between climatological and water quality data at SP-1.
Different cut-off values can be selected from the ROC curve. Here, as high sensitivity will guarantee
that most of the high DOC concentration events will be detected, a lax operating point is desirable.
Therefore, a knee point in the ROC curve, which ensures a sensitivity of 90%, was selected as the
operating point. The corresponding sensitivity and specificity were 0.89 and 0.88, respectively
(denoted by a red circle in Figure 5). The confidence intervals in each point were computed by gen-
erating 100 bootstrap replicas. It was found that the AUC value for the SVR model with the quadratic
kernel function and a 12-day time lag was 0.92 which is above the random level (i.e. 0.5), indicating
that the developed SVR model, which uses climatological variables as model inputs, is capable of
being used as an alarm system, indicating a possible high DOC event.
Adj. R2, RMSE and MAE values for the estimated DOC concentrations at SP-2 with the

same machine learning algorithms are shown in Figure S5(a)–S5(f), Figure S6(a)–S6(f) and
a.silverchair.com/h2open/article-pdf/3/1/328/863652/h2oj0030328.pdf



Figure 5 | The ROC curve and the AUC corresponding to the high DOC concentration events using the SVR model with the
quadratic kernel function with Pre., Temp., LAI and Turb. as model input variables and a 12-day time lag between climatological
and water quality data at SP-1.
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Figure S7(a)–S7(f), respectively. Unlike SP-1 that is a river-based sampling point, SP-2 is located at
a lake whose water comes from three main tributaries (SP-1 is at one of these three main tribu-
taries into the lake). The results show that none of the applied machine learning algorithms
could estimate the DOC concentration at SP-2 (adj. R2 ,0.3). As shown in Figure S5(a)–S5(f),
Figure S6(a)–S6(f) and Figure S7(a)–S7(f), estimated DOC concentrations at SP-2 did not improve
by including more input parameters to machine learning algorithms, or by increasing the time lag
between climatological and water quality datasets. This could largely be due to the complex local
geological and hydrological changes in the sites that directly surround and feed each sampling
point or because the lake water combines water from its tributaries with potentially different phy-
siochemical and climatological characteristics. One future approach to deal with lake-based sites
could be to consider data from all input tributaries. Another possible reason, that would make it
hard to understand how water quality parameters in a lake are affected by climatological par-
ameters, could be the inherent variability in lake characteristics such as lake size, shape and
depth compared to the rivers. It could also be due to the complex nature of lake–atmosphere inter-
actions (O’Reilly et al. 2015; Winslow et al. 2015) or water clarity in the lake as it influences the
depth range over which heat can be absorbed (Rose et al. 2016) or the strength of lake stratifica-
tion (Winslow et al. 2015, 2017). Hence, the response of the lake to changing climatological
parameters was complex, and considering only the climatological parameters could not estimate
the DOC concentration at the lake sampling point in our study (SP-2).
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CONCLUSION

This research utilised machine learning and satellite data to develop and train a model to estimate
DOC concentration in water in an Australian catchment. Given the ease of accessing high-resolution
satellite data, it is feasible to use climatological data derived from the satellite datasets and link them
with water quality indicators to meet the current and future challenges in large-area water quality
monitoring. The analysis of the results showed that precipitation, temperature, LAI and turbidity
yielded the optimal results using the SVR model with the quadratic kernel function. Considering
the impact of time lag on climatological data prior to water sampling showed an impact on model
accuracy, and a 12-day time lag between climatological and water quality data brought far better
results for the datasets used in this study in terms of statistical indices (adj. R2¼ 0.71, RMSE¼ 1.9,
MAE¼ 1.35). To show the usefulness of the proposed method compared with other traditional
model and kernel-based models, different machine learning models were constructed on the dataset.
Experimental results show that the forecasting capability of the SVR model outperforms those of
other kernel-based models, thereby generating more accurate results.
From the ROC analysis, the developed SVR model with the quadratic kernel function can be suc-

cessfully used to indicate possible high DOC events (AUC¼ 92%). Although the results showed that
the SVR model works well for the river-based sampling point, the response of the lake to changing
climatological parameters was complex and none of the applied machine learning algorithms could
estimate the DOC concentration at lake-based sampling point, probably due to higher water residence
times in lakes than rivers or diverse variability in lake characteristics such as lake size, shape and
depth. Further studies would be needed to test and clarify the effect of considering other potential
lake characteristics as model input variables for the DOC estimation at lake-based sampling points
and the potential for utilising the approach to river-based modelling used in this study as inputs to
DOC estimation models for lake-based sites.
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